
Artificial Intelligence 174 (2010) 1369–1406

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Kernel functions for case-based planning

Ivan Serina

Free University of Bozen-Bolzano, Viale Ratisbona, 16, I-39042 Bressanone, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 September 2008
Received in revised form 14 July 2010
Accepted 16 July 2010
Available online 30 July 2010

Keywords:
Case-based planning
Domain-independent planning
Case-based reasoning
Heuristic search for planning
Kernel functions

Case-based planning can take advantage of former problem-solving experiences by storing
in a plan library previously generated plans that can be reused to solve similar planning
problems in the future. Although comparative worst-case complexity analyses of plan
generation and reuse techniques reveal that it is not possible to achieve provable efficiency
gain of reuse over generation, we show that the case-based planning approach can be an
effective alternative to plan generation when similar reuse candidates can be chosen.
In this paper we describe an innovative case-based planning system, called OAKplan,
which can efficiently retrieve planning cases from plan libraries containing more than ten
thousand cases, choose heuristically a suitable candidate and adapt it to provide a good
quality solution plan which is similar to the one retrieved from the case library.
Given a planning problem we encode it as a compact graph structure, that we call
Planning Encoding Graph, which gives us a detailed description of the topology of the
planning problem. By using this graph representation, we examine an approximate retrieval
procedure based on kernel functions that effectively match planning instances, achieving
extremely good performance in standard benchmark domains.
The experimental results point out the effect of the case base size and the importance
of accurate matching functions for global system performance. Overall, we show that
OAKplan is competitive with state-of-the-art plan generation systems in terms of number
of problems solved, CPU time, plan difference values and plan quality when cases similar
to the current planning problem are available in the plan library.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Planning is a process which usually involves the use of a lot of resources. The efficiency of planning systems can be
improved by avoiding repeating the planning effort whenever it is not strictly necessary. For example this can be done
when the specification of the goals undergoes a variation during plan execution or execution time failures turn up: it is
then advisable to change the existing plan rather than replanning from scratch. One might even think of basing the whole
planning process on the modification of plans, a procedure also known as planning from second principles [47]. In fact this
method does not generate a plan from scratch, but aims at exploiting the knowledge contained in plans that were generated
before. The current problem instance Π is thus employed to search for a plan in a library that, maybe after a number of
changes, might turn out useful to solve Π .

In Case-Based Planning (CBP), previously generated plans are stored as cases in memory and can be reused to solve
similar planning problems in the future. CBP can save considerable time over planning from scratch, thus offering a po-
tential (heuristic) mechanism for handling intractable problems. Similarly to other Case-Based Reasoning (CBR) systems,
CBP is based on two assumptions on the nature of the world [38]. The first assumption is that the world is regular: sim-

E-mail address: ivan.serina@unibz.it.
0004-3702/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2010.07.007

https://core.ac.uk/display/81153172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.artint.2010.07.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:ivan.serina@unibz.it
http://dx.doi.org/10.1016/j.artint.2010.07.007

1370 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
ilar problems have similar solutions; as a consequence, solutions for similar problems are a useful starting point for new
problem-solving. The second assumption is that the types of problems an agent encounters tend to recur; hence future
problems are likely to be similar to current problems.

Different case-based planners differ on how they store cases, how they adapt a solution to a new problem, whether they
use one or more cases for building a new solution or not, etc. [58]. From a theoretical point of view, in the worst case,
adapting an existing plan to solve a new problem is not more efficient than a complete regeneration of the plan [47]. More-
over finding a good reuse candidate in a plan library may be already very expensive, because it leads to more computational
costs than those that can be saved by reusing the candidate. In fact, the retrieval of a good plan from a library of plans
represents a serious bottleneck for plan reuse in domain independent case-based planning systems. This happens because
the problem of defining the best matching among the objects of two planning problems is NP-hard.

In this paper we present some data structures and new matching functions that efficiently address the problem of
matching planning instances, which is NP-hard in the general case. These functions lead to a new case-based planner
called OAKplan (acronym of Object Assignment Kernel case-based planner), which is competitive with state of the art plan
generation systems when sufficiently similar reuse candidates can be chosen.

Following the formalisation proposed by Liberatore [39], a planning case is a pair 〈Π0,π0〉, where Π0 is a planning
problem and π0 is a plan for it, while a plan library is a set of cases {〈Πi,πi〉 | 1 � i � m}. Our approach is based on a
compact graph representation which uses the initial and goal facts in order to define a detailed description of the topology
of the planning problem examined. On the basis of this graph representation we use ideas from different research areas. In
particular a lot of work has been done in molecular biology to analyse efficiently chemical databases which typically contain
thousands of molecules encoded as graphs. Similarly to the rascal system [51], we use graph degree sequences [55] in order
to filter out unpromising planning cases and reduce the set C ds = {〈Πi,πi〉} of cases that have to be examined accurately
up to a suitable number.1

Following Nebel and Koehler’s formalisation of matching functions [47], we examine the problem of defining a match
between the objects of the current planning problem and those of the selected planning cases. Since an exact matching
evaluation is infeasible from a computational point of view even for a limited number of candidate cases [47], we develop
an approximate evaluation based on kernel functions [56] to define a match among the objects of the planning problems
considered. Our kernel functions are inspired by Fröhlich et al.’s work [19–21] on kernel functions for molecular structures,
where a kernel function can be thought of as a special similarity measure that can be defined among arbitrarily structured
objects, like vectors, strings, trees or graphs [35,65]. The computational attractiveness of kernel methods comes from the
fact that they can be applied in high-dimensional feature spaces without suffering the high cost of explicitly computing the
mapped data [56].

In contrast to other CBP approaches that define exact matching functions among the objects of Π0 and those of the
plan library whose computation requires exponential time [29,34,47], our kernel functions can compute in polynomial time
an approximate matching function for each element of the set C ds; this matching function can choose a subset of the
candidate plans efficiently for the successive plan evaluation phase. These plans are evaluated accurately through a simulated
execution that determines the capacity of a plan πi to solve the current planning problem. This phase is performed by
executing πi and evaluating the presence of inconsistencies corresponding to the unsupported preconditions of the actions
of πi ; in the same way the presence of unsupported goals is identified. The best plan is then adapted, if necessary, in order
to be applicable to the current initial state and solve the current goals. This phase is based on the lpg-adapt system [16]
which has shown excellent performance in many domains. When the adaptation phase is concluded, a new planning case
corresponding to the current planning problem and its solution plan can be inserted into the library or can be discarded.

OAKplan can efficiently retrieve planning cases from plan libraries with more than ten thousand elements, heuristically
choose a suitable candidate, possibly the best one, and adapt it to provide a good quality solution plan similar to the one
retrieved from the case base. We hope that this work will be able to renew interest in the case-based planning approach.
Current research in planning has been devoted primarily to generative planning since no effective retrieval functions were
available in the past. To the best of our knowledge this is the first case-based planner that performs an efficient domain in-
dependent objects matching evaluation. We examine it in comparison with state of the art plan generation systems showing
that the case-based planning approach can be an effective alternative to plan generation when “sufficiently similar” reuse
candidates can be chosen. This is a major improvement on previous approaches on CBP which can only handle small plan
libraries (see Section 5) and can hardly be compared with plan generation systems.

The paper is organised as follows. Section 2 introduces the essential notions required by the paper. In particular we
expose the notion of union of graphs which is fundamental for the definition of the graphs used by our matching functions
and we introduce the basic concepts of kernel functions. Section 3 presents the main phases of our case-based planner
examining the different steps required by the Retrieval and Evaluation phases in detail. In Section 4 a detailed analysis of
the importance of an accurate matching function and of the case base size for the global system performance is provided.

1 The rascal system uses degree sequences and a rigorous maximum common edge subgraph (MCES) detection algorithm based on a maximum clique
formulation to compute the exact degree and composition of similarity in chemical databases. Our techniques use degree sequences and an approximate
maximum common subgraph (MCS) detection algorithm based on kernel functions to analyse the cases of huge plan libraries and choose a good candidate
for adaptation.

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1371
Then we examine the results produced by OAKplan in comparison with four state of the art plan generation systems. Finally,
Section 6 gives the conclusions and indicates future work.

2. Preliminaries

In the following we present some notation that will be used in the paper with an analysis of the computational com-
plexity of the problems considered.

2.1. Planning formalism

Similarly to Bylander’s work [8], we define an instance of propositional planning as:

Definition 1. A propositional STRIPS planning problem is a tuple Π = 〈Pr, I, G, O p〉 where:

• Pr is a finite set of ground atomic propositional formulae;
• I ⊆ Pr is the initial state;
• G ⊆ Pr is the goal specification;
• O p is a finite set of operators, where each operator o ∈ O p has the form op ⇒ o+,o− such that

– op ⊆ Pr are the propositional preconditions,
– o+ ⊆ Pr are the positive postconditions (add list),
– o− ⊆ Pr are the negative postconditions (delete list)
and o+ ∩ o− = ∅.

We assume that the set of propositions Pr has a particular structure. Let O be a set of typed constants ci , with the
understanding that distinct constants denote distinct objects (corresponding to individual entities following the Conceptual
Graphs notation [11]). Let P be a set of predicate symbols, then Pr(O,P) is the set of all ground atomic formulae over this
signature. Note that we use a many-sorted logic formalisation since it can significantly increase the efficiency of a deductive
inference system by eliminating useless branches of the search space of a domain [12,13,67]. A fact is an assertion that
some individual entities exist and that these entities are related by some relationships.

A plan π is a partially ordered sequence of actions π = (a1, . . . ,am, C), where ai is an action (completely instantiated
operator) of π and C defines the ordering relations between the actions of π . A linearisation of a partially ordered plan
is a total order over the actions of the plan that is consistent with the existing partial order. In a totally ordered plan
π = (a′

1, . . . ,a′
m), a precondition f of a plan action a′

i is supported if (i) f is added by an earlier action a′
j and not deleted

by an intervening action a′
k with j � k < i or (ii) f is true in the initial state and �a′

k with k < i s.t. f ∈ del(a′
k). In a partially

ordered plan, a precondition of an action is possibly supported if there exists a linearisation in which it is supported, while
an action precondition is necessarily supported if it is supported in all linearisations. An action precondition is necessarily
unsupported if it is not possibly supported. A valid plan is a plan in which all action preconditions are necessarily supported.

The complexity of STRIPS planning problems has been studied extensively in the literature. Bylander [8] has defined
PLANSAT as the decision problem of determining whether an instance Π of propositional STRIPS planning has a solution or
not. PLANMIN is defined as the problem of determining if there exists a solution of length k or less, i.e., it is the decision
problem corresponding to the search problem of generating plans with minimal length. Based on this framework, he has
analysed the computational complexity of a general propositional planning problem and a number of generalisations and
restricted problems. In its most general form, both PLANSAT and PLANMIN are PSPACE-complete. Severe restrictions on the
form of the operators are necessary to guarantee polynomial time or even NP-completeness [8].

It is important to remark that our approach is more related to the generative case-based planning approach than to the
transformational approach, in that the plan library is only assumed to be used when it is useful in the process of searching
for a new plan, and is not necessarily used to provide a starting point of the search process. If a planning case 〈Π0,π0〉 is
also known, the current planning problem Π cannot become more difficult, as we can simply disregard the case and find the
plan using Π only. Essential to this trivial result is that, similarly to most modern plan adaptation and case-based planning
approaches [2,28,61,62], we do not enforce plan adaptation to be conservative, in the sense that we do not require to reuse
as much of the starting plan π0 to solve the new plan. The computational complexity of plan Reuse and Modification for
STRIPS planning problems has been analysed in a number of papers [8,9,36,39,47]. While a problem cannot be made more
difficult by the presence of a hint, which corresponds in our context to the solution of a planning case, it may become
easier. Unfortunately the following theorem shows that this is not the case for plan adaptation.

Theorem 1. (See [39].) Deciding whether there exists a plan for a STRIPS instance Π , given a case 〈Π0,π0〉, is PSPACE-complete, even
if Π0 and Π only differ on one condition of the initial state.

Moreover empirical analyses show that plan modification for similar planning instances is somewhat more efficient than
plan generation in the average case [7,16,27,28,47,59,62].

1372 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
2.2. Graphs

Graphs provide a rich means for modelling structured objects and they are widely used in real-life applications to
represent molecules, images, or networks. On a very basic level, a graph can be defined by a set of entities and a set of
connections between these entities. More formally:

Definition 2. A labeled graph G is a 3-tuple G = (V , E, λ), in which

• V is the set of vertices,
• E ⊆ V × V is the set of directed edges or arcs,
• λ : V ∪ E → ℘s(Lλ) is a function assigning labels to vertices and edges;

where Lλ is a finite set of symbolic labels and ℘s(Lλ) represents the set of all the multisets on Lλ . Note that our label
function considers multisets of symbolic labels, with the corresponding operations of union, intersection and join [5], since
in our context they are more suitable than standard sets of symbolic labels in order to compare vertices or edges accurately
as described later. The above definition corresponds to the case of directed graphs; undirected graphs are obtained if we
require for each edge [v1, v2] ∈ E the existence of an edge [v2, v1] ∈ E with the same label. |G| = |V | + |E| denotes the size
of the graph G , while an empty graph such that |G| = 0 will be denoted by ∅. An arc e = [v, u] ∈ E is considered to be
directed from v to u; v is called the source node and u is called the target node of the arc; u is said to be a direct successor
of v , v is said to be a direct predecessor of u, while v is said to be adjacent to the vertex u and vice versa.

Here we present the notion of graph union which is essential for the definition of the graphs used by our matching
functions:

Definition 3. The union of two graphs G1 = (V 1, E1, λ1) and G2 = (V 2, E2, λ2), denoted by G1 ∪ G2, is the graph G =
(V , E, λ) defined by

• V = V 1 ∪ V 2,
• E = E1 ∪ E2,

• λ(x) =
⎧⎨
⎩

λ1(x) if x ∈ (V 1\V 2) ∨ x ∈ (E1\E2),

λ2(x) if x ∈ (V 2\V 1) ∨ x ∈ (E2\E1),

λ1(x) λ2(x) otherwise

where indicates the join, sometimes called sum, of two multisets [5], while λ(·) associates a multiset of symbolic labels
to a vertex or to an edge.

In many applications it is necessary to compare objects represented as graphs and determine the similarity among
these objects. This is often accomplished by using graph matching, or isomorphism techniques. Graph isomorphism can be
formulated as the problem of identifying a one-to-one correspondence between the vertices of two graphs such that an
edge only exists between two vertices in one graph if an edge exists between the two corresponding vertices in the other
graph. Graph matching can be formulated as the problem involving the maximum common subgraph (MCS) between the
collection of graphs being considered. This is often referred to as the maximum common substructure problem and denotes
the largest substructure common to the collection of graphs under consideration. More precisely:

Definition 4. Two labeled graphs G = (V , E, λ) and G ′ = (V ′, E ′, λ′) are isomorphic if there exists a bijective function
f : V → V ′ such that

• ∀v ∈ V , λ(v) = λ′(f (v)),
• ∀[v1, v2] ∈ E, λ([v1, v2]) = λ′([f (v1), f (v2)]),
• [u, v] ∈ E if and only if [f (u), f (v)] ∈ E ′ .

We shall say that f is an isomorphism function.

Definition 5. An Induced Subgraph of a graph G = (V , E, λ) is a graph S = (V ′, E ′, λ′) such that

• V ′ ⊆ V and ∀v ∈ V ′ , λ′(v) ⊆ λ(v),
• E ′ ⊆ E and ∀e ∈ E ′ , λ′(e) ⊆ λ(e),
• ∀v, u ∈ V ′ , [v, u] ∈ E ′ if and only if [v, u] ∈ E .

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1373
A graph G is a Common Induced Subgraph (CIS) of graphs G1 and G2 if G is isomorphic to induced subgraphs of G1 and G2.
A common induced subgraph G = (V , E, λ) of G1 and G2 is called Maximum Common Induced Subgraph (MCIS) if there exists
no other common induced subgraph of G1 and G2 with

∑
v∈V |λ(v)| greater than G . Similarly, a common induced subgraph

G = (V , E, λ) of G1 and G2 is called Maximum Common Edge Subgraph (MCES), if there exists no other common induced
subgraph of G1 and G2 with

∑
e∈E |λ(e)| greater than G . Note that, since we are considering multiset labeled graphs,

we require a stronger condition than standard MCIS and MCES for labeled graph, in fact we want to maximise the total
cardinality of the multiset labels of vertices/edges involved instead of the simple number of vertices/edges.

As it is well known, subgraph isomorphism and MCS between two or among more graphs are NP-complete problems [22],
while it is still an open question if also graph isomorphism is an NP-complete problem. As a consequence, worst-case time
requirements of matching algorithms increase exponentially with the size of the input graphs, restricting the applicability
of many graph based techniques to very small graphs.

2.3. Kernel functions for labeled graphs

In recent years, a large number of graph matching methods based on different matching paradigms have been proposed,
ranging from the spectral decomposition of graph matrices to the training of artificial neural networks and from continuous
optimisation algorithms to optimal tree search procedures.

The basic limitation of graph matching is due to the lack of any mathematical structure in the space of graphs. Kernel
machines, a new class of algorithms for pattern analysis and classification, offer an elegant solution to this problem [56]. The
basic idea of kernel machines is to address a pattern recognition problem in a related vector space instead of the original
pattern space. That is, rather than defining mathematical operations in the space of graphs, all graphs are mapped into a
vector space where these operations are readily available. Obviously, the difficulty is to find a mapping that preserves the
structural similarity of graphs, at least to a certain extent. In other words, if two graphs are structurally similar, the two
vectors representing these graphs should be similar as well, since the objective is to obtain a vector space embedding that
preserves the characteristics of the original space of graphs.

A key result from the theory underlying kernel machines states that an explicit mapping from the pattern space into a
vector space is not required. Instead, from the definition of a kernel function it follows that there exists such a vector space
embedding and that the kernel function can be used to extract the information from vectors that is relevant for recognition.
As a matter of fact, the family of kernel machines consists of all the algorithms that can be formulated in terms of such a
kernel function, including standard methods for pattern analysis and classification such as principal component analysis and
nearest-neighbour classification. Hence, from the definition of a graph similarity measure, we obtain an implicit embedding
of the entire space of graphs into a vector space.

A kernel function can be thought of as a special similarity measure with well defined mathematical properties [56].
Considering the graph formalism, it is possible to define a kernel function which measures the degree of similarity between
two graphs. Each structure could be represented by means of its similarity to all the other structures in the graph space.
Moreover a kernel function implicitly defines a dot product in some space [56]; i.e., by defining a kernel function between
two graphs we implicitly define a vector representation of them without the need to explicitly know about it.

From a technical point of view a kernel function is a special similarity measure k : X × X → R between patterns lying
in some arbitrary domain X , which represents a dot product, denoted by 〈·,·〉, in some Hilbert space H [56]; thus, for two
arbitrary patterns x, x′ ∈ X it holds that k(x, x′) = 〈φ(x),φ(x′)〉, where φ : X → H is an arbitrary mapping of patterns from
the domain X into the feature space H. In principle the patterns in domain X do not necessarily have to be vectors; they
could be strings, graphs, trees, text documents or other objects. The vector representation of these objects is then given by
the map φ. Instead of performing the expensive transformation step explicitly, the kernel can be calculated directly, thus
performing the feature transformation only implicitly: this is known as kernel trick. This means that any set, whether a
linear space or not, that admits a positive definite kernel can be embedded into a linear space.

