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A b s t r a c t - - B u r b e a  and Rao [1] gave some general methods for constructing quadratic differential 
metrics on probability spaces. Using these methods, they obtain the Fisher information metric as 
a particular case. In this paper, a procedure to test statistical hypotheses is proposed on the basis 
of geodesic distances. An example is given and the asymptotic distribution of the test statistics 
are obtained; so, this method can be used in those cases where it is not possible to get the exact 
distribution of the test statistics. 

K e y w o r d s - - I n f o r m a t i o n  metric, Geodesic distance between probability distributions, Maximum 
likelihood estimators, Asymptotic distributions. 

1. I N T R O D U C T I O N  

Let (~, ~3~, P0; O E 0) be a statistical space, where @ is an open subset of RM. We shall assume 
t h a t  the re  exis ts  a general ized p robab i l i t y  dens i ty  funct ion f(x, 8) for the  p robab i l i t y  Pe wi th  

r e spec t  to  a a - f in i te  measure  #, and  we shall  suppose  t h a t  f(x, 8) is a s m o o t h  funct ion  ver i fy ing 

condi t ions  of  C r a m e r - R a o  (C.R.)  and  the  condi t ions  for the  consis tency of  a m a x i m u m  l ike l ihood 

e s t i m a t o r  (M.L.E.)  [2, pp.  194,223]. Taking  into account  t h a t  each popu l a t i on  can be  cha rac te r -  

ized by  a pa r t i cu l a r  po in t  8 of O, we m a y  in te rp re t  P0 as a manifo ld  and  consider  0 = ( 8 1 , . . . ,  0M) 

as a coo rd ina t e  sys tem.  We consider  a general  posi t ive quad ra t i c  different ial  form 

M 

ds2(8) = E (8) de,, (1) 
i , j= l  

and  we suppose  t h a t  it  is invar iant  under  t r ans fo rma t ion  of O. For  example ,  if we cons ider  

f~ 1 Of(x, O) Of(x, O) d#(x), 
g, j (8)  = f(x,8---- T 08-----7- 08-----/--. 

we have the  R i e m a n n i a n  met r i c  defined v ia  F i sher  in format ion  m a t r i x  by  Rao  [3]. B u r b e a  and  

Rao  [1] and  B u r b e a  [4] gave some general  me thods  for cons t ruc t ing  R i e m a n n i a n  met r ics  on  

p r o b a b i l i t y  spaces.  
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In the conditions given for the expression (1), we have a Riemannian space, with line element 
ds = (ds2) 1/~ and fundamental tensor gij(8). If we consider a curve in O