More specifically, kernel methods manage non-linear complex tasks making use of linear methods in a new space. For
instance, take into consideration a classification problem with a training set S = {(u1, y1), . . . , (un, yn)}, (ui, yi) ∈ X × Y , for
i = 1, . . . ,n, where X is an inner-product space (i.e. Rd) and Y = {−1,+1}. In this case, the learning phase corresponds to
building a function f ∈ Y X from the training set S by associating a class y ∈ Y to a pattern u ∈ X so that the generalisation
error of f is as low as possible.

A functional form for f consists in the hyperplane f (u) = sign(〈w, u〉+ b), where sign(·) refers to the function returning
the sign of its argument. The decision function f produces a prediction that depends on which side of the hyperplane
〈w, u〉 + b = 0 the input pattern u lies. The individuation of the best hyperplane corresponds to a convex quadratic optimi-
sation problem in which the solution vector w is a linear combination of the training vectors:

w =
n∑

i=1

αi yiui, for some αi ∈ R+, i = 1, . . . ,n.

In this way the linear classifier f may be rewritten as

f (u) = sign

(
n∑

αi yi〈ui, u〉 + b

)
.

i=1

1374 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Fig. 1. The kernel approach for classification. Left: non-linearly separable input provided by dots and crosses. Middle: perfect or approximate linear-
separability can be achieved in feature space via the mapping φ. Right: linear decision surface in feature space defines a complex decision surface in
input space.

As regards complex classification problems, the set of all possible linear decision surfaces might not be rich enough in or-
der to provide a good classification, independently from the values of the parameters w ∈ X and b ∈ R (see Fig. 1). The aim
of the kernel trick is that of overcoming this limitation by adopting a linear approach to transformed data φ(u1), . . . , φ(un)

rather than raw data. Here φ indicates an embedding function from the input space X to a feature space H, provided with
a dot product. This transformation enables us to give an alternative kernel representation of the data which is equivalent
to a mapping into a high-dimensional space where the two classes of data are more readily separable. The mapping is
achieved through a replacement of the inner product:

〈ui, u〉 → 〈
φ(ui),φ(u)

〉
and the separating function can be rewritten as:

f (u) = sign

(
n∑

i=1

αi yi
〈
φ(ui),φ(u)

〉 + b

)
. (1)

The main idea behind the kernel approach consists in replacing the dot product in the feature space using a kernel
k(u, v) = 〈φ(v),φ(u)〉; the functional form of the mapping φ(·) does not actually need to be known since it is implicitly
defined by the choice of the kernel. A positive definite kernel [23] is:

Definition 6. Let X be a set. A symmetric function k : X × X → R is a positive definite kernel function on X iff ∀n ∈ N,
∀x1, . . . , xn ∈ X , and ∀c1, . . . , cn ∈ R∑

i, j∈{1,...,n}
cic jk(xi, x j) � 0

where N is the set of positive integers. For a given set Su = {u1, . . . , un}, the matrix K = (k(ui, u j))i, j is known as Gram
matrix of k with respect to Su . Positive definite kernels are also called Mercer kernels.

Theorem 2. (Mercer’s property). (See [44].) For any positive definite kernel function k ∈ RX ×X , there exists a mapping φ ∈ H X into
the feature space H equipped with the inner product 〈·,·〉H , such that:

∀u, v ∈ X , k(u, v) = 〈
φ(u),φ(v)

〉
H.

The kernel approach replaces all inner products in Eq. (1) and all related expressions to compute the real coefficients αi
and b, by means of a Mercer kernel k. For any input pattern u, the relating decision function f is given by:

f (u) = sign

(
n∑

i=1

αi yik(ui, u) + b

)
. (2)

This approach transforms the input patterns u1, . . . , un into the corresponding vectors φ(u1), . . . , φ(un) ∈ H through
the mapping φ ∈ H X (cf. Mercer’s property, Theorem 2), and uses hyperplanes in the feature space H for the purpose of
classification (see Fig. 1). The dot product 〈u, v〉 = ∑d

i=1 ui vi of Rd is actually a Mercer kernel, while other commonly used

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1375
Mercer kernels, like polynomial and Gaussian kernels, generally correspond to non-linear mappings φ into high-dimensional
feature spaces H. On the other hand the Gram matrix implicitly defines the geometry of the embedding space and permits
the use of linear techniques in the feature space so as to derive complex decision surfaces in the input space X .

While it is not always easy to prove positive definiteness for a given kernel, positive definite kernels are characterised
by interesting closure properties. More precisely, they are closed under sum, direct sum, multiplication by a scalar, tensor
product, zero extension, pointwise limits, and exponentiation [56].

A remarkable contribution to graph kernels is the work on convolution kernels, that provides a general framework to
deal with complex objects consisting of simpler parts [31]. Convolution kernels derive the similarity of complex objects
from the similarity of their parts. Given two kernels k1 and k2 over the same set of objects, new kernels may be built by
using operations such as convex linear combinations and convolutions. The convolution of k1 and k2 is a new kernel k with
the form

k1 � k2(u, v) =
∑

{u1,u2}=u; {v1,v2}=v

k1(u1, v1)k2(u2, v2)

where u = {u1, u2} refers to a partition of u into two substructures u1 and u2 [31,56]. The kind of substructures depends
on the domain of course and could be, for instance, subgraphs or subsets or substrings in the case of kernels defined
over graphs, sets or strings, respectively. Different kernels can be obtained by considering different classes of subgraphs
(e.g. directed/undirected, labeled/unlabeled, paths/trees/cycles, deterministic/random walks) and various ways of listing and
counting them [35,48,49]. The consideration of space and time complexity so as to compute convolution/spectral kernels is
important, owing to the combinatorial explosion linked to variable-size substructures.

In the following section we present our Optimal Assignment Kernel as a symmetric and positive definite similarity measure
for directed graph structures and it will be used in order to define the correspondence between the vertices of two directed
graphs. For an introduction to kernel functions related concepts and notation, the reader is referred to Scholkopf and Smola’s
book [56].

3. Case-based planning

A case-based planning system solves planning problems by making use of stored plans that were used to solve analogous
problems. CBP is a type of case-based reasoning, which involves the use of stored experiences (cases); moreover there is
strong evidence that people frequently employ this kind of analogical reasoning [24,54,66]. When a CBP system solves a
new planning problem, the new plan is added to its case base for potential reuse in the future. Thus we can say that the
system learns from experience.

In general the following steps are executed when a new planning problem must be solved by a CBP system:

1. Plan Retrieval to retrieve cases from memory that are analogous to the current (target) problem (see Section 3.1 for a
description of our approach).

2. Plan Evaluation to evaluate the new plans by execution, simulated execution, or analysis and choose one of them (see
Section 3.2).

3. Plan Adaptation to repair any faults found in the new plan (see Section 3.3).
4. Plan Revision to test the solution new plan π for success and repair it if a failure occurs during execution (see Sec-

tion 3.4).
5. Plan Storage to eventually store π as a new case in the case base (see Section 3.4).

In order to realise the benefits of remembering and reusing past plans, a CBP system needs efficient methods for re-
trieving analogous cases and for adapting retrieved plans together with a case base of sufficient size and coverage to yield
useful analogues. The ability of the system to search in the library for a plan suitable to adaptation2 depends both on the
efficiency/accuracy of the implemented retrieval algorithm and on the data structures used to represent the elements of the
case base.

Similarly to the Aamodt and Plaza’s classic model of the problem solving cycle in CBR [1], Fig. 2 shows the main steps of
our case-based planning cycle and the interactions of the different steps with the case base. In the following we illustrate
the main steps of our case-based planning approach, examining the different implementation choices adopted.

3.1. Plan retrieval

Although the plan adaptation phase is the central component of a CBP system, the retrieval phase critically affects the
system performance too. As a matter of fact the retrieval time is a component of the total adaptation time and the quality
of the retrieved plan is fundamental for the performance of the successive adaptation phase. With OAKplan a number

2 A plan suitable to adaptation has an adaptation cost that is lower with respect to the other candidates of the case base and with respect to plan
generation.

1376 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Fig. 2. The case-based planning cycle.

of functions for the management of the plan library and matching functions for the selection of the candidate plan for
adaptation have been implemented.

The retrieval phase has to consider all the elements of the plan library in order to choose a good one that will allow
the system to solve the new problem easily. Hence it is necessary to design a similarity metric and reduce the number of
cases that must be evaluated accurately so as to improve the efficiency of the retrieval phase. Anyway the efficiency of a
plan adaptation system is undoubtedly linked to the distance between the problem to solve and the plan to adapt. In order
to find a plan which is useful for adaptation we have to reach the following objectives:

• The retrieval phase must identify the candidates for adaptation. The retrieval time should be as small as possible as
it will be added to the adaptation time and so particular attention has been given to the creation of efficient data
structures for this phase.

• The selected cases should actually contain the plans that are easier to adapt; since we assume that the world is regular,
i.e. that similar problems have similar solutions, we look for the cases that are the most similar to the problem to solve
(with respect to all the other candidates of the case base). In this sense, it is important to define a metric able to give
an accurate measure of the similarity between the planning problem to solve and the cases of the plan library.

To the end of applying the reuse technique, it is necessary to provide a plan library from which “sufficiently similar”
reuse candidates can be chosen. In this case, “sufficiently similar” means that reuse candidates have a large number of
initial and goal facts in common with the new instance. However, one may also want to consider the reuse candidates that
are similar to the new instance after the objects of the selected candidates have been systematically renamed. As a matter
of fact, every plan reuse system should contain a matching component that tries to find a mapping between the objects
of the reuse candidate and the objects of the new instance such that the number of common goal facts is maximised and
the additional planning effort to achieve the initial state of the plan library is minimised. Following Nebel and Koehler’s
formalisation [47], we will have a closer look at this matching problem.

3.1.1. Object matching
As previously said we use a many-sorted logic in order to reduce the search space for the matching process; moreover we

assume that the operators are ordinary STRIPS operators using variables. If there are two instances

Π ′ = 〈
Pr

(
O′,P′), I ′, G′, O′

p

〉
, Π = 〈

Pr(O,P), I, G, O p
〉

such that (without loss of generality)

O′ ⊆ O, P′ = P, O′
p ⊆ O p

then a mapping, or matching function, from Π ′ to Π is a function

μ : O′ → O.

The mapping is extended to ground atomic formulae and sets of such formulae in the canonical way, i.e.,

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1377
μ
(

p(c1 : t1, . . . , cn : tn)
) = p

(
μ(c1) : t1, . . . ,μ(cn) : tn

)
,

μ
({

p1(..), . . . , pm(..)
}) = {

μ
(

p1(..)
)
, . . . ,μ

(
pm(..)

)}
.

If there exists a bijective matching function μ from Π ′ to Π such that μ(G ′) = G and μ(I ′) = I , then it is obvious that
a solution plan π ′ for Π ′ can be directly reused for solving Π since Π ′ and Π are identical within a renaming of constant
symbols, i.e., μ(π ′) solves Π . Even if μ does not match all goal and initial-state facts, μ(π ′) can still be used as a starting
point for the adaptation process that can solve Π .

In order to measure the similarity between two objects, it is intuitive and usual to compare the features which are
common to both objects [40]. The Jaccard similarity coefficient used in information retrieval is particularly interesting. Here
we examine an extended version that considers two pairs of disjoint sets:

complete_similμ
(
Π ′,Π

) = |μ(G′) ∩ G| + |μ(I ′) ∩ I|
|μ(G′) ∪ G| + |μ(I ′) ∪ I| . (3)

In the following we present a variant of the previous function so as to overcome the problems related to the presence
of irrelevant facts in the initial state description of the current planning problem Π and additional goals that are present
in Π ′ . In fact while the irrelevant facts can be filtered out from the initial state description of the case-based planning
problem Π ′ using the corresponding solution plan π ′ , this is not possible for the initial state description of the current
planning problem Π . Similarly, we do not want to consider possible “irrelevant” additional goals of G ′; this could happen
when Π ′ solves a more difficult planning problem with respect to Π . We define the following similarity function so as to
address these issues:

similμ
(
Π ′,Π

) = |μ(G′) ∩ G| + |μ(I ′) ∩ I|
|G| + |μ(I ′)| . (4)

Using similμ we obtain a value equal to 1 when there exists a mapping μ s.t. ∀ f ∈ I ′ , μ(f) ∈ I (to guarantee the
applicability of π ′) and ∀g ∈ G , ∃g′ ∈ G ′ s.t. g = μ(g′) (to guarantee the achievement of the goals of the current planning
problem).

Finally we define the following optimisation problem, which we call obj_match:

Instance: Two planning instances, Π ′ and Π , and a real number k ∈ [0,1].
Question: Does a mapping μ from Π ′ to Π such that similμ(Π ′,Π) = k exist and there is no mapping μ′ from Π ′ to Π

with similμ′ (Π ′,Π) > k?

It should be noted that this matching problem has to be solved for each potentially relevant candidate in the plan library
to select the corresponding best reuse candidate. Of course, one may use structuring and indexing techniques to avoid
considering all plans in the library. Nevertheless, it seems unavoidable solving this problem a considerable number of times
before an appropriate reuse candidate is identified. For this reason, the efficiency of the matching component is crucial for
the overall system performance. Unfortunately, similarly to Nebel and Koehler’s analysis [47], it is quite easy to show that
this matching problem is an NP-hard problem.

Theorem 3. obj_match is NP-hard.

The proof of this theorem and of the following ones can be found in Appendix B. This NP-hardness result implies that
matching may be indeed a bottleneck for plan reuse systems. As a matter of fact, it seems to be the case that planning
instances with complex goal or initial-state descriptions may not benefit from plan-reuse techniques because matching and
retrieval are too expensive. In fact existing similarity metrics address the problem heuristically, considering approximations
of it [46,63]. However, this theorem is interesting because it captures the limit case for such approximations.

We define a particular labeled graph data structure called Planning Encoding Graph which encodes the initial and goal facts
of a single planning problem Π to perform an efficient matching between the objects of a planning case and the objects of
the current planning problem. The vertices of this graph belong to a set VΠ whose elements are the representation of the
objects O of the current planning problem Π and of the predicate symbols P of Π :

VΠ = O ∪
⋃
p∈P

I p ∪
⋃
q∈P

Gq

i.e. for each predicate we define two additional nodes, one associated to the corresponding initial fact predicate called I p
and the other associated to the corresponding goal fact predicate called Gq . The labels of this graph are derived from the
predicates of our facts and the sorts of our many-sorted logic. The representation of an entity (an object using planning
terminology) of the application domain is traditionally called a concept in the conceptual graph community [11]. Following
this notation a Planning Encoding Graph is composed of three kinds of nodes: concept nodes representing entities (objects)
that occur in the application domain, initial fact relation nodes representing relationships that hold between the objects of
the initial facts and goal fact relation nodes representing relationships that hold between the objects of the goal facts.

1378 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Fig. 3. Initial Fact Encoding Graph E I (p) of the propositional initial fact p = p(c1 : t1, . . . , cn : tn).

Fig. 4. Initial Fact Encoding Graph E I (on A B) of the propositional initial fact (on A B).

The Planning Encoding Graph of a planning problem Π(I, G) is built using the corresponding initial and goal facts. In
particular for each propositional initial fact p = p(c1 : t1, . . . , cn : tn) ∈ I we define a data structure called Initial Fact Encoding
Graph which corresponds to a graph that represents p. More precisely:

Definition 7. Given a propositional typed initial fact p = p(c1 : t1, . . . , cn : tn) ∈ I of Π , the Initial Fact Encoding Graph
E I (p) = (V p, Ep, λp) of fact p is a directed labeled graph where

• V p = {I p, c1, . . . , cn} ⊆ VΠ ;
• Ep = {[I p, c1], [c1, c2], [c1, c3], . . . , [c1, cn], [c2, c3], [c2, c4], . . . , [cn−1, cn]} = [I p, c1] ∪ ⋃

i=1,...,n; j=i+1,...,n[ci, c j];
• λp(I p) = {I p}, λp(ci) = {ti} with i = 1, . . . ,n;

• λp([I p, c1]) = {I0,1
p }; ∀[ci, c j] ∈ Ep , λp([ci, c j]) = {I i, j

p };

i.e. the first node of the graph E I (p), see Fig. 3, is the initial fact relation node I p labeled with the multiset λp(I p) =
{(I p,1)} = {I p},3 it is connected to a direct edge to the second node of the graph, the concept node c1, which is labeled by
sort t1 (i.e. λp(c1) = {(t1,1)} = {t1}); the node c1 is connected with the third node of the graph c2 which is labeled by sort
t2 (i.e. λp(c2) = {(t2,1)} = {t2}) and with all the remaining concept nodes, the third node of the graph c2 is connected with

c3, c4, . . . , cn and so on. The first edge of the graph [I p, c1] is labeled by the multiset {I0,1
p ,1} = {I0,1

p }, similarly a generic

edge [ci, c j] ∈ Ep is labeled by the multiset {I i, j
p }.

For example, in Fig. 4 we can see the Initial Fact Encoding Graph of the fact “p = (on A B)” of the BlocksWorld domain.
The first node is named as “Ion” and its label is the multiset λp(Ion) = {(Ion,1)} = {Ion}, the second node represents the
object “A” with label λp(A) = {(Obj,1)} = {Obj} and finally the third node represents the object “B” and its label is λp(B) =
{Obj}; the label of the [Ion, A] arc is the multiset {(I0,1

on ,1)} = {I0,1
on } and the label of the [A, B] arc is the multiset {(I1,2

on ,1)} =
{I1,2

on }.
Similarly to Definition 7 we define the Goal Fact Encoding Graph E G(q) of the fact q = q(c′

1 : t′
1, . . . , c′

m : t′
m) ∈ G using

{Gq} for the labeling procedure.
Given a planning problem Π with initial and goal states I and G , the Planning Encoding Graph of Π , that we indicate

as EΠ , is a directed labeled graph derived by the encoding graphs of the initial and goal facts:

EΠ(I,G) =
⋃
p∈I

E I (p) ∪
⋃
q∈G

E G(q) (5)

i.e. the Planning Encoding Graph of Π(I, G) is a graph obtained by merging the Initial and Goal Fact Encoding Graphs. For
simplicity in the following we visualise it as a three-level graph. The first level is derived from the predicate symbols of the

3 In the following we indicate the multiset {(x,1)} as {x} for sake of simplicity.

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1379
Fig. 5. Planning Encoding Graph for the Sussman anomaly planning problem in the BlocksWorld domain.

initial facts, the second level encodes the objects of the initial and goal states and the third level shows the goal fact nodes
derived from the predicate symbols of the goal facts.4

Fig. 5 illustrates the Planning Encoding Graph for the Sussman anomaly planning problem in the BlocksWorld domain.
The nodes of the first and third levels are the initial and goal fact relation nodes: the vertices Ion , Iclear and Ion-table are
derived by the predicates of the initial facts, while Gon by the predicates of the goal facts. The nodes of second level are
concept nodes which represent the objects of the current planning problem A, B and C , where the label “Obj” corresponds
to their type. The initial fact “(on C A)” determines two arcs, one connecting Ion to the vertex C and the second connecting
C to A; the labels of these arcs are derived from the predicate symbol “on” determining the multisets {I0,1

on } and {I1,2
on }

respectively. In the same way the other arcs are defined. Moreover since there is no overlapping among the edges of the
Initial and Goal Fact Encoding Graphs, the multiplicity of the edge label multisets is equal to 1; on the contrary the label
multisets of the vertices associated to the objects are:

λ(A) = {
(Obj,3)

}
, λ(B) = {

(Obj,4)
}

and λ(C) = {
(Obj,3)

}
.

This graph representation can give us a detailed description of the “topology” of a planning problem without requiring
any a priori assumptions on the relevance of certain problem descriptors for the whole graph. Furthermore it allows us to
use Graph Theory based techniques in order to define effective matching functions. In fact a matching function from Π ′
to Π can be derived by solving the Maximum Common Subgraph problem on the corresponding Planning Encoding Graphs.
A number of exact and approximate algorithms have been proposed in the literature so as to solve this graph problem
efficiently. With respect to normal conceptual graphs [11] used for Graph-based Knowledge Representation, we use a richer
label representation based on multisets. A single relation node is used to represent each predicate of the initial and goal
facts which reduces the total number of nodes in the graphs considerably. This is extremely important from a computational
point of view since, as we will see in the following sections, the matching process must be repeated several times and it
directly influences the total retrieval time.

In the following we examine a procedure based on graph degree sequences that is useful to derive an upper bound on
the size of the MCES of two graphs in an efficient way. Then we present an algorithm based on Kernel Functions that allows
to compute an approximate matching of two graphs in polynomial time.

3.1.2. Screening procedure
As explained previously, the retrieval phase could be very expensive from a computational point of view; so we have

developed a screening procedure that can be used in conjunction with an object matching algorithm.
Similarly to the rascal system [51], we use degree sequences [55] to calculate an upper bound on the size of a Maximum

Common Edge Subgraph (MCES) between a pair of graphs. Note that degree sequences of a graph have already been used
by other authors to establish upper bounds on graph invariants [30,41] and for indexing graph databases [50].

First, the set of vertices in each graph is partitioned into l partitions by label type, and then sorted in a non-increasing
total order by degree.5 Let Li

1 and Li
2 denote the sorted degree sequences of a partition i in the Planning Encoding Graphs

G1 and G2, respectively. An upper bound on the number of vertices Vertices(G1, G2) and edges Edges(G1, G2) of the MCES
graph can be computed as follows:

4 Following the conceptual graph notation, the first and third level nodes correspond to initial and goal fact relation nodes, while the nodes of the second
level correspond to concept nodes representing the objects of the initial and goal states.

5 The degree or valence of a vertex v of a graph G is the number of edges which touch v .

1380 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Fig. 6. Planning Encoding Graphs, degree sequences and the corresponding similarity value for two planning problems in the BlocksWorld domain.

Vertices(G1, G2) =
l∑

i=1

min
(∣∣Li

1

∣∣, ∣∣Li
2

∣∣),

Edges(G1, G2) =
⌊

l∑
i=1

min(|Li
1|,|Li

2|)∑
j=1

min(|E(vi, j
1)|, |E(vi, j

2)|)
2

⌋

where vi, j
1 indicates the j-th element (vertex) of the Li

1 sorted degree sequence and E(vi, j
1) indicates the set of arcs con-

nected to the vertex vi, j
1 . An upper bound on the similarity between G1 and G2 can be expressed using Johnson’s similarity

coefficient [33]:

similds(G1, G2) = (Vertices(G1, G2) + Edges(G1, G2))
2

(|V (G1)| + |E(G1)|) · (|V (G2)| + |E(G2)|) = (Vertices(G1, G2) + Edges(G1, G2))
2

|G1| · |G2| . (6)

Since Vertices(G1, G2) and Edges(G1, G2) determine an upper bound on the number of nodes and arcs of the MCES of G1 and
G2, the similds(G1, G2) similarity measure ranges from 0 to 1 and it is easy to show that it obeys the following inequality,

similds(G1, G2) � (|V (G12)| + |E(G12)|)2

|G1| · |G2| = |G12|2
|G1| · |G2|

where G12 is the MCES between graphs G1 and G2. Clearly, similds(G1, G2) can be used as an upper bound for the size of
the MCES between G1 and G2 and this procedure provides a rapid screening mechanism which takes advantage of local
connectivity and vertex labels to help eliminate unnecessary and costly MCES comparisons. For screening purposes, it is only
necessary to specify a minimum acceptable value for the MCES based graph similarity measure. If the value determined by
similds(G1, G2) is less than the minimum acceptable similarity, then the object matching comparison can be avoided. This
procedure can be performed by using the quick sort algorithm in O (n · log n) time, where n = maxi(|Li

1|, |Li
2|).

Fig. 6 shows the degree sequences of two Planning Encoding Graphs and the corresponding similarity value similds . To
compute the degree sequences, the vertices of the graphs are first separated into partitions according to their label type.
Considering the G1 graph, the L1

1 degree sequence is of type “Obj” and it has three elements: the vertices “v1,1
1 = B”,

“v1,2
1 = A” and “v1,3

1 = C” with degree 5, 4 and 4 respectively. Similarly the second degree sequence L2
1 of G1 is of type

“Gon” which has only one element: the vertex “v2,1
1 = Gon” with degree 2. Moreover, the entry “v1,3

2 = D” of graph G2

belongs to the sorted degree sequence L1
2 of type “Obj”, it is in third position in the degree sequence and its degree is equal

to 4; while the entry “v3,1
2 = Iclear” of graph G2 belongs to the degree sequence L3

2 which is of type “Iclear”, it is in first
position in the degree sequence L3

2 and it has degree 3. Vertices(G1, G2) is calculated by summing the size of the set Li

with the fewest non-null elements in graphs G1 and G2. Since L1
1 has 3 elements and L1

2 has 4 elements, the first term of
Vertices(G1, G2) is equal to min(|L1|, |L1|) = 3. Considering the other partitions L2, . . . , L6 we obtain Vertices(G1, G2) = 8.
1 2

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1381
Fig. 7. Possible assignments of vertices from G to those of graph G ′ . The kernel function k measures the similarity of a pair of vertices (v, u). The goal
is to find the optimal assignment of all vertices from G to those of G ′ , which maximises the overall similarity score, i.e., the sum of edge weights in the
bipartite graph, where each edge can be used at most once.

Besides Edges(G1, G2) is determined by summing the min(|E(vi, j
1)|, |E(vi, j

2)|) values of each partition i, adding the re-
sulting values together and then integer dividing the result by two. For example, the first term of Edges(G1, G2) is obtained
by dividing by two the following value:

min
(∣∣E

(
v1,1

1

)∣∣, ∣∣E
(

v1,1
2

)∣∣) + min
(∣∣E

(
v1,2

1

)∣∣, ∣∣E
(

v1,2
2

)∣∣) + min
(∣∣E

(
v1,3

1

)∣∣, ∣∣E
(

v1,3
2

)∣∣)
= min(5,6) + min(4,5) + min(4,5) = 5 + 4 + 4.

If we consider the elements of the other partitions we obtain Edges(G1, G2) = 10; since |V (G1)| = 8, |E(G1)| = 10,
|V (G2)| = 9 and |V (G2)| = 15, the degree similarity value of G1 and G2 (similds(G1, G2)) is equal to 0.75.

3.1.3. Kernel functions for object matching
As previously exposed obj_match is an NP-hard problem and its exact resolution is infeasible from a computational

point of view also for a limited number of candidates in the case base. In the following we present an approximate evalu-
ation based on kernel functions. Our kernel functions are inspired by Fröhlich et al.’s work [20,21,19] on kernel functions
for molecular structures. Their goal is to define a kernel function which measures the degree of similarity between two
chemical structures which are encoded as undirected labeled graphs. Our goal is to define a matching function among the
objects of two planning problems encoded as directed graphs.

The intuition of these kernel functions is that the similarity between two graphs depends mainly on the matching of
the pairs of vertices and the corresponding neighbourhoods; i.e., two graphs are more similar if the structural elements
from both graphs fit together better and if these structural elements are connected in a more similar way in both graphs.
Thereby, the graph properties of every single vertex and edge in both structures have to be considered. On a vertex level
this leads to the idea of looking for those vertices in the two graphs that have the best match with regard to structural
properties. In this way it is possible to consider not only direct neighbours, but also neighbours that are farther away, up
to some maximal topological distance. We now want to associate each vertex in one graph to exactly one vertex in another
graph such that the overall similarity is maximised. This problem can be modeled as a maximum weight bipartite matching
problem where our kernel function determines the similarity between pairs of vertices. From this algorithm we know for
each vertex in one graph to which vertex in the other graph it is assigned to. This guarantees us an easy way of interpreting
and understanding our kernel function since a matching between an object of the planning problem Π and an object of Π ′
directly derives from a matching between a vertex of the Planning Encoding Graph GΠ and a vertex of GΠ ′ .

Let us assume we have two graphs G and G ′ , which have vertices v1, . . . , vn and u1, . . . , um respectively. Let us further
assume we have a kernel function k, which compares a pair of vertices vi, u j from both graphs, including information
on their neighbourhoods. We now want to assign each vertex of the smaller of both graphs to exactly one vertex of the
bigger one such that the overall similarity score, i.e., the sum of kernel values between individual vertices, is maximised.
Mathematically this can be formulated as follows: let ζ denote a permutation of an n-subset of natural numbers 1, . . . ,m,
or a permutation of an m-subset of natural numbers 1, . . . ,n, respectively. Then we are looking for the quantity

K
(
G, G ′) =

{
maxζ

∑m
h=1 k(vζ(h), uh) if n � m,

maxζ

∑n
h=1 k(vh, uζ(h)) otherwise.

(7)

K is a valid kernel function, as shown by [19], and hence a similarity measure for graphs. Implicitly it computes a dot
product between two vector representations of graphs in some Hilbert space. Fig. 7 illustrates this idea: between any pair
of vertices from the upper and the lower structure there is some similarity, which can be thought as the edge weights of
a bipartite graph. We now have to find a combination of edges such that the sum of edge weights is maximised. Thereby
each edge can be used at most once. That means in the end exactly min(n,m) out of n · m edges are used up.

We now have to define the kernel function k. For this purpose let us suppose we have two kernel functions kv and ke
which compare the vertex and edge labels λ(·), respectively. In the following e j(v) denotes the j-th edge of the vertex v ,

while n j(v) denotes the node adjacent to the vertex v associated to the j-th edge e j(v). In the same way ei/o
(v) denotes
j

1382 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
the j-th incoming/outgoing edge, while ni/o
j (v) denotes the direct predecessor/successor of the vertex v associated to the

j-th incoming/outgoing edge ei/o
j (v). N (v j) denotes the set of vertices adjacent to the vertex v j , while E(v j) denotes the

set of incoming and outgoing edges of vertex v j . Similarly N i/o(v j) denotes the set of direct predecessor/successor vertices
of the vertex v j .

Given a pairs of vertices v and u, we use the kernel function kv (v, u) = γ0(v, u) · |λ(v)∩λ(u)|
|λ(v)∪λ(u)| , where γ0(v, u) is equal to

1.1 if u and v correspond to the same object (it is verified considering the names of the objects represented by vertices
u and v), otherwise it is equal to 1.0. The γ0 coefficient has been introduced in our kernel functions in order to allow a
greater stability in the activity assignment which is useful especially when human agents are handled by the planner. For
example, in a logistic domain, we would like the drivers to be assigned the same set of activities as much as possible. While

for pairs of edges we use ke(ek(v), e j(u)) = |λ(ek(v))∩λ(e j(u))|
|λ(ek(v))∪λ(e j(u))| if ek(v) and e j(u) are both incoming or outgoing edges of the

vertices v and u, otherwise ke(ek(v), e j(u)) is equal to 0. Formally, this corresponds to the multiplication by a so-called
δ-kernel.

We define the base kernel between two vertices v and u, including their direct neighbourhoods as

kbase(v, u) = kv(v, u) + 1

|N i(v)| · |N i(u)|
∑
h,h′

kv
(
ni

h(v),ni
h′(u)

) · ke
(
ei

h(v), ei
h′(u)

)

+ 1

|N o(v)| · |N o(u)|
∑
h,h′

kv
(
no

h(v),no
h′(u)

) · ke
(
eo

h(v), eo
h′(u)

)
. (8)

This means that the similarity between two vertices consists of two parts: first the similarity between the labels of the
vertices and second the similarity of the neighbourhood structure. It follows that the similarity of each pair of neighbours
ni/o

h (v),ni/o
h′ (u) is weighed by the similarity of the edges leading to them. The normalisation factors before the sums are

introduced to ensure that vertices with a higher number of arcs do not automatically achieve a higher similarity. Hence we
divide the sums by the number of the addends in them. It is also interesting to point out that the previous definition is just
a classical convolution kernel as introduced by Haussler [31].

In the following we define a more accurate kernel R1, which compares all the direct neighbours of the vertices (v, u)

as the optimal assignment kernel between all the neighbours of v and u and the edges leading to them so that we can to
improve the similarity values that can be obtained simply using kbase; more precisely:

R1(v, u) =
⎧⎨
⎩

1
|E(v)| maxζ

∑|E(v)|
i=1 kv(nζ(i)(v),ni(u)) · ke(eζ(i)(v), ei(u)) if |E(v)| � |E(u)|,

1
|E(u)| maxζ

∑|E(u)|
i=1 kv(ni(v),nζ(i)(u)) · ke(ei(v), eζ(i)(u)) otherwise.

(9)

Similarly to the graph kernel K of Eq. (7), the intuition behind this kernel function is that the similarity between two
nodes depends not only on the nodes structure but also on the matching of the corresponding neighbourhoods; i.e., two
nodes are more similar if their neighbourhood elements are connected in a more similar way in both nodes.

Theorem 4. R1 is a kernel function.

Of course it would be beneficial not to consider the match of direct neighbours only, but also that of indirect neighbours
and vertices having a larger topological distance. For this purpose we can evaluate R1 not at (v, u) only, but also at all pairs
of neighbours, indirect neighbours and so on, up to some topological distance L. The weighed average of all these values
corresponds to the weighed mean match of all indirect neighbours and vertices of a larger topological distance. Adding
them to kv (v, u) leads to the following definition of the neighbourhood kernel kN :

kN (v, u) = kv(v, u) + γ (1)R1(v, u) +
L∑

l=2

γ (l)Rl(v, u) (10)

where γ (l) denotes a decay parameter which reduces the influence of neighbours that are at topological distance l6; simi-
larly, Rl denotes the average of all R1 evaluated for neighbours at distance l and it is computed from Rl−1 via the recursive
relation:

Rl(v, u) = 1

|N i(v)| · |N i(u)|
∑
h,h′

Rl−1
(
ni

h(v),ni
h′(u)

) · ke
(
ei

h(v), ei
h′(u)

)

+ 1

|N o(v)| · |N o(u)|
∑
h,h′

Rl−1
(
no

h(v),no
h′(u)

) · ke
(
eo

h(v), eo
h′(u)

)
(11)

6 The γ (·) function used in our experimental evaluation is defined in Section 4.1.

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1383
i.e., we can compute kN (v, u) by iteratively revisiting all direct neighbours of v and u. The first addend in Eq. (10) takes
into account the nodes (v, u), while the second addend takes into account the direct neighbours of (v, u) computing the
R1(v, u) kernel function, then the next addend (i.e. γ (2) · R2(v, u)) computes the average of the match of all neighbours
which have topological distance 2 by evaluating R1 for all direct neighbours of (v, u). The fourth addend (i.e. γ (3) · R3(v, u))
does the same for all neighbours with topological distance 3. Finally, the last addend considers all neighbours which have
topological distance L by evaluating R1 for all neighbours at topological distance L − 1. Furthermore we can easily show
that:

Theorem 5. Let γ (l) = pl with p ∈ (0,0.5). If there exists a C ∈ R+ such that kv (v1, v2) � C for all v1 , v2 and ke(e1, e2) � 1 for all
e1 , e2 then Eq. (10) converges for L → ∞.

To briefly summarise, our approach works as follows: we first compute the similarity of all vertex and edge features using
the kernels kv and ke . Having these results we can compute the match of direct neighbours R1 for each pair of vertices
from both graphs by means of Eq. (9). From R1 we can compute R2, . . . , RL by iteratively revisiting all direct neighbours of
each pair of vertices and computing the recursive update formula (11). Having kv and R1, . . . , RL directly gives us kN , the
final similarity score for each pair of vertices, which includes structural information as well as neighbourhood properties.
With kN we can finally compute the optimal assignment kernel between two graphs G and G ′ using Eq. (7). Moreover (7)
can be calculated efficiently by using the Hungarian method [37] in O (n3), where n is the maximum number of vertices of
both graphs.

The kernel functions kbase and kN can be used in Eq. (7) to define the optimal assignment kernels Kbase and K N
respectively. Our optimal assignment kernel functions also define a permutation ζ that allows to easily determine the
matching function μ associating each object in the smaller planning problem to exactly one object in the other planning
problem.

The worst case scenario is determined when we consider two complete graphs with the same number of nodes n. In
this case, Eq. (8) has computational complexity O (n2) and since it has to be examined n2 time in Eq. (7) we obtain a
computational complexity of n2 · O (n2) + O (n3) = O (n4) for the Kbase kernel function. Moreover, function R1 has a compu-
tational complexity of O (n3) since we use the Hungarian method for its computation; similarly to kbase the Rl function has
computational complexity O (n2) and, limiting the kN evaluation to a topological distance L which is a polynomial of n, we
obtain a computational complexity for kN equal to 1 + O (n3) + O (n) · O (n2) = O (n3). The kN kernel function has to be
examined n2 times in Eq. (7), determining a computational complexity for K N equal to n2 · O (n3) + O (n3) = O (n5).

As it will be described in the next section, in OAKplan both Kbase and K N have been used; Kbase , which has a lower
computational complexity, has been used in order to prune unpromising case base candidates. It allows to define a first
matching function μbase and the corresponding similarity function similμbase , as described in the following section. On the
other hand K N has been used to define a final matching function μ and the corresponding similarity function similμ .

3.2. Plan evaluation phase

The purpose of plan evaluation is that of defining the capacity of a plan π to resolve a particular planning problem. It
is performed by simulating the execution of π and identifying the unsupported preconditions of its actions; in the same
way the presence of unsupported goals is identified. The plan evaluation function could be easily defined as the number
of inconsistencies in the current planning problem. Unfortunately this kind of evaluation considers a uniform cost in order
to resolve the different inconsistencies and this assumption is generally too restrictive. Then our system considers a more
accurate inconsistency evaluation criterion so as to improve the plan evaluation metric. The inconsistencies related to un-
supported facts are evaluated by computing a relaxed plan starting from the corresponding state and using the RelaxedPlan

algorithm in lpg [25]. The number of actions in the relaxed planning graph determines the difficulty to make the selected
inconsistencies supported; the number of actions in the final relaxed plan determines the accuracy of the input plan π to
solve the corresponding planning problem.

Fig. 8 describes the main steps of the RelaxedPlan function.7 It constructs a relaxed plan through a backward process
where Bestaction(g) is the action a′ chosen to achieve a (sub)goal g , and such that: (i) g is an effect of a′; (ii) all precon-
ditions of a′ are reachable from the current state INIT; (iii) the reachability of the preconditions of a′ requires a minimum
number of actions, evaluated as the maximum of the heuristically estimated minimum number of actions required to sup-
port each precondition p of a′ from INIT; (iv) a′ subverts a minimum number of supported precondition nodes in A (i.e.,
the size of the set Threats(a′) is minimal).

Fig. 9 describes the main steps of the EvaluatePlan function. For all actions of π (if any), it checks if at least one
precondition is not supported. In this case it uses the RelaxedPlan algorithm (step 4) so as to identify the additional
actions required to satisfy the unsupported preconditions. If Rplan contains a number of actions greater than Climit we can

7
RelaxedPlan is described in detail in [25]. It also computes an estimation of the earliest time when all facts in G can be achieved, which is not

described in this paper for sake of simplicity.

1384 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Algorithm RelaxedPlan

Input: a set of goal facts (G), the set of facts that are true in the current state (INIT),
a possibly empty relaxed plan (A)

Output: a relaxed plan ACTS estimating a minimal set of actions required to achieve G
1. G = G − INIT; ACTS = A
2. F = ⋃

a∈ACTS Add(a)

3. while G − F �= ∅
4. g = “a fact in G − F ”
5. bestact = Bestaction(g)

6. Rplan = RelaxedPlan(Pre(bestact), INIT,ACTS)
7. ACTS = Aset(Rplan) ∪ {bestact}
8. F = ⋃

a∈ACTS Add(a)

9. return ACTS

Fig. 8. Algorithm for computing a relaxed plan estimating a minimal set of actions required to achieve a set of facts G from the state INIT. Bestaction(g) is
the action that is heuristically chosen to support g as described in [25].

Algorithm EvaluatePlan

Input: a planning problem Π = (I, G), an input plan π and an adaptation cost limit Climit
Output: a relaxed plan to adapt π in order to resolve Π

1. CState = I; Rplan = ∅
2. forall a ∈ πi do
3. if ∃ f ∈ Pre(a) s.t. f /∈ CState then
4. Rplan = RelaxedPlan(Pre(a),CState,Rplan)

5. if |Rplan| > Climit then
6. return Rplan
7. CState = (CState/Del(a)) ∪ Add(a)

8. if ∃g ∈ G s.t. g /∈ CState then
Rplan = RelaxedPlan(G,CState,Rplan)

9. return Rplan

Fig. 9. Algorithm to evaluate the ability of π to solve the planning problem Π .

Algorithm RetrievePlan

Input: a planning problem Π , a case base C = 〈Πi ,πi〉
Output: candidate plan for the adaptation phase
1.1. πR = Evaluate_plan(Π, empty_plan,∞)

1.2. Define the set of initial relevant facts of Π using πR : IπR = I ∩ ⋃
a∈πR

pre(a)

1.3. Compute the Planning Encoding Graphs EΠ and EΠR of Π(I, G) and ΠR (IπR , G) respectively, and the degree sequences L j
ΠR

1.4. forall Πi ∈ C do

1.5. simili = similds(EΠi , EΠR)

1.6. push((Πi , simili),queue)
1.7. best_ds_simil = max(best_ds_simil, simili)
2.1. forall (Πi , simili) ∈ queue s.t. best_ds_simil − simili � limit do*

2.2. Load the Planning Encoding Graph EΠi and compute the matching function μbase using Kbase(EΠi , EΠ)

2.3. push((Πi ,μbase),queue1)

2.4. best_μbase_simil = max(best_μbase_simil, similμbase (Πi ,Π))

3.1. forall (Πi ,μbase) ∈ queue1 s.t. best_μbase_simil − similμbase (Πi ,Π) � limit do
3.2. Compute the matching function μN using K N (EΠi , EΠ)

3.3. if similμN (Πi ,Π) � similμbase (Πi ,Π) then μi = μN
else μi = μbase

3.4. push((Πi ,μi),queue2)

3.5. best_simil = max(best_simil, similμi (Πi ,Π))

4.1. best_cost = |πR |; best_plan = empty_plan

4.2. forall (Πi ,μi) ∈ queue2 s.t. best_simil − similμi (Πi ,Π) � limit do
4.3. Retrieve πi from C
4.4. costi = |EvaluatePlan(Π,μi(πi), best_cost · similμi (Πi ,Π))|
4.5. if best_cost · similμi (Πi ,Π) > costi then
4.6. best_cost = costi/similμi (Πi ,Π)

4.7. best_plan= μi(πi)

5.1. return best_plan
* We limited this evaluation to the best 700 cases of queue.

Fig. 10. Algorithm to find a suitable plan for the adaptation phase from a set of candidate cases or the empty plan (in case the “generative” approach is
considered more suitable).

stop the evaluation, otherwise we update the current state CState (step 7). Finally we examine the goal facts G (step 8) to
identify the additional actions required to satisfy them, if necessary.

Fig. 10 describes the main steps of the retrieval phase. We initially compute a relaxed plan πR for Π (step 1.1) using
the EvaluatePlan function on the empty plan which is needed so as to define the generation cost of the current planning

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1385
problem Π (step 4.1) and an estimate of the initial state relevant facts (step 1.2). In fact we use the relaxed plan πR

so as to filter out the irrelevant facts from the initial state description.8 This could be easily done by considering all the
preconditions of the actions of πR :

IπR = I ∩
⋃

a∈πR

pre(a).

Then in step 1.3 the Planning Encoding Graph of the current planning problem Π and the degree sequences that will be
used in the screening procedure are precomputed. Note that the degree sequences are computed considering the Planning
Encoding Graph EΠR of the planning problem ΠR(IπR , G) which uses IπR instead of I as initial state. This could be extremely
useful in practical applications when automated tools are used to define the initial state description without distinguishing
among relevant and irrelevant initial facts.

Steps 1.4–1.7 examine all the planning cases of the case base so as to reduce the set of candidate plans to a suitable
number. It is important to point out that in this phase it is not necessary to retrieve the complete Planning Encoding
Graphs of the case base candidates GΠ ′ but only their sorted degree sequences Li

Π ′ which are precomputed and stored in
the case base. On the contrary the Planning Encoding Graph and the degree sequences of the input planning problem are
only computed in the initial preprocessing phase (step 1.3).

All the cases with a similarity value sufficiently close9 to the best degree sequences similarity value (best_ds_simil)
are examined further on (steps 2.1–2.4) using the Kbase kernel function. Then all the cases selected at steps 2.x with a
similarity value sufficiently close to the best similμbase similarity value (best_μbase_simil) (step 3.1) are accurately evaluated
using the K N kernel function, while the corresponding μN function is defined at step 3.2. In steps 3.3–3.5 we select the
best matching function found for Πi and the best similarity value found until now.

We use the relaxed plan πR in order to define an estimate of the generation cost of the current planning problem Π

(step 4.1). The best_cost value allows to select a good candidate plan for adaptation (which could also be the empty plan).
This value is also useful during the computation of the adaptation cost through EvaluatePlan, in fact if such a limit is
exceeded then it is wasteful to use CPU time and memory to carry out the estimate and the current evaluation could be
terminated. The computation of the adaptation cost of the empty plan allows to choose between an adaptive approach and
a generative approach, if no plan gives an adaptation cost smaller than the empty plan.

For all the cases previously selected with a similarity value sufficiently close to best_simil (step 4.2) the adaptation cost is
determined (step 4.4). If a case of the case base determines an adaptation cost which is lower than best_cost · similμi (Πi,Π)

then it is selected as the current best case and also the best_cost and the best_plan are updated (steps 4.5–4.7). Note that
we store the encoded plan μi(πi) in best_plan since this is the plan that can be used by the adaptation phase for solving
the current planning problem Π . Moreover we use the similμi (Πi,Π) value in steps 4.4–4.6 as an indicator of the effective
ability of the selected plan to solve the current planning problem maintaining the original plan structure and at the same
time obtaining low distance values.

3.3. Plan adaptation

As previously exposed, the plan adaptation system is a fundamental component of a case-based planner. It consists
in reusing and modifying previously generated plans to solve a new problem and overcome the limitation of planning
from scratch. As a matter of fact, in planning from scratch if a planner receives exactly the same planning problem it will
repeat the very same planning operations. In our context the input plan is provided by the plan retrieval phase previously
described; but the applicability of a plan adaption system is more general. For example the need for adapting a precomputed
plan can arise in a dynamic environment when the execution of a planned action fails, when the new information changing
the description of the world prevents the applicability of some planned actions, or when the goal state is modified by
adding new goals or removing existing ones [16,25].

From a theoretical point of view, in the worst case, plan adaptation is not more efficient than a complete regeneration
of the plan [47] when a conservative adaptation strategy is adopted. However adapting an existing plan can be in practice
more efficient than generating a new one from scratch, and, in addition, this worst case scenario does not always hold, as
exposed in [2] for the Derivation Analogy adaptation approach. Plan adaptation can also be more convenient when the new
plan has to be as “similar” as possible to the original one.

Our work uses the lpg-adapt system given its good performance in many planning domains but other plan adaptation
systems could be used as well. lpg-adapt is a local-search-based planner that modifies plan candidates incrementally in a
search for a flawless candidate. It is important to point out that this paper relates to the description of a new efficient case-
based planner and in particular to the definition of effective plan matching functions, no significant changes were made to
the plan adaptation component (for a detailed description of it see [16]).

8 In the relaxed planning graph analysis the negative effects of the domain operators are not considered and a solution plan πR of a relaxed planning
problem can be computed in polynomial time [32].

9 In our experiments we used limit = 0.1.

1386 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Fig. 11. Retrieval and Adaptation phases.

Quite interesting the lpg-adapt planner has an anytime behaviour, in fact it can produce a succession of valid plans,
where each plan is an improvement of the previous ones in terms of its “adaptation quality”. This is a process that incre-
mentally improves the total quality of the plans, which can be stopped at any time to give the best plan computed so far
(πbest). Each time we start a new search, the input plan π0 provided by the retrieval phase is used to initialise the data
structures. Furthermore, during search some random inconsistencies are forced in the plan currently undergoing adaptation
when a valid plan that does not improve πbest is reached. This is a mechanism for leaving local optima. In our adaptation
context the total quality of a plan is derived considering a weighed evaluation of the metric quality and the “distance” of π
from π0:

Q π0(π,πbest) = α
Quality(π)

Quality(πbest)
+ (1 − α)

|π ∩ π0|
|πbest ∩ π0| (12)

the rationale of this choice is that of trying to balance the quality of the plan produced and the distance from the input
plan π0.10 The Q π0(·,·) value is used to choose between the new valid plan π and the best plan πbest found until now.

Fig. 11 visualises the main steps of the retrieval and adaptation phases. The screening procedure computes the similds

distance function so as to filter out the dissimilar cases and reduce the number of planning cases that have to be examined
accurately up to a suitable number. Then we compute the Kbase and K N kernel functions and the corresponding μbase
and μN matching functions to define the corresponding similμ similarity values and identify the candidate plans for the
adaptation phase. These plans are evaluated using the EvaluatePlan procedure and if the best case has an adaptation
cost inferior to the generation cost then it is used by lpg-adapt in order to find a suitable solution, otherwise a complete
generation phase is performed providing the empty plan to lpg-adapt.

3.4. Plan revision and case base update

Any kind of planning system that works in dynamic environments has to take into account failures that may arise during
plan generation and execution. In this respect case-based planning is not an exception; this capability is called plan revision.
When a failure is discovered, the system may react by looking for a repair or aborting the plan. In the former case the
lpg-adapt system is invoked on the remaining part of the plan.

10 In our tests we used α = 0.5.

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1387
Algorithm Insert_Case(Case, π , Π(I, G))
Input: a case base Case, a solution plan π for planning problem Π with initial state I and goal state G .
Output: insert the planning case in Case if not present.

1. Define the set of initial state relevant facts Iπ of Π using the input plan π
2. Compute the Planning Encoding Graph Eπ of Ππ (Iπ , G)

3. for each case (Πi ,πi) ∈ Case
4. Compute the matching function μi using K N (EΠi , Eπ)

5. if complete_similμi (Πi ,Ππ) = 1 ∧ |πi | � |π | then
6. return FALSE;
7. enfor
8. Insert the planning problem Ππ (Iπ , G), its solution plan π , the Planning Encoding Graph Eπ

and the data structures for the screening procedure in Case
9. return TRUE;

Fig. 12. High-level description of Insert_Case.

After finding the plan from the library and after repairing it with the lpg-adapt techniques the solution plan can be
inserted into the library or be discarded. Fig. 12 describes the main steps of the function used to evaluate the insertion of
a planning problem Π solved in the case base. First of all we compute the set of initial state relevant facts Iπ using the
input plan π ; this set corresponds to a subset of the facts of I relevant for the execution of π . It can be easily computed,
as described in Section 3.2, using the preconditions of the actions in π :

Iπ = I ∩
⋃
a∈π

pre(a).

Note that Iπ identifies all the facts required for the execution of the plan π and that this definition is consistent with
the procedure used in the RetrievePlan algorithm for the relaxed plan πR . Then we compute the Planning Encoding Graph
Eπ of the new planning problem Ππ(Iπ , G) having Iπ as initial state instead of I . At steps 3–6 the algorithm examines all
the cases of the case base and if it finds a case that solves Π with a plan of a better quality with respect to π then it stops
and exits. In order to do so we use the similarity function complete_similμi , described in Section 3.1.1, which compares all
the initial and goal facts of two planning problems. Otherwise if there is no case that can solve Ππ with a plan of a better
quality with respect to π then we insert the solved problem in the case base. As we can observe at step 8, a planning case
is made up not only by Ππ and π , but also other additional data structures are precomputed and added to the case base
so that their recomputation during the Retrieval Phase can be avoided.

4. Experimental results

In this section, we present an experimental study aimed at testing the effectiveness of OAKplan in a number of standard
benchmark domains. In the first subsection, we describe the experimental settings and then, in the second subsection, we
present the system overall results. In particular we examine the behaviour of OAKplan when different matching functions
are used and we experimentally analyse the impact of the size of the case base (number of planning cases) in the overall
performance of the system. In the third subsection, we experimentally investigate the similarity values of our matching
functions when the case base objects are progressively renamed. Finally, we compare our planner with four state-of-the-art
planners.

4.1. Experimental settings

Here we present and discuss the general results for the experimental comparison, moreover we examine the importance
of the matching functions and the size of the case base in the overall performance of the system.

OAKplan is written in C++ and uses the SQLite3 library11 for storing and retrieving the data structures of the case base
and the VFLIB library [14] so as to create and elaborate our graph data structures.12 The OAKplan code and the benchmark
planning problems are available from the OAKplan website http://pro.unibz.it/staff/iserina/OAKplan/.

We have conducted all the experimental tests using an AMD Sempron(tm) Processor 3400+ (with an effective 2000 MHz
rating) with 1 Gbyte of RAM. Unless otherwise specified, the CPU-time limit for each run is 10 minutes for OAKplan and
30 minutes for all the other planners, after which termination is forced.13 In the following tests the maximum topological
distance L considered for the computation of the kN kernel function in Eq. (10) is set to half of the number of nodes of

11 SQLite is a software library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine; further information can
be found at http://www.sqlite.org/.
12 Although the VFLIB library can solve subgraph-isomorphism problems, its use turns out to be computationally too expensive and the kernel functions

described in Section 3.1.3 are used instead.
13 We use 10 minutes for OAKplan since many experimental tests have been conducted on it and a CPU limit of 30 minutes has turned out to be

computationally too expensive. However, as we will see in Table 1, the CPU limit of 10 minutes is enough for OAKplan to solve more than 95% of the
problems attempted and additional CPU-time could only modify the number of solved problems, the plan quality and the difference values obtained slightly.

http://pro.unibz.it/staff/iserina/OAKplan/
http://www.sqlite.org/

1388 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
the smaller of the two graphs examined (L = � min(|V 1|,|V 2|)
2 �); since this value is sufficiently small to avoid convergence

problems the γ (l) coefficient of Eq. (10) is set equal to γ (l) = (1 − 1
L)l .

Since our planner and lpg use a randomised search algorithm, the corresponding results are median values over five runs
for each problem considered. Moreover, since OAKplan and lpg are incremental planners we evaluate their performance
with respect to three different main criteria: CPU-time required to compute a valid plan, the plan stability [16] of the
generated plans with respect to the corresponding solutions of the target plans and the quality of the best plan generated
within the given CPU-time limit.

In these tests the solution plans of the planning cases are obtained by using the domain dependent planner tlplan [3]
unless otherwise specified. tlplan is a planning system that utilises domain specific search control information to guide
simple forward chaining search, and it is the winner of the Hand Coded track of the 3rd IPCs. Its use allows us to use a high
quality input plan with comparatively low investment of initial computation time. Using a plan from a different planner
also ensures that we are not artificially enhancing stability by relying on the way in which the planner explores its search
space.

Our tests are conducted on a series of variants of problems from different domains:

• BlocksWorld and Logistics Additionals (2nd International Planning Competition),
• DriverLog and ZenoTravel Strips (3rd IPC),
• Rovers-IPC5 and TPP Propositional (5th IPC).

These tests are generally performed by taking six problems from the benchmark test suite in each case and then me-
thodically generating a series of variants for those problems for a total of 216 planning problems for each domain. In each
case, we take three medium size problems and three largest size problem instances as base problems, so as to make the
question of case-based planning versus replanning an interesting one.14 The variant problems are generated by modifying
the initial and goal facts of the original problem. These modifications are performed randomly, although the number of
modifications is increased systematically: we consider from zero to five modifications of the goal set and from zero to five
modifications of the initial state.15

Although we use only six base problems in each domain, we generate a large number of variants and we consider
problems from several domains, so these results can be considered representative of the behaviour of the system for other
similarly sized base problems. To confirm that the results are not an artifact of the particular problem instances chosen,
we adopt a different problem generation strategy for creating problem instances in the Logistics domain. Thus we select
problems randomly from the benchmark suites considering the “Additionals” planning problems created in the 2nd IPC for
the Domain Dependent planners, distributed across the smallest and the largest problem instances, and generate variant
problems for each case. We use the same scheme as above to determine the combination of modification values for the
initial state and goals, but select the base problem to apply the modifications randomly. The list of base problems selected
for each domain and the random modifications applied are described in Appendix C (see Supplementary material for a
complete description of the random modifications applied).

For each of the benchmark domains we build a case base library used by OAKplan. All the problems generated in the
different IPCs belong to these libraries. Using the problem generators provided by the IPC organisers, a number of planning
problems, with the same features as the IPC planning problems considered, are generated and added to the libraries, for a
total of 10000 planning problems for each of the benchmark domains considered except TPP where we only use the original
IPC planning problems since it is not possible to use tlplan to solve the planning problems of this domain; then we use
SGPlan-ipc5 to determine the solutions of the TPP planning cases.

In the following we report the summary results obtained by OAKplan considering (1) case base libraries whose cases
use the same objects as the planning problems in the test set, so as to verify the system behaviour when the matching
function of OAKplan could be simply obtained by using the identity function (we add the suffix “Ons”, which stands for
Original object names, to the corresponding results as in OAKplan-Ons); (2) case base libraries where the object names of
the planning cases are randomly modified with respect to the objects of the planning problems in the test set, to verify
the system behaviour when completely new problems are provided to OAKplan (we add the suffix “Nns”, which stands for
New object names, to the corresponding results as in OAKplan-Nns); (3) case base libraries which contain only the base
problems used to generate the variants of the benchmark set (we add the suffix “small” to the corresponding results as in
OAKplan-small).16 See Supplementary material for a detailed comparison of the results produced in the different domains.

14 For small problems, the difference among these strategies is not particularly interesting except for the situation in which the stability of the plan
produced is fundamental.
15 In the following experimental results when a planning problem is solved by OAKplan it is not inserted in the case base but simply discarded.
16 The number of cases of the plan libraries in the “small” tests is always lower than 15 except in the Logistics domain where we consider 170 base

planning problems.

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1389
Table 1
Results of OAKplan-Nns in the different domains: number of solutions found, average CPU-time of the first solutions (in milliseconds) and corresponding
average matching time, average best plan quality, average best plan stability and average best plan differences.

Domain Solutions Speed Matching time Quality Stability Differences

BlocksWorld 187 (86%) 214244.8 121535.6 346.0 0.92 49.6
Logistics 213 (98%) 88928.4 69606.3 390.2 0.88 76.6
DriverLog 197 (91%) 112556.6 31107.4 230.2 0.91 23.6
ZenoTravel 211 (97%) 86722.1 34123.0 194.6 0.84 47.2
Rovers 214 (99%) 62421.3 53719.5 374.4 0.98 11.4
TPP 210 (97%) 26837.8 859.2 308.8 0.96 20.9

TOTAL 1232 (95%) 96162.0 50777.4 307.8 0.92 38.2

4.2. Overall results

In this section we report the overall results of OAKplan considering the number of solutions found, the CPU-time, the
plan quality and the plan stability [16] of the solutions produced by the adaptation process with respect to the plan obtained
by the RetrievePlan function (best_plan). While the first three terms are standard evaluation parameters commonly adopted
in planning, the plan stability deserves some additional considerations. The importance of plan stability has been examined
by Fox et al. [16] in the context of plan adaptation, where the authors use the term plan stability to refer to a measure
of the difference a process induces between an original (source) plan and a new (target) plan. In [16] the plan stability
is measured considering the distance, expressed in terms of number of different actions, between the source plan π and
the target plan π0. In this paper we also consider an additional plan stability function (�) derived by the formalisation
presented by Srivastava et al. [59]:

�(π,π0) = 1 −
(|π − π0|

|π | + |π0| + |π0 − π |
|π | + |π0|

)
.

The second term represents the contribution of the actions in π to the plan stability, while the third term indicates the
contribution of π0 to �. This function assumes a 0 value when the two plans are completely different and a value equal
to 1 when π and π0 have exactly the same actions. From a practical point of view we think that plan stability can be
quite important in different real world applications. For example more stable plans offer a greater opportunity for graceful
elision of activities and less stress on execution components. Preserving plan stability also reduces the cognitive load on
human observers of a planned activity, by ensuring coherence and consistency of behaviours, even in the face of dynamic
environments [16]. Finally, in a case-based approach, a high plan stability is a clear indicator that the system correctly
selects plans that can be easily adapted.

In Table 1 we present the results of OAKplan-Nns in the different benchmark domains. Here we consider the average
CPU-time and the Matching Time for the first solutions generated (in milliseconds). In the fifth column we present the
average plan quality of the best solution generated in the different variants and finally the average plan stability and plan
distance (in terms of number of different actions) of the best solution produced with respect to the plan obtained by the
RetrievePlan function (best_plan). OAKplan-Nns solves 95% of the problems attempted and the average difference with
respect to the target plans is 38.2, i.e. considering all the 1232 planning problems solved by OAKplan there are on average
38 actions introduced or removed with respect to the target plans which corresponds to a stability of 92%. It requires 96
seconds to solve the different benchmark planning problems of which 51 seconds are required by the matching process.
It is important to point out that more than 10000 cases belong to each plan library, which have to be considered by the
matching process. We think that such a high number of cases is hardly required by real applications: in fact case base
maintenance policies [57] could be used in real word applications in order to reduce the number of cases that have to be
handled by a case-based planner significantly.

In the following part of this section we examine the relevance of the kernel functions used by OAKplan considering the
Kbase kernel function described in Section 3.1.3 and a new kernel function, that we call Knode , which simply uses the kv

kernel function in Eq. (7) and only compares the labels of the pairs of nodes considered. Finally we examine the influence of
the case base size on the system performance and how OAKplan performs when a planning problem with the same objects
names as the case base is considered.

4.2.1. Matching functions
To verify the relevance of the matching functions used by our system, we compare OAKplan with simpler matching

functions; in particular we examine the system behaviour considering the Kbase and the Knode kernel functions.
In Table 2 we compare OAKplan-Nns with one of its reduced versions called OAKplan-Nns-Kbase that avoids the compu-

tation of steps 3.x in the RetrievePlan procedure, i.e. the best matching function is obtained only by considering the Kbase

1390 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Table 2
Results of OAKplan-Nns-Kbase vs. OAKplan-Nns.

Domain Solutions Speed Matching Quality Stability Differences

BlocksWorld 68.0 (−64%) 244907 (173%) 122391 (198%) 330 (56%) 0.71 (−19%) 280 (407%)
Logistics 123 (−42%) 101027 (362%) 87582 (390%) 293 (14%) 0.59 (−31%) 328 (415%)
DriverLog 157 (−20%) 113622 (110%) 18982 (3.3%) 209 (19%) 0.60 (−33%) 98.9 (401%)
ZenoTravel 142 (−33%) 142705 (252%) 51823 (176%) 191 (31%) 0.25 (−69%) 161 (290%)
Rovers 216 (0.93%) 47931 (−25%) 38183 (−30%) 374 (0.08%) 0.97 (−0.7%) 29.6 (136%)
TPP 198 (−5.7%) 73923 (198%) 928 (9.4%) 332 (9.4%) 0.20 (−79%) 76.5 (267%)

TOTAL 904 (−27%) 101961 (122%) 41886 (69%) 293 (13%) 0.55 (−39%) 132 (338%)

Table 3
Results of OAKplan-Nns-Knode vs. OAKplan-Nns.

Domain Solutions Speed Matching Quality Stability Differences

BlocksWorld 65.0 (−65%) 275902 (244%) 147690 (317%) 317 (57%) 0.41 (−54%) 293 (462%)
Logistics 103 (−52%) 129886 (620%) 125599 (725%) 241 (7.8%) 0.31 (−63%) 282 (320%)
DriverLog 108 (−45%) 54862 (353%) 46725 (553%) 94.6 (4.1%) 0.07 (−91%) 137 (676%)
ZenoTravel 108 (−49%) 98908 (245%) 78695 (290%) 96.6 (−2.5%) 0.17 (−78%) 151 (267%)
Rovers 214 (0.0%) 36560 (−42%) 18985 (−65%) 346 (−7.5%) 0.15 (−85%) 345 (2940%)
TPP 4.00 (−98%) 502450 (10901%) 740 (24%) 520 (106%) 0.20 (−79%) 504 (2701%)

TOTAL 602 (−51%) 95935 (133%) 66690 (120%) 236 (3.3%) 0.19 (−78%) 258 (708%)

kernel function. In this table and in the following ones, we report the percent error in brackets17 with respect to OAKplan-
Nns where, except for the column of the solutions found, we consider only the problems solved by both planners. By using
this less accurate matching function the number of problems solved is 904 (down 27%), the average CPU-time required is
101 seconds (up 122% considering only the problems solved by both systems) and, most important of all, a plan difference
of 132 actions (up 338%) and a plan stability of 0.55 (down 39%). Note that the CPU-time required by the matching process
increases significantly (plus 69%) since a less accurate matching function determines a greater number of problems that
have to be examined by steps 4.2–4.7 of the RetrievePlan procedure.

In Table 3 we compare OAKplan-Nns with a relaxed version of it called OAKplan-Nns-Knode which avoids the com-
putation of steps 3.x of the RetrievePlan procedure and uses the Knode kernel function instead of the Kbase function at
step 2.2. In this test we want to examine the system behaviour when a very simple matching function is used. The number
of problems solved is 602 (down 51%), the CPU-time required to solve the planning problems is 95.9 seconds (up 133%
considering the problems solved by both systems), the plan difference is of 258 actions (up 708%) and plan stability is only
0.19 (down 78%). This clearly indicates the extraordinary importance of an accurate matching function for the global system
performance, not only in order to obtain low distance values but also to solve a reasonable number of planning problems.

In Tables 4 and 5 we examine the situation where the best planning case is selected by the standard RetrievePlan

procedure but the best_plan at step 4.7 is not identified by using the best matching function found until now but by
applying the corresponding μbase(πi) or μnode(πi)

18 matching functions. The relating results are indicated respectively with
OAKplan-Nns-adapt-Kbase and OAKplan-Nns-adapt-Knode . In this way we provide the same planning case used by OAKplan-
Nns to the adaptation process while the encoded solution plan (step 4.7, Fig. 10) is obtained by using the Kbase and Knode
kernel functions. The number of problems solved increases considerably since the correct planning case is provided to lpg-
adapt, but the average CPU-time and the average plan differences remain significantly greater than the corresponding ones
of OAKplan-Nns. In particular OAKplan-Nns-adapt-Kbase determines an average plan distance of 180 actions (up 434%),
while OAKplan-Nns-adapt-Knode determines an average plan distance of 338 actions (up 781%) and a plan stability of 0.17.
The plan distance values are even greater than the ones obtained in the previous tests essentially because now the system
is able to solve much more difficult planning problems.

We carried out a statistical analysis based on the Wilcoxon signed rank test [68] to understand the significance of the
performance gaps in the planners compared during the experiments. The organisers of IPC-3 have also utilised this statistical
test to study the performance of the planners in the competition [42]. The data necessary to effect the Wilcoxon test are
obtained in the following way. The difference between the CPU-times of the two planners compared is computed and the
samples of the test for the CPU-time analysis are defined. The absolute values of these differences are then ranked by
increasing numbers, starting from the lowest value. (The lowest value is ranked 1, the next lowest value is ranked 2, and
so on.) After that the ranks of the positive differences and the ranks of the negative differences are summed respectively.
Should it happen that the performance of the planners compared are not very different, then the number of the positive

17 Given two values a and b the percent error of a with respect to b is equal to |a−b|
|b| · 100%. Since our values are always positive we have not considered

the absolute value in the previous formula and a negative percent error indicates that a is less than b.
18 The μbase matching function is computed using the Kbase kernel function, similarly the μnode matching function is computed using the Knode kernel

function.

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1391
Table 4
Results of OAKplan-Nns-adapt-Kbase vs. OAKplan-Nns.

Domain Solutions Speed Matching Quality Stability Differences

BlocksWorld 65.0 (−65%) 172152 (117%) 35607 (0.20%) 338 (67%) 0.44 (−49%) 294 (447%)
Logistics 178 (−16%) 130661 (132%) 45745 (0.43%) 411 (21%) 0.30 (−66%) 488 (574%)
DriverLog 157 (−20%) 112493 (112%) 18328 (−0.1%) 209 (19%) 0.74 (−18%) 99.0 (406%)
ZenoTravel 160 (−24%) 156323 (198%) 21714 (−0.2%) 214 (31%) 0.44 (−47%) 194 (347%)
Rovers 214 (0.0%) 63247 (1.3%) 53737 (0.03%) 375 (0.08%) 0.96 (−2.1%) 26.8 (136%)
TPP 203 (−3.3%) 79418 (225%) 858 (0.35%) 340 (11%) 0.88 (−8.5%) 86.7 (325%)
TOTAL 977 (−21%) 109291 (112%) 29153 (0.11%) 319 (16%) 0.67 (−27%) 180 (434%)

Table 5
Results of OAKplan-Nns-adapt-Knode vs. OAKplan-Nns.

Domain Solutions Speed Matching Quality Stability Differences

BlocksWorld 69.0 (−63%) 181379 (111%) 36344 (0.08%) 348 (68%) 0.42 (−52%) 314 (455%)
Logistics 181 (−15%) 133987 (133%) 45543 (−1.0%) 410 (19%) 0.18 (−80%) 523 (617%)
DriverLog 108 (−45%) 15154 (25%) 7146 (−0.2%) 95.0 (4.7%) 0.06 (−93%) 144 (716%)
ZenoTravel 126 (−40%) 109391 (169%) 21098 (−1.0%) 139 (8.9%) 0.09 (−88%) 223 (419%)
Rovers 214 (0.0%) 71984 (15%) 53745 (0.04%) 351 (−6.2%) 0.19 (−81%) 351 (2986%)
TPP 4.00 (−98%) 437260 (9463%) 585 (−1.7%) 518 (109%) 0.19 (−81%) 507 (3460%)

TOTAL 702 (−43%) 98775 (92%) 36588 (−0.4%) 289 (11%) 0.17 (−81%) 338 (781%)

Fig. 13. Partial order of the performance of OAKplan-Nns, OAKplan-Nns-Kbase , OAKplan-Nns-Knode , OAKplan-Nns-adapt-Kbase and OAKplan-Nns-adapt-
Knode according to the Wilcoxon signed rank test for our benchmark problems.

differences is more or less equal to the number of the negative differences. Moreover the sum of the ranks in the set of
the positive differences is approximately equal to the sum of the ranks in the other set. From an intuitive point of view, the
test takes into consideration a weighted sum of the number of times one planner performs better than the other. The test
makes use of the performance gap to give a rank to each performance difference, thus we say that the sum is weighted.

Fig. 13 gives a graphical summary of the Wilcoxon results for the relative performance of OAKplan-Nns with OAKplan-
Nns-Kbase , OAKplan-Nns-Knode , OAKplan-Nns-adapt-Kbase and OAKplan-Nns-adapt-Knode in terms of CPU-time, plan quality
and difference values for our benchmark problems (see Supplementary material for detailed results, e.g. Figs. A1–A3). A solid
arrow from a planner A to a planner B (or to a cluster of planners B) indicates that the performance of A is statistically
different from the performance of B (every planner in B), and that A performs better than B (every planner in B) with a
confidence level of 99.9%. A dashed arrow from A to B indicates that A is better than B with a confidence level of 99%.
Here we can observe as expected that OAKplan-Nns is statistically better than the other OAKplan variants both in terms of
CPU-time and plan distance values. Quite interesting we can note that OAKplan-Nns-Knode is statistically the most efficient
planner in terms of quality of the plans generated followed by OAKplan-Nns. This can be explained by the fact that during
the incremental adaptation process it has not been able to reduce significantly the plan distance values but only the quality
of the plans produced.

1392 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Table 6
Summary Table OAKplan-Ons vs. OAKplan-Nns.

Domain Solutions Speed Matching Quality Stability Differences

BlocksWorld 213 (14%) 66831 (−73%) 10648 (−92%) 335 (−7.3%) 0.98 (6.8%) 13.9 (−76%)

Logistics 211 (−0.9%) 33729 (−62%) 17804 (−74%) 371 (−4.3%) 0.94 (6.8%) 31.7 (−59%)

DriverLog 199 (1.0%) 112552 (−4.2%) 29052 (−9.1%) 233 (−0.1%) 0.91 (0.27%) 22.8 (−4.3%)

ZenoTravel 211 (0.0%) 39625 (−54%) 7989 (−77%) 178 (−8.8%) 0.91 (8.8%) 19.8 (−58%)

Rovers 214 (0.0%) 61688 (−1.2%) 52975 (−1.4%) 374 (−0.0%) 0.98 (−0.1%) 11.2 (−1.3%)

TPP 211 (0.47%) 24537 (−13%) 748 (−13%) 308 (−0.5%) 0.97 (0.31%) 17.3 (−18%)

TOTAL 1259 (2.2%) 55988 (−45%) 19846 (−61%) 301 (−3.2%) 0.95 (3.6%) 19.4 (−50%)

Table 7
Summary Table OAKplan-small-Nns vs. OAKplan-Nns.

Domain Solutions Speed Matching Quality Stability Differences

BlocksWorld 200 (6.9%) 118823 (−56%) 1596 (−99%) 359 (−0.3%) 0.91 (0.12%) 54.5 (−2.2%)

Logistics 214 (0.46%) 30131 (−67%) 11436 (−84%) 392 (0.03%) 0.88 (−0.1%) 76.9 (0.37%)
DriverLog 205 (4.1%) 97810 (−28%) 4724 (−86%) 242 (0.05%) 0.92 (1.7%) 24.3 (−4.2%)

ZenoTravel 216 (2.4%) 56226 (−39%) 3146 (−92%) 196 (−0.4%) 0.84 (0.55%) 46.3 (−3.3%)

Rovers 216 (0.93%) 27221 (−56%) 22527 (−58%) 374 (0.0%) 0.98 (0.0%) 11.3 (0.0%)
TPP 210 (0.0%) 26604 (−0.9%) 858 (−0.1%) 309 (0.0%) 0.96 (0.0%) 20.9 (−0.1%)

TOTAL 1261 (2.3%) 58584 (−47%) 7502 (−85%) 312 (−0.1%) 0.92 (0.37%) 39.0 (−1.4%)

4.2.2. Object names renaming analysis
In Table 6 we compare OAKplan-Ons and OAKplan-Nns. The CPU-time required by OAKplan-Ons is lower than the CPU-

time of OAKplan-Nns since the Kbase kernel function in OAKplan-Nns produces lower similarity values than in OAKplan-
Ons, as we can see more precisely in the following subsection. These lower values determine a greater number of cases
that must be evaluated using K N while the number of solutions produced and the plan qualities are very close. On the
contrary the difference values decrease considerably with respect to the values of Table 1 (38.2 vs. 19.4): it is important to
point out that with OAKplan-Ons it has been possible to use the solution plans stored in the case base directly to compute
the distance values since these test problems and the planning cases have the same domain objects. In particular while
in DriverLog, Rovers and TPP the plans produced by OAKplan-Nns and OAKplan-Ons are very similar, in BlocksWorld and
Logistics the plans produced by OAKplan-Nns are clearly worse than the corresponding ones produced by OAKplan-Ons
with respect to the difference values. In the BlocksWorld domain the main difficulties are related to the very simple typed
encoding which sometimes does not allow our kernel functions to easily identify the best object matching function. In this
domain, the initial and goal state descriptions are very homogeneous since all objects are of the same type “Obj” and this
leads to many different matching possibilities. As regards the Logistic domain, the main drawbacks are related to the fact
that sometimes some trucks are assigned to different cities with respect to the original ones, unfortunately in this domain
the trucks can be used only if they are positioned in specific cities and incorrect truck assignments could determine a high
number of not applicable actions.

Considering real word applications we think that the effective performance of OAKplan should be placed between the
results obtained by OAKplan-Nns and OAKplan-Ons. Although it is not realistic that all the current planning problem objects
have to belong to the case base, it is quite common that the domain topology does not change significantly during the system
evolution. For example, considering a department robotics domain where one or more robots have to move some packages
from different locations, it is reasonable that the department locations and the corresponding connections do not change
significantly as time goes by (see Supplementary material for detailed results, e.g. Figs. A16–A21).

4.2.3. Case base size analysis
In Table 7 we compare OAKplan-small-Nns to OAKplan-Nns. We can observe that the “small version” is clearly faster

than the complete version since the number of cases is considerably lower; OAKplan-small-Nns is able to solve 29 more
problems than OAKplan-Nns (up 2.3%) with an average CPU-time of 58.5 seconds (down 47% with respect to OAKplan-Nns)
and if we consider the matching CPU-time, it requires 7.5 seconds (down 85% with respect to OAKplan-Nns). It follows that
the number of problems solved, the plan quality and the difference values are very close (see Supplementary material for
detailed results and a graphical summary of the Wilcoxon test, e.g. Figs. A4–A6, A7 and A22–A38).

Hence we can observe that OAKplan is significantly faster and solves more problems when it runs on small rather than
large case bases, with only minimal impact on solution quality, stability and differences. This clearly indicate the importance
in CBP of developing highly scalable retrieval mechanisms to analyse efficiently the case base, in fact all CBP systems have
at least a retrieval component, and the success of a given system depends critically on the efficient retrieval of the right
case at the right time. In this paper we consider a relatively simple screening procedure that filters out efficiently irrelevant
cases; moreover our procedure could be combined with other retrieval techniques based on a model of case competence
[57,61] so as to improve the global system efficiency, which is left as future work.

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1393
Fig. 14. Cumulative CPU-times (seconds) required by the different phases of OAKplan-Nns vs. the number of planning cases of the case base.

Here we examine the CPU-time (in seconds) required by the different phases of OAKplan-Nns vs. the number of elements
in the corresponding case base considering some specific benchmark planning problems. In particular in Fig. 14 we show the
cumulative CPU-time required by the different phases of OAKplan-Nns; the CPU-times can be simply derived by considering
the distance of the corresponding line from the previous one. So we can obtain the CPU-times required:

1. by the preprocessing phase so as to instantiate the data structures used by OAKplan, compute the mutex relations,
connect to the case base and load the objects and predicated indexes;

2. by the screening procedure to retrieve the degree sequences from the case base and compute the similds values
(steps 1.4–1.7 of the RetrievePlan procedure);

3. by the Planning Encoding Graph retrieval procedure and the computation of the Kbase kernel function on the cases
selected in the previous phase (steps 2.1–2.4 of the RetrievePlan procedure);

4. by the computation of the K N kernel function and the corresponding matching function on the cases selected in the
previous phase (steps 3.1–3.5 of the RetrievePlan procedure);

5. by the evaluation of the selected plans so as to define the corresponding adaptation cost (steps 4.2–4.7 of the Retrieve-

Plan procedure);
6. by the lpg-adapt system to find a first solution; the adaptation time can be obtained by the difference between the Total

time required to find a first solution and the total Evaluation time.

Here we can observe that the screening procedure is extremely fast and the CPU-time required by the preprocessing
and evaluation phases is always limited. Quite interesting in the BlocksWorld variant the CPU-time required by the K N
computation is particularly relevant since the Kbase kernel function is not precise enough to filter out a significant number
of cases. In fact, in this domain, a correct matching of the objects of two different planning problems is particularly difficult
since all the objects are of the same type called “Obj” as exposed previously. We can also observe in the BlocksWorld variant
that the CPU-time required by the matching phase stabilises when the case base size is nearly of 5500 cases. This is caused
by the maximum number of cases that can be examined at step 2.1 of RetrievePlan. Besides in the Rovers domain the
CPU-time required to find a first solution plan is always very limited and in this case the CPU-times for the computation
of the Kbase and K N kernel functions are comparable. In the DriverLog and in the ZenoTravel domains the matching and

1394 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Fig. 15. Similarity values for the Neighbourhood kernel function, the Base kernel function, the Knode kernel function and the direct matching for the hardest
problems in the ZenoTravel and Rovers-StripsIPC5 domains.

evaluation times are clearly dominated by the CPU-time required to find a first solution. Finally note that the first solution
produced by lpg-adapt simply represents the first step of a potentially much longer incremental process.

At last, we can observe a drop in the CPU-time required for the computation of the kernel functions in the Rover
domain in Fig. 14 when the case base size is close to 4000 cases. This drop is related to an insertion in the case base
of a planning case with a high similds screening value when the case base size varies from 3900 to 4000 instances. This
screening value determines a new best_ds_simil value and consequently the number of cases that satisfy the constraint
“best_ds_simil−simili � limit” at step 2.1 of Algorithm RetrievePlan at page 1384 decreases from 600 to 250. So the number
of Planning Encoding Graphs that have to be loaded and the number of kernel functions that have to be computed is clearly
less than the previous iteration and thus the corresponding CPU-time required for their computation (see Supplementary
material for detailed results, e.g. Fig. A11).

4.3. Matching functions similarity results

Here we examine the similarity values obtained with the Neighbourhood kernel function K N , the Base kernel function
Kbase , the Knode kernel function and the direct matching function produced by OAKplan for the hardest problems of our
benchmarks in relation to a progressive renaming of the domain objects involved. In this way we analyse the effectiveness
of our matching processes in comparison to a “direct matching” process simply based on the object names of the planning
problems.

In Fig. 15 we can see how the initial similarity values of the matching functions are equal to 1 for the plots on the
left which correspond to the original problems in the case base and close to 1 for the plots on the right where we change
5 initial facts and 5 goal facts with respect to the corresponding element of the case base. As expected the similarity
value of the direct matching progressively reduces itself to zero, whereas the similarity value of the K N kernel function
always remains greater than 0.9. If we consider the Kbase and Knode kernel functions we can see that the corresponding
similarity values progressively decrease with the increase of the number of renamed objects. This is acceptable and not
crucial for OAKplan since the Kbase function is essentially used in order to reduce the number of cases that must be

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1395
Fig. 16. Plan similarity values of K N vs. Kbase .

evaluated accurately with K N . Considering the plots on the left, which are associated to the original problem in the case
base, we can observe that the similμN values are always equal to 1, showing that K N is able to match all the planning
problem objects correctly (see Supplementary material for additional results, e.g. Figs. A12–A13).

In order to examine K N and Kbase more accurately, in Fig. 16 we compare their similarity values for all our 1296
benchmark problems using the corresponding case base with all the objects renamed so as to verify the system behaviour
when completely new problems are provided to OAKplan. Each point corresponds to the similarity values produced by K N
and Kbase . If a point is above the solid diagonal, then K N performs better than Kbase and vice versa. Here we can see
that K N always performs better than Kbase and in only 38 variants similμN is less than 0.9. It is also important to point
out that in all our experiments we obtain a similarity value equal to one for all the test variants in which there is no
modifications with respect to the initial and goal facts (which correspond to the I0–G0 instances). In fact these planning
problems are already “present” in the case base and OAKplan identifies a mapping that correctly assigns all the objects
of the selected planning case to the objects of the current planning problem (see Supplementary material for additional
results, e.g. Figs. A14–A15).

4.4. OAKplan vs. state of the art planners

In this section we analyse the OAKplan behaviour with respect to four state-of-the-art planners, showing its effectiveness
in different benchmark domains; in particular, we consider metric-ff (winner of the 2nd IPC), lpg (winner of the 3rd IPC),
downward (1st Prize, Suboptimal Propositional Track 4th IPC) and SGPlan-ipc5 (winner of the 5th IPC).

In Fig. 17 we graphically report the number of solutions found, the average CPU-time of the solutions of downward,
metric-ff and SGPlan-ipc5 and the CPU-time of the first solutions19 of lpg and OAKplan. Then we consider the average plan
difference values expressed as the number of different actions with respect to the solution produced by the corresponding
planner on the problems used to generate the variants and the average best plan quality of the solutions generated by
considering all benchmark domains.

Here we can see that OAKplan can solve the greatest number of variants, followed by SGPlan-ipc5 and lpg. Regarding
the CPU-time, we remark that downward, lpg and OAKplan present similar computation time, while the CPU-time is more
significant in metric-ff and SGPlan-ipc5. However these average values are computed only by considering the problems
solved by every single planner. In this case the SGPlan-ipc5 planner solves 211 variants in the TPP domain requiring
942 seconds for them, whereas these variants only marginally influence the results of lpg. Regarding the difference values
we can see that OAKplan clearly produces better results than the other planners. With respect to the plan quality we can

19 Considering the median ones over five runs.

1396 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Fig. 17. Summary results.

note that metric-ff gives better results whereas OAKplan produces the worst results. We would like to point out that
in OAKplan the optimisation process tries to balance between good quality and low distance values since we are much
more interested in generating a plan with a limited number of differences with respect to the target plan than producing
solutions of good quality. Moreover OAKplan is able to solve much more difficult planning problems than the other planners
and these solutions weigh significantly on the average plan quality produced.

In Table 8 we report the summary results of OAKplan-Nns compared to the other planners. In the second columns we
report the number of the solutions found by the other planners, in the third columns we report the average speed of the
problems solved (in milliseconds), then the average plan qualities produced and finally the average plan stability and the
average plan differences with respect to the solutions of the set of target plans produced by every single planner. In the
brackets we report the percent errors with respect to OAKplan-Nns: we consider only the problems solved by both planners
for this comparison, except for the column of the solutions found.

Downward cannot solve any problem in the Rovers domain. Globally it can solve 679 problems in comparison with the
1232 solved by OAKplan-Nns. downward is 141% slower than OAKplan-Nns while their plan quality is comparable. The
distance values of the plans generated by downward with respect to the solutions produced by the same planner on the
problems used to generate the variants is 411% greater than OAKplan-Nns. This high value is not particularly surprising
since downward and the other planners do not know the target plans used for this comparison. Moreover the search
processes and the solution plans produced by a planner could be significantly different also for two planning instances that
only differ in a single initial fact. These distance values are interesting since they are a clear indicator of the good behaviour
of OAKplan and show that the generative approach is not feasible when we want to preserve the stability of the plans
produced.

LPG can solve 840 of the 1296 variants, requiring 32% CPU-time more than OAKplan-Nns and the average distance of
the solutions on target planning problems is 354 actions (which corresponds to +734% with respect to OAKplan-Nns).
It is interesting to remark that the CPU-time needed by lpg to solve the Rovers variants (19.4 seconds) is significantly
lower than in OAKplan (62.4 seconds) due to the additional CPU-time required by the matching process of OAKplan-Nns
(53.7 seconds). The distance of the plans generated by lpg in this domain is 4201% greater than OAKplan-Nns.

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1397
Table 8
Summary Tables of the different planners examined and a comparison with respect to the corresponding results produced by OAKplan-Nns.

Domain Solutions Speed Quality Stability Differences

Results for DOVNWARD and percent errors of DOWNWARD vs. OAKplan-Nns

BlocksWorld 64.0 (−66%) 474335 (+437%) 572 (+155%) 0.60 (−32%) 375 (+634%)

Logistics 198 (−7.0%) 93899 (+19%) 353 (−4.8%) 0.66 (−24%) 242 (+217%)

DriverLog 76.0 (−61%) 41738 (+381%) 78.8 (+14%) 0.45 (−46%) 91.6 (+447%)

ZenoTravel 130 (−38%) 54752 (−27%) 128 (−23%) 0.58 (−29%) 85.7 (+72%)

TPP 211 (+0.47%) 148591 (+444%) 293 (−5.1%) 0.45 (−53%) 315 (+1403%)

TOTAL 679 (−45%) 133420 (+141%) 281 (+5.9%) 0.55 (−38%) 230 (+411%)

Results for LPG and percent errors of LPG vs. OAKplan-Nns

BlocksWorld 73.0 (−61%) 94078 (+4.3%) 238 (+12%) 0.71 (−19%) 149 (+160%)

Logistics 211 (−0.9%) 139416 (+58%) 451 (+16%) 0.60 (−31%) 396 (+413%)

DriverLog 122 (−38%) 108708 (+412%) 127 (+6.8%) 0.32 (−63%) 199 (+956%)

ZenoTravel 216 (+2.4%) 174570 (+95%) 202 (+2.3%) 0.25 (−70%) 332 (+591%)

Rovers 216 (+0.93%) 19440 (−69%) 335 (−11%) 0.18 (−82%) 489 (+4201%)

TPP 2.00 (−99%) 496110 (+41415%) 393 (+69%) 0.40 (−60%) 468 (+46650%)

TOTAL 840 (−32%) 110054 (+52%) 291 (+3.8%) 0.37 (−58%) 354 (+734%)

Results for Metric-FF and percent errors of Metric vs. OAKplan-Nns

Logistics 171 (−20%) 307669 (+429%) 304 (−8.0%) 0.69 (−20%) 196 (+163%)

DriverLog 65.0 (−67%) 35598 (+345%) 72.2 (+16%) 0.19 (−77%) 124 (+655%)

ZenoTravel 164 (−22%) 219264 (+200%) 123 (−29%) 0.57 (−30%) 97.0 (+98%)

Rovers 198 (−7.5%) 745702 (+1089%) 299 (−19%) 0.16 (−84%) 391 (+3366%)

TPP 77.0 (−63%) 899049 (+7054%) 246 (−3.9%) 0.51 (−47%) 240 (+1202%)

TOTAL 675 (−45%) 433941 (+737%) 229 (−15%) 0.44 (−51%) 227 (+500%)

Results for SGPLAN-IPC5 and percent errors of SGPLAN-IPC5 vs. OAKplan-Nns

Logistics 216 (+1.4%) 462093 (+404%) 414 (+4.6%) 0.68 (−22%) 268 (+246%)

DriverLog 106 (−46%) 321346 (+2538%) 119 (+31%) 0.18 (−79%) 190 (+971%)

ZenoTravel 180 (−15%) 171353 (+126%) 142 (−23%) 0.53 (−36%) 137 (+175%)

Rovers 216 (+0.93%) 163457 (+162%) 343 (−8.4%) 0.15 (−84%) 467 (+4011%)

TPP 211 (+0.47%) 942278 (+3414%) 314 (+1.6%) 0.41 (−57%) 354 (+1593%)

TOTAL 929 (−25%) 429328 (+644%) 288 (−2.4%) 0.41 (−55%) 300 (+710%)

Metric-FF cannot solve any variant in the BlocksWorld domain. Globally it can solve 675 problems and is 757% slower
than OAKplan-Nns while its plan quality is 15% better. Finally the distance of the plans generated by metric-ff with respect
to the solutions produced by the same planner on the target problems is 500% greater than OAKplan-Nns.

SGPlan-ipc5 planner can solve 929 problems and is 644% slower than OAKplan-Nns, the plan qualities are very similar
and considering the distance of the plans generated by SGPlan-ipc5 are on average 710% greater than with OAKplan-Nns.

Fig. 18 gives a graphical summary of the Wilcoxon results for the relative performance of OAKplan-Nns with downward,
lpg, metric-ff and SGPlan-ipc5 in terms of CPU-time, plan quality and difference values for our benchmark problems (see
Supplementary material for detailed results, e.g. Figs. A8–A10). Here we can observe that OAKplan-Nns is statistically more
efficient values than all the other planners in terms of CPU-time and plan distance. On the contrary OAKplan-Nns and lpg

produce statistically worse plans from the quality point of view than the other planners, while metric-ff produces the
highest quality plans.

Globally we can note that OAKplan-Nns is able to solve many more problems than the other planners and the first
solution is usually generated in less time. In addition the distance values are significantly lower with respect to the target
plans although the quality of the plans produced is slightly worse than that of the plans produced by the other planner;
this is also related to the optimisation performed by OAKplan where we try to minimise not only the plan quality but also
the distance with respect to the solution plan of the planning case selected (see Supplementary material for detailed results,
e.g. Figs. A39–A50).

Finally in Fig. 19 we can observe the cumulative distribution of the total number of variants solved by the different
planners vs. time. OAKplan-Nns is able to solve 1263 variants considering a maximum CPU-time of 1800 seconds even if
most solutions are found in the first 800 seconds. A similar behaviour can be observed considering the lpg and downward

planners although they are able to solve a lower number of variants. On the contrary metric-ff and SGPlan-ipc5 show a
constant increment of the number of variants solved, which are in any case less than the variants solved by OAKplan. The
CPU-time limit of 1800 seconds is used in the International Planning Competitions for the competitors evaluation and we
think that it is adequate for the evaluation of the planners used in practical applications (see Supplementary material for
additional results, e.g. Figs. A51–A63).

1398 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Fig. 18. Partial order of the performance of OAKplan-Nns, downward, lpg, metric-ff and SGPlan-ipc5 according to the Wilcoxon signed rank test for our
benchmark problems.

Fig. 19. Cumulative distribution of the total number of variants solved by the different planners vs. time.

5. Related work on case-based planning

In the following section we examine the most relevant case-based planners considering their retrieval, adaptation and
storage capabilities. Moreover, we present an empirical comparison of the performance of OAKplan vs. the far-off system
and some comments on the advantages of OAKplan with respect to other case-based planners.

Some CBP systems designed in the past do not consider any generative planning in their structure, and find a solution
only by the cases stored in the case base. These CBP systems are called reuse-only systems. As reuse-only systems cannot
find any planning solution from scratch, they cannot find a solution unless they find a proper case in the case base that

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1399
can be adapted through single rules. An alternative approach to reuse-only systems is the reuse-optional approach, which
uses a generative planning system that is responsible to adapt the retrieved cases. This feature allows a CBP system to
solve problems that cannot be solved only by using stored cases and simple rules in the adaptation phase. Empirically,
a great number of reuse-optional CBP systems has shown that the use of a case base can permit them to perform better in
processing time and in a number of planning solutions than the generative planning that they incorporate.

Obviously the retrieval phase critically affects the systems performance; it must search in a space of cases in order to
choose a good one that will allow the system to solve a new problem easily. In order to improve efficiency in the retrieval
phase, it is necessary either to reduce the search space or to design an accurate similarity metric. Reducing the search
space, only a suitable subset of cases will be available for the search process and an accurate similarity metric will choose
the most similar case to decrease the adaptation phase effort. In the literature there are different domain dependent and a
few domain independent plan adaptation and case-based planning systems, which mostly use a search engine based on a
space of states [28,29,61,62]. An alternative approach to planning with states is that of plan-space planning or hierarchical
systems [4] that search in a space of plans and have no goals, but only tasks to be achieved. Since tasks are semantically
different from goals, the similarity metric designed for these CBP systems is also different from the similarity rules designed
for state-space based CBP systems. For a detailed analysis of case-based and plan adaptation techniques see the papers of
Spalazzi [58] and Munoz-Avila and Cox [45].

Three interesting works developed at the same time adopt similar assumptions: the priar system [34], the spa system
[29] and the Prodigy/Analogy system [63,64]. priar uses a variant of Nonlin [60], a hierarchical planner, whereas spa uses
a constraint posting technique similar to Chapman’s Tweak [10] as modified by McAllester and Rosenblitt [43]. priar’s
plan representation and thus its algorithms are more complicated than those of spa. There are three different types of
validations (filter condition, precondition, and phantom goal) as well as different reduction levels for the plan that represents
a hierarchical decomposition of its structure, along with five different strategies for repairing validation failures. In contrast
to this representation the plan representation of spa consists of causal links and step order constraints. The main idea
behind the spa system that separates it from the systems mentioned above is that the process of plan adaptation is a fairly
simple extension of the process of plan generation. In the spa view, plan generation is just a special case of plan adaptation
(one in which there is no retrieved structure to exploit). With respect to our approach that defines a matching function
μ from Π to Π ′ that maximises the similarity function similμ , it should be noted that in priar and spa the conditions
for the initial state match are slightly more complicated. In priar the number of inconsistencies in the validation structure of
the plan library is minimised; in spa the number of violations of preconditions in the plan library is maximised. Moreover
the problem-independent matching strategy implemented in spa runs in exponential time in the number of objects since it
simply evaluates all possible mappings. On the contrary we compute an approximate matching function in polynomial time
and use an accurate plan evaluation function on a subset of the plans in the library.

The Prodigy/Analogy system also uses a search oriented approach to planning. A library plan (case) in a transformational
or case-based planning framework stores a solution to a prior problem along with a summary of the new problems for
which it would be a suitable solution, but it contains little information on the process that generates the solution. On the
other hand derivational analogy stores substantial descriptions of the adaptation process decisions in the solution, whereas
Veloso’s system records more information at each choice point than spa does, like a list of failed alternatives. An interesting
similarity rule in the plan-space approach is presented in the caplan/cbc system [46] which extends the similarity rule
introduced by the Prodigy/Analogy system [63,64] by using feature weights in order to reduce the errors in the retrieval
phase. There are two important differences between our approach and the similarity rules of caplan/cbc, one of which is
that the former is designed for state-space planning and the latter for plan-space planning. Another difference is that our
retrieval function does not need to learn any knowledge to present an accurate estimate: our retrieval method only needs
the knowledge that can be extracted from the problem description and the actions of the planning cases.

mlr [47] is another case-based system and it is based on a proof system. While retrieving a plan from the library that
has to be adapted to the current world state, it makes an effort to employ the retrieval plan as if it were a proof to
set the goal conditions from the start. Should this happen, there is no need for any iteration to use the plan, otherwise,
the outcome is a failed proof that can provide refitting information. On the basis of the failed proof, a plan skeleton is
built through a modification strategy and it makes use of the failed proof to obtain the parts of the plan that are useful
and removes the useless parts. After the computation of this skeleton, gaps are filled through a refinement strategy which
makes use of the proof system. Although our object matching function is inspired to the Nebel and Koehler’s formalisation,
our approach significantly differs from theirs since they do not present an effective domain independent matching function.
In fact, their experiments exhibit an exponential run time behaviour for the matching algorithm they use, instead we show
that the retrieval and matching processes can be performed efficiently also for huge plan libraries. The matching function
formalisation proposed by Nebel and Koehler also tries to maximise first the cardinality of the common goal facts set and
second the cardinality of the common initial facts set. On the contrary we try to identify the matching function μ that
maximise the similμ similarity value which considers both the initial and goal relevant facts and an accurate evaluation
function based on a simulated execution of the candidate plans is used to select the best plan that has to be adapted.

Nebel and Koehler [47] present an interesting comparison of the mlr, spa and priar performance in the BlocksWorld
domain considering planning instances with up to 8 blocks. They show that also for these small sized instances and using
a single reuse candidate the matching costs are already greater than adaptation costs. When the modification tasks become
more difficult, since the reuse candidate and the new planning instance are structurally less similar, the savings of plan

1400 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
modification become less predictable and the matching and adaptation effort is higher than the generation from scratch. On
the contrary OAKplan shows good performance with respect to plan generation and our tests in the BlocksWorld domain
consider instances with up to 140 blocks and a plan library with ten thousands cases.

A very interesting case-based planner is the far-off
20 (Fast and Accurate Retrieval on Fast Forward) system [61]. It uses a

generative planning system based on the FF planner [32] to adapt similar cases and a similarity metric, called ADG (Action
Distance-Guided), which, like EvaluatePlan, determines the adaptation effort by estimating the number of actions that is
necessary to transform a case into a solution of the problem. The ADG similarity metric calculates two estimate values of
the distance between states. The first value, called initial similarity value, estimates the distance between the current initial
state I and the initial state of the case Iπ building a relaxed plan having I as initial state and Iπ as goal state. Similarly
the second value, called goal similarity value, estimates the distance between the final state of the case and the goals of
the current planning problem. Our EvaluatePlan procedure evaluates instead every single inconsistency that a case base
solution plan determines in the current world state I .

The far-off system uses a new competence-based method, called Footprint-based Retrieval [57], to reduce the space of
cases that will be evaluated by ADG. The Footprint-based Retrieval is a competence-based method for determining groups
of footprint cases that represent a smaller case base with the same competence of the original one. Each footprint case has
a set of similar cases called Related Set [57]. The union of footprint cases and Related Set is the original case base. On the
contrary OAKplan uses a much more simple procedure based on the similds function to filter out irrelevant cases. The use of
Footprint-based Retrieval techniques and case base maintenance policies in OAKplan is left for future work. It is important
to point out that the retrieval phase of far-off does not use any kind of abstraction to match cases and problems.

The far-off system retrieves the most similar case, or the ordered k most similar cases, and shifts to the adaptation
phase. Its adaptation process does not modify the retrieved case, but only completes it; it will only find a plan that begins
from the current initial state and then goes to the initial state of the case, and another plan that begins from the state
obtained by applying all the actions of the case and goes to a state that satisfies the current goals G . Obviously, the
completing of cases leads the far-off system to find longer solution plans than generative planners, but it avoids wasting
time in manipulating case actions in order to find shorter solutions length. To complete cases, the far-off system uses
a FF-based generative planning system, where the solution is obtained by merging both plans that are found by the FF-
based generative planning and the solution plan of the planning case selected. On the contrary OAKplan uses the lpg-adapt
adaptation system, which uses a local search approach and works on the whole input plan so as to adapt and find a solution
to the current planning problem.

In Fig. 20 we can observe the behaviour of OAKplan vs. far-off considering different variants of the greater case bases
provided with the far-off system in the Logistics domain21; similar results have been obtained in the BlocksWorld, Driver-
Log and ZenoTravel domains. Globally, we can observe that far-off is always faster than OAKplan both considering the
retrieval and the total adaptation time although also the OAKplan CPU-time is always lower than 0.6 seconds. Considering
OAKplan, most of the CPU-time is devoted to the computation of the matching functions which are not computed by far-

off since it simply considers the identity matching function that directly assigns the objects of the case base to those of the
current planning problem with the same name. In fact, it does not consider objects which are not already present in the
case base and, to overcome this limitation, the variants used in this test are directly obtained by the problems stored in the
case bases.

Regarding the plan qualities22 and the plan distances, it is important to point out that for each variant solved by OAK-

plan we consider only the first solution produced since far-off does not perform a plan optimisation process. However
OAKplan is able to obtain better plans both considering the plan quality and the plan distance values. Globally, OAKplan is
able to find plans with 20% better quality and 24% better plan distances. Moreover further improvements on plan qualities
and distance values of OAKplan could be obtained by performing the optimisation process of lpg-adapt.

Finally, note that in this experiment we have used the case bases provided by far-off which contain 700 elements each
and the corresponding cases are generated by creating randomly planning problems all with the same configuration: same
objects, trucks and airplanes simply disposed in different ways. This kind of experiment is highly unfavourable to OAKplan

since our first screening procedure cannot filter out a significant number of cases as they all have the same structure.
On the contrary, in the experiments described in the previous sections the case bases used by OAKplan in the standard
configuration (not the “small” versions) are not constrained to a particular planning problem but they have been generated
by considering all the different planning problems configurations used in the International Planning Competitions. This is
a much more realistic situation, where the cases are added to the case base when the planning problems provided by the
users are resolved as time goes by.

20
far-off is available at http://www.fei.edu.br/~flaviot/faroff.

21 We have used the case bases for the logistics-16-0, logistics-17-0 and logistics-18-0 Logistics IPC2 problems. For each problem considered the far-off

system must have a case base with the same structure to perform tests. More than 700 cases belong to each case base and for each case base we have
selected two planning cases and randomly generated 36 variants.
22 In STRIPS domains the plan quality is obtained by considering the number of actions in the solution plan.

http://www.fei.edu.br/~flaviot/faroff

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1401
Fig. 20. CPU-time, plan qualities and number of different actions for the Logistics variants. Here we examine OAKplan vs. far-off.

6. Summary and future work

CBP systems can take advantage of plan reuse where possible. The success of these systems depends on the ability to
retrieve old cases that are similar to the target problem and to adapt these cases appropriately. In this paper our aim is to
provide a new and effective case-based planner which is able to retrieve planning cases from huge plan libraries efficiently,
choose a good candidate and adapt it in order to provide a solution plan which has good plan quality and is similar to
the plan retrieved from the case base. We have described a novel case-based planning system, called OAKplan, which uses
ideas from different research areas showing excellent performance in many standard planning benchmark domains. In this
paper we have analysed the main components of our CBP system, which presents significant improvements as to the state
of the art especially in the filtering and retrieval phases.

Experimental results show the crucial importance of an accurate matching function for the global system performance,
not only in order to obtain low distance values but also to solve a reasonable number of planning problems. To the best
of our knowledge this is the first case-based planner that performs an efficient domain independent objects matching
evaluation on plan libraries with thousands of cases.

We have examined OAKplan in comparison with four state of the art plan generation systems showing its extremely
good performance in terms of the number of problems solved, CPU time, plan difference values and plan quality. Results are
very encouraging and show that the case-based planning approach can be an effective alternative to plan generation when
“sufficiently similar” reuse candidates can be chosen. This happens to different practical applications especially when the
“world is regular” and the types of problems the agents encounter tend to recur. Moreover this kind of approach could be
extremely appealing in situations in which the “stability” of the plan produced is fundamental. This is the case, for example,
in mission critical applications where end users do not accept newly generated plans and prefer to use known plans that
have already been successful in analogous situations and can be easily validated.

We believe that even more significant results will come from combining our approach with ideas and methods that
have been developed in planning, case-based reasoning, graph theory and supervised learning research areas. Specifically,
directions we are considering include:

1402 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
• Case base maintenance: the efficiency of the retrieval phase can be improved by using case base maintenance policies
and a more thorough evaluation of the competence of the library as proposed by [57,61].

• Graph representation: our current graph representation is based only on the initial and goal states of the planning prob-
lem examined; a more accurate representation could try to consider the actions in the solution plans and the domain
operators available, or give more importance to the most relevant initial state facts. It could also be very interesting
to extend our graph representation to afford temporal and numeric planning problems effectively. In fact, although
OAKplan can afford temporal and metric domains, the numeric description of the planning problems examined is not
actually used in the definition of the Planning Encoding Graph and in the corresponding kernel functions, determining
potential low performance.

• Matching functions: new and more effective matching functions could be obtained by considering additional information
that can be derived from domain analysis such as invariants [17,26] and symmetries [18]. These functions may also
be defined by examining particular structures of the Planning Encoding Graphs like cliques, line-graphs, or using new
approaches derived by graph matching and graph edit distance techniques [6,23,48,49,52].

• Learning: these techniques found to be useful in different planning methods; our kernel functions can be plugged
into any kernel-based machine learning algorithm, like, e.g., SVMs [15], SVR and Kernel PLS [53] to better classify the
planning cases or improve the matching functions themselves.

• Adaptation: our retrieval/evaluation/update techniques are independent by the adaptation mechanism adopted and other
adaptation methods like adjust-plan [27,28] and POPR [62] could be effectively used as well.

Acknowledgements

This research was supported by the research project “Study and Design of a Prototype of an Intelligent Planning Sys-
tem for the Building of Learning Paths” of the Free University of Bozen. We thank Piergiorgio Bertoli, Alfonso E. Gerevini,
Alessandro Saetti and especially the anonymous referees for their helpful comments. The authors would like to thank Flavio
Tonidandel and Márcio Rillo for putting their benchmark set and the far-off planning system at our disposal.

Appendix B. Proofs

Theorem 3. obj_match is NP-hard.

Proof. Similarly to the Nebel and Koehler’s analysis [47], NP-hardness is proved by a polynomial transformation from the
subgraph isomorphism problem for directed graphs, which is NP-Complete [22, p. 202], to obj_match. The subgraph
isomorphism problem is defined as follows:

Instance: Two directed Graphs G1 = (V 1, E1) and G2 = (V 2, E2).
Question: Does G2 contain a subgraph isomorphic to G1, i.e., do there exist a subsets V ⊆ V 2 and a subset E ⊆ E2 such

that |V | = |V 1|, |E| = |E1|, and there exists a one-to-one function μ : V 1 → V satisfying (u, v) ∈ E1 if and only if
(μ(u),μ(v)) ∈ E?

Given an instance of the subgraph isomorphism problem, we construct an instance of obj_match as follows; let

Π1 = 〈
Pr(O1,P1), I1, G1, O p1

〉
, Π2 = 〈

Pr(O2,P2), I2, G2, O p2
〉

be two planning instances such that

O1 = O2 = V 1 ∪ V 2, P1 = P2 = {p}, I1 = I2 = ∅,

G1 = {
p(u, v)

∣∣ (u, v) ∈ E1
}
, G2 = {

p(u, v)
∣∣ (u, v) ∈ E2

}
, O p1 = O p2.

Now G2 contains a subgraph isomorphic to G1 iff there exists a mapping μ(·) such that |μ(G1) ∩ G2| = |E1| and

similμ(Π1,Π2) = |μ(G1) ∩ G2| + |μ(I1) ∩ I2|
|G2| + |μ(I1)| = |E1| + |∅|

|E2| .

Note that G2 is isomorphic to G1 iff there exists a mapping μ(·) such that |μ(G1) ∩ G2| = |E1| = |E2| and
similμ(Π1,Π2) = 1. �
Theorem 4. R1 is a kernel function.

Proof. We have to show that given a set of patterns x1, . . . ,xn the kernel matrix R = (R1(xi,x j))i, j is symmetric and
positive semidefinite [56].

Clearly, R1 is symmetric, because of the definition. Let ζ denote a permutation of an n-subset of natural numbers
1, . . . ,m, or a permutation of an m-subset of natural numbers 1, . . . ,n, respectively; then for any ζ it is

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1403
kv
(
nζ(1)(x),n1(x)

) · ke
(
eζ(1)(x), e1(x)

) + · · · + kv
(
nζ(n)(x),nn(x)

) · ke
(
eζ(n)(x), en(x)

)
(B.2)

� 1

2

(
kv

(
n1(x),n1(x)

) · ke
(
e1(x), e1(x)

) + kv
(
nζ(1)(x),nζ(1)(x)

) · ke
(
eζ(1)(x), eζ(1)(x)

) + · · ·

+ kv
(
nn(x),nn(x)

) · ke
(
en(x), en(x)

) + kv
(
nζ(n)(x),nζ(n)(x)

) · ke
(
eζ(n)(x), eζ(n)(x)

))
(B.3)

=
∑

i

kv
(
ni(x),ni(x)

) · ke
(
ei(x), ei(x)

)
(B.4)

because for any i

2 · kv
(
nζ(i)(x),ni(x)

) · ke
(
eζ(i)(x), ei(x)

)
� kv

(
ni(x),ni(x)

) · ke
(
ei(x), ei(x)

) + kv
(
nζ(i)(x),nζ(i)(x)

) · ke
(
eζ(i)(x), eζ(i)(x)

)
since kv and ke are positive semidefinite kernel functions and the product of two kernel functions is a kernel function. Now,
if we take the maximum over all ζ then R1(x,x) = (B.2) = (B.3) = (B.4).

Similarly R1(y,y) = ∑
j kv(n j(y),n j(y)) · ke(e j(y), e j(y)). Without loss of generality we can assume that |y| � |x|. Further

it holds for all α,β ∈ R and i, j

2αβkv
(
ni(x),n j(y)

) · ke
(
ei(x), e j(y)

)
� α2kv

(
ni(x),ni(x)

) · ke
(
ei(x), ei(x)

) + β2kv
(
n j(y),n j(y)

) · ke
(
e j(y), e j(y)

)
(B.5)

because kv and ke are positive semidefinite kernel functions. It is

α2 R1(x,x) − 2αβR1(x,y) + β2 R1(y,y)

= α2
∑

i

kv
(
ni(x),ni(x)

) · ke
(
ei(x), ei(x)

) − 2αβ max
π

∑
i

kv
(
ni(x),nπ(i)(y)

) · ke
(
ei(x), eπ(i)(y)

)
+ β2

∑
j

kv
(
n j(y),n j(y)

) · ke
(
e j(y), e j(y)

)
. (B.6)

By definition of R1 the second sum of previous equation has min(|x|, |y|) = |x| addends. Using (B.5) we have

(B.6) �
|x|∑

i=1

α2kv
(
ni(x),ni(x)

) · ke
(
ei(x), ei(x)

) − 2αβkv
(
ni(x),nζ(i)(y)

) · ke
(
ei(x), eζ(i)(y)

)
+ β2kv

(
nζ(i)(y),nζ(i)(y)

) · ke
(
eζ(i)(y), eζ(i)(y)

)
� 0. (B.7)

This proves the positive semidefiniteness of each 2 × 2 kernel matrix. From this we can generalise the result to n × n
matrices by induction using the assumption that kv and ke are non-negative. Suppose we already know that each n × n
kernel matrix R = (R1(xi,x j))i, j for a set of objects x1, . . . ,xn is positive semidefinite. Now assume we extend the matrix
to size n + 1 × n + 1 by adding an object xn+1. It is

n+1∑
i, j=1

viv jRi, j =
n∑

i, j=1

viv jRi, j + 2
n∑

j=1

vn+1v jRn+1, j + v2
n+1Rn+1,n+1. (B.8)

By induction assumption we know the first part of (B.8) to be non-negative. Furthermore, by definition kv and ke are
non-negative and thus also R1 is non-negative. Hence, we have v2

n+1Rn+1,n+1 � 0.
Therefore, in order to make (B.8) < 0 we have to suppose 2 · ∑n

j=1 vn+1v jRn+1, j < 0 and similarly to (B.5) we have that

2 · vn+1v jRn+1, j � v2
n+1Rn+1,n+1 + v2

j R j, j.

This leads to

2 ·
n∑

j=1

vn+1v jRn+1, j �
n∑

j=1

(
v2

n+1Rn+1,n+1 + v2
j R j, j

)
< 0

which is a contradiction to the non-negativity of R1. Hence, it is (B.8) � 0, which proofs the theorem. �
Theorem 5. Let γ (l) = pl with p ∈ (0,0.5). If there exists a C ∈ R+ , such that kv(v1, v2) � C for all v1 , v2 and ke(e1, e2) � 1 for all
e1 , e2 then Eq. (10) converges for L → ∞.

1404 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
Proof. It is

R1(u, v) � 1

max(|E(u)|, |E(v)|)
min(|E(u)|,|E(v)|)∑

i=1

max
v1,v2

kv(v1, v2) · max
e1,e2

ke(e1, e2)

� min(|E(u)|, |E(v)|)
max(|E(u)|, |E(v)|) C � C

and thus

R2(u, v) � 1

|N i(v)| · |N i(u)|
∑
h,h′

max
ni

h(v),ni
h′ (u)

R1
(
ni

h(v),ni
h′(u)

) · max
ei

h(v),ei
h′ (u)

ke
(
eh(v), ei

h′(u)
)

+ 1

|N o(v)| · |N o(u)|
∑
h,h′

max
no

h(v),no
h′ (u)

R1
(
no

h(v),no
h′(u)

) · max
eo

h(v),eo
h′ (u)

ke
(
eo

h(v), eo
h′(u)

)

� 1

|N i(v)| · |N i(u)|
|N i(v)|∑

i=1

|N i(u)|∑
j=1

C + 1

|N o(v)| · |N o(u)|
|N o(v)|∑

i=1

|N o(u)|∑
j=1

C = 2 · C .

Similarly we can show that Rl(u, v) � 2l−1C for l = 3, . . . , L. Therefore we have

Eq. (10) � C + pC + p22C + · · · + pL2L−1C � C +
L∑

l=1

(2p)lC

which converges for L → ∞ if p ∈ (0,0.5). �
Appendix C. Variants

As previously described (see p. 1388), our tests have been conducted on a series of variants of problems from different
standard benchmark domains of the 2nd, 3rd and 5th International Planning Competitions.23 The variant problems have
been generated by taking six problems from each benchmark test suite (except for the Logistics domain) and then randomly
modifying the initial state and goal states for a total of 216 planning problems for each domain. The problems considered
are:

• probblocks-40-0, probblocks-60-0, probblocks-80-0, probblocks-100-0, probblocks-120-1 and probblocks-140-1 for
BlocksWorld Additionals;

• randomly selected from logistics-16-0 to logistics-100-1 for Logistics Additionals Track2;
• pfile14, pfile17, pfile20, pfile-HC03, pfile-HC06, pfile-HC09 for DriverLog;
• pfile14, pfile17, pfile20, pfile-HC14, pfile-HC17, pfile-HC20 for ZenoTravel;
• pfile35, pfile36, pfile37, pfile38, pfile39, pfile40 for Rovers-IPC5;
• pfile25, pfile26, pfile27, pfile28, pfile29, pfile30 for TPP.

In the following we present a brief description of the operators used in order to modify the initial and the goal states of
a base problem. In order to modify the initial state, we randomly choose a completely instantiated “noisy” operator among
those with all the preconditions satisfied; the effects of the “noisy” operator determine a new initial state.

With respect to the goals, we propagate the effects of the actions of the solution plan of the base problem in order to
define a complete goal state; then we randomly choose a completely instantiated “noisy” operator among those with all the
preconditions satisfied and at least one goal of the base problem that belongs to them. The effects of the “noisy” operator
change the goal state; in particular the negative effects delete the corresponding goals, while the positive effects are added
to the goal set.

BlocksWorld: The NOISE-falldown noisy operator is used to randomly split a pile of blocks into piles; on the contrary
the NOISE-pile-up operator is used to randomly pile up a pile of blocks on the top of another one.

DriverLog: The NOISE-move-package and NOISE-move-driver noisy operators are used to randomly change the
location of a package and of a driver respectively.

Logistics: The NOISE-move-package and the NOISE-fly-airplane noisy operators are used to change the location
of a package and of an airplane respectively.

23 The IPCs test problems that we have used are available at the following websites: for IPC2, http://www.cs.toronto.edu/aips2000/; for IPC3,
http://planning.cis.strath.ac.uk/competition/; for IPC5, http://ipc5.ing.unibs.it.

protect protect protect edef T1{T1}let enc@update elax protect edef fgl{fgl}protect edef m{m}protect edef n{n}protect xdef T1/fgl/m/n/4.24803 {T1/fgl/m/n/7.08 }T1/fgl/m/n/4.24803 size@update enc@update ignorespaces elax protect elax protect edef fgl{pcr}protect xdef T1/fgl/m/n/4.24803 {T1/fgl/m/n/7.08 }T1/fgl/m/n/4.24803 size@update enc@update {http://www.cs.toronto.edu/aips2000/}
protect protect protect edef T1{T1}let enc@update elax protect edef fgl{fgl}protect edef m{m}protect edef n{n}protect xdef T1/pcr/m/n/7.08 {T1/fgl/m/n/7.08 }T1/pcr/m/n/7.08 size@update enc@update ignorespaces elax protect elax protect edef fgl{pcr}protect xdef T1/pcr/m/n/7.08 {T1/fgl/m/n/7.08 }T1/pcr/m/n/7.08 size@update enc@update {http://planning.cis.strath.ac.uk/competition/}
protect protect protect edef T1{T1}let enc@update elax protect edef fgl{fgl}protect edef m{m}protect edef n{n}protect xdef T1/pcr/m/n/7.08 {T1/fgl/m/n/7.08 }T1/pcr/m/n/7.08 size@update enc@update ignorespaces elax protect elax protect edef fgl{pcr}protect xdef T1/pcr/m/n/7.08 {T1/fgl/m/n/7.08 }T1/pcr/m/n/7.08 size@update enc@update {http://ipc5.ing.unibs.it}

I. Serina / Artificial Intelligence 174 (2010) 1369–1406 1405
Rovers: The NOISE-communicate_soil_data, the NOISE-communicate_rock_data and the NOISE-communi-
cate_image_data noisy operators are used to change the status (either “communicated” or “not communicated”)
of soil data, rock data and image data respectively from a waypoint x to a waypoint y.

TPP: The NOISE_drive and the NOISE_on-sale noisy operators are used to randomly change the location of a
truck and to randomly change the sale conditions of some goods respectively.

ZenoTravel: For this domain, we defined five noisy operators:
• the NOISE-fuel operator can be used to randomly change the fuel level of an aircraft;
• the NOISE-fly and the NOISE-zoom operators can be used to randomly modify the location of an aircraft

using different amount of fuel;
• the NOISE-move-package operator can be used to randomly change the location of a package;
• the NOISE-debark operator can be used to randomly modify the objects inside an aircraft.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.artint.2010.07.007.

References

[1] A. Aamodt, E. Plaza, Case-based reasoning: foundational issues, methodological variations, and system approaches, AI Commun. 7 (1) (March 1994)
39–59.

[2] T. Au, H. Muñoz-Avila, D.S. Nau, On the complexity of plan adaptation by derivational analogy in a universal classical planning framework, in: Proceed-
ings of the 6th European Conference on Advances in Case-Based Reasoning, Springer-Verlag, London, UK, 2002, pp. 13–27.

[3] F. Bacchus, F. Kabanza, Using temporal logic to express search control knowledge for planning, Artificial Intelligence 116 (1–2) (2000) 123–191.
[4] R. Bergmann, W. Wilke, Building and refining abstract planning cases by change of representation language, Journal of Artificial Intelligence Research 3

(1995) 53–118.
[5] W.D. Blizard, Multiset theory, Notre Dame Journal of Formal Logic 30 (1) (1989) 36–66.
[6] H. Bunke, Recent developments in graph matching, in: 15th International Conference on Pattern Recognition, vol. 2, 2000, pp. 117–124.
[7] T. Bylander, An average case analysis of planning, in: Proceedings of the Eleventh National Conference of the American Association for Artificial

Intelligence (AAAI-93), AAAI Press/MIT Press, Washington, DC, 1993, pp. 480–485.
[8] T. Bylander, The computational complexity of propositional STRIPS planning, Artificial Intelligence 69 (1994) 165–204.
[9] T. Bylander, A probabilistic analysis of propositional STRIPS planning, Artificial Intelligence 81 (1–2) (1996) 241–271.

[10] D. Chapman, Planning for conjunctive goals, Artificial Intelligence 32 (3) (1987) 333–377.
[11] M. Chein, M. Mugnier, Graph-based Knowledge Representation: Computational Foundations of Conceptual Graphs, Springer, 2008.
[12] Y.P. Chien, A. Hudli, M. Palakal, Using many-sorted logic in the object-oriented data model for fast robot task planning, Journal of Intelligent and

Robotic Systems 23 (1) (1998) 1–25.
[13] A.G. Cohn, Many sorted logic = unsorted logic + control?, in: Proceedings of Expert Systems ’86, the 6th Annual Technical Conference on Research

and Development in Expert Systems III, Cambridge University Press, New York, NY, USA, 1987, pp. 184–194.
[14] L.P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub)graph isomorphism algorithm for matching large graphs, Pattern Analysis and Machine Intelligence

IEEE Transactions on 26 (10) (2004) 1367–1372.
[15] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, 2000.
[16] M. Fox, A. Gerevini, D. Long, I. Serina, Plan stability: Replanning versus plan repair, in: Proceedings of International Conference on AI Planning and

Scheduling (ICAPS), AAAI Press, 2006.
[17] M. Fox, D. Long, The automatic inference of state invariants in TIM, Journal of Artificial Intelligence Research (JAIR) 9 (1998) 367–421.
[18] M. Fox, D. Long, The detection and exploitation of symmetry in planning problems, in: Proceedings of the 16th International Joint Conference on

Artificial Intelligence (IJCAI-99), 1999, pp. 956–961.
[19] H. Fröhlich, J.K. Wegner, F. Sieker, A. Zell, Optimal assignment kernels for attributed molecular graphs, in: L. De Raedt, S. Wrobel (Eds.), ICML, in: ACM

International Conference Proceeding Series, vol. 119, ACM, 2005, pp. 225–232.
[20] H. Fröhlich, J.K. Wegner, F. Sieker, A. Zell, Kernel functions for attributed molecular graphs – a new similarity based approach to ADME prediction in

classification and regression, QSAR Comb. Sci. 25 (2006) 317–326.
[21] H. Fröhlich, J.K. Wegner, A. Zell, Assignment kernels for chemical compounds, in: International Joint Conference on Neural Networks 2005 (IJCNN’05),

2005, pp. 913–918.
[22] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Series of Books in the Mathematical Sciences, W.H.

Freeman, 1979.
[23] T. Gärtner, A survey of kernels for structured data, SIGKDD Explor. Newsl. 5 (1) (2003) 49–58.
[24] D. Gentner, The mechanisms of analogical learning, in: B.G. Buchanan, D.C. Wilkins (Eds.), Readings in Knowledge Acquisition and Learning: Automating

the Construction and Improvement of Expert Systems, Kaufmann, San Mateo, CA, 1993, pp. 673–694.
[25] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search and temporal action graphs, Journal of Artificial Intelligence Research (JAIR) 20

(2003) 239–290.
[26] A. Gerevini, L. Schubert, On point-based temporal disjointness, Artificial Intelligence 70 (1994) 347–361.
[27] A. Gerevini, I. Serina, Plan adaptation through planning graph analysis, in: AI*IA 99, in: Lecture Notes in Artificial Intelligence, Springer-Verlag, 1999,

pp. 356–367.
[28] A. Gerevini, I. Serina, Fast plan adaptation through planning graphs: Local and systematic search techniques, in: Proceedings of the 5th International

Conference on Artificial Intelligence Planning and Scheduling (AIPS-00), AAAI Press/MIT Press, 2000, pp. 112–121.
[29] S. Hanks, D.S. Weld, A domain-independent algorithm for plan adaptation, Journal of Artificial Intelligence Research (JAIR) 2 (1995) 319–360.
[30] P. Hansen, Upper bounds for the stability number of a graph, Rev. Roumaine Math. Pures Appl. 24 (1979) 1195–1199.
[31] D. Haussler, Convolution kernels on discrete structures, Technical Report UCS-CRL-99-10, UC Santa Cruz, 1999.
[32] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation through heuristic search, Journal of Artificial Intelligence Research (JAIR) 14 (2001)

253–302.
[33] M. Johnson, Relating Metrics, Lines and Variables Defined on Graphs to Problems in Medicinal Chemistry, John Wiley & Sons, Inc., New York, NY, USA,

1985.
[34] S. Kambhampati, J.A. Hendler, A validation-structure-based theory of plan modification and reuse, Artificial Intelligence 55 (1992) 193–258.

http://dx.doi.org/10.1016/j.artint.2010.07.007

1406 I. Serina / Artificial Intelligence 174 (2010) 1369–1406
[35] H. Kashima, K. Tsuda, A. Inokuchi, Marginalized kernels between labeled graphs, in: T. Fawcett, N. Mishra (Eds.), ICML, AAAI Press, 2003, pp. 321–328.
[36] V. Kuchibatla, H. Muñoz-Avila, An analysis on transformational analogy: General framework and complexity, in: ECCBR, in: Lecture Notes in Computer

Science, vol. 4106, Springer, 2006, pp. 458–473.
[37] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistic Quarterly 2 (1955) 83–97.
[38] D.B. Leake (Ed.), Case-Based Reasoning, MIT Press, Cambridge, MA, 1996.
[39] P. Liberatore, On the complexity of case-based planning, Journal of Experimental & Theoretical Artificial Intelligence 17 (3) (2005) 283–295.
[40] D. Lin, An information-theoretic definition of similarity, in: J.W. Shavlik (Ed.), ICML, Morgan Kaufmann, 1998, pp. 296–304.
[41] R.Y. Liu, An upper bound on the chromatic number of a graph, J. Xinjiang Univ. Natur. Sci. 6 (1989) 24–27.
[42] D. Long, M. Fox, The 3rd international planning competition: Results and analysis, Journal of Artificial Intelligence Research (JAIR) 10 (2003) 1–59.
[43] D. McAllester, D. Rosenblitt, Systematic nonlinear planning, in: Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91), July

1991, pp. 634–639.
[44] J. Mercer, Functions of positive and negative type and their connection with the theory of integral equations, Philos. Trans. Roy. Soc. London 209 (1909)

415–446.
[45] H. Muñoz-Avila, M. Cox, Case-based plan adaptation: An analysis and review, IEEE Intelligent Systems 23 (4) (2008) 75–81.
[46] H. Muñoz-Avila, J. Hüllen, Feature weighting by explaining case-based planning episodes, in: EWCBR ’96: Proceedings of the Third European Workshop

on Advances in Case-Based Reasoning, Springer-Verlag, London, UK, 1996, pp. 280–294.
[47] B. Nebel, J. Koehler, Plan reuse versus plan generation: A complexity-theoretic perspective, Artificial Intelligence (Special Issue on Planning and Schedul-

ing) 76 (1995) 427–454.
[48] M. Neuhaus, H. Bunke, A convolution edit kernel for error-tolerant graph matching, in: 18th International Conference on Pattern Recognition (ICPR’06),

vol. 4, IEEE Computer Society, Washington, DC, 2006, pp. 220–223.
[49] M. Neuhaus, H. Bunke, Bridging the Gap Between Graph Edit Distance and Kernel Machines, World Scientific, 2007.
[50] A.N. Papadopoulos, Y. Manolopoulos, Structure-based similarity search with graph histograms, in: Proceedings of the 10th International Workshop on

Database & Expert Systems Applications, IEEE Computer Society Press, 1999, pp. 174–178.
[51] J.W. Raymond, E.J. Gardiner, P. Willett, Rascal: Calculation of graph similarity using maximum common edge subgraphs, The Computer Journal 45 (6)

(June 2002) 631–644.
[52] K. Riesen, H. Bunke, Approximate graph edit distance computation by means of bipartite graph matching, Image Vision Comput. 27 (7) (2009) 950–959.
[53] R. Rosipal, L.J. Trejo, Kernel partial least squares regression in reproducing kernel Hilbert space, J. Mach. Learn. Res. 2 (2002) 97–123.
[54] B.H. Ross, Some psychological results on case-based reasoning, in: Proc. of a Workshop on Case-Based Reasoning, Pensacola Beach, FL, 1989, pp. 144–

147.
[55] F. Ruskey, R. Cohen, P. Eades, A. Scott, Alley cats in search of good homes, in: Twenty-Fifth Southeastern Conference on Combinatorics, Graph Theory

and Computing 102 (1994) 97–110.
[56] B. Scholkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, USA,

2001.
[57] B. Smyth, E. McKenna, Footprint-based retrieval, in: K.D. Althoff, R. Bergmann, K. Branting (Eds.), ICCBR, in: Lecture Notes in Computer Science,

vol. 1650, Springer, 1999, pp. 343–357.
[58] L. Spalazzi, A survey on case-based planning, Artificial Intelligence Review 16 (1) (2001) 3–36.
[59] B. Srivastava, T.A. Nguyen, A. Gerevini, S. Kambhampati, M.B. Do, I. Serina, Domain independent approaches for finding diverse plans, in: M.M. Veloso

(Ed.), IJCAI, 2007, pp. 2016–2022.
[60] A. Tate, Generating project networks, in: Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI-77), MIT, Cambridge,

MA, 1977, pp. 888–889.
[61] F. Tonidandel, M. Rillo, The FAR-OFF system: A heuristic search case-based planning, in: M. Ghallab, J. Hertzberg, P. Traverso (Eds.), AIPS, AAAI, 2002,

pp. 302–311.
[62] R. van der Krogt, M. Weerdt, Plan repair as an extension of planning, in: S. Biundo, K.L. Myers, K. Rajan (Eds.), ICAPS, AAAI, 2005, pp. 161–170.
[63] M. Veloso, Learning by analogical reasoning in general problem solving, Technical report, CMU-CS-92-174, Department of Computer Science, Carnegie

Mellon University, 1992.
[64] M. Veloso, Planning and Learning by Analogical Reasoning, in: Lecture Notes in Artificial Intelligence, vol. 886, Springer-Verlag Inc., New York, USA,

1994.
[65] S.V.N. Vishwanathan, A.J. Smola, Fast kernels for string and tree matching, in: S. Becker, S. Thrun, K. Obermayer (Eds.), NIPS, MIT Press, 2002, pp. 569–

576.
[66] S. Vosniadou, A. Ortony (Eds.), Similarity and Analogical Reasoning, Cambridge University Press, New York, NY, USA, 1989.
[67] C. Walther, A mechanical solution of Schubert’s steamroller by many-sorted resolution, Artificial Intelligence 26 (2) (1985) 217–224.
[68] F. Wilcoxon, R.A. Wilcox, Some Rapid Approximate Statistical Procedures, American Cyanamid Co., Pearl River, NY, USA, 1964.

	Kernel functions for case-based planning
	Introduction
	Preliminaries
	Planning formalism
	Graphs
	Kernel functions for labeled graphs

	Case-based planning
	Plan retrieval
	Object matching
	Screening procedure
	Kernel functions for object matching

	Plan evaluation phase
	Plan adaptation
	Plan revision and case base update

	Experimental results
	Experimental settings
	Overall results
	Matching functions
	Object names renaming analysis
	Case base size analysis

	Matching functions similarity results
	OAKplan vs. state of the art planners

	Related work on case-based planning
	Summary and future work
	Acknowledgements
	Proofs
	Variants
	Supplementary data
	References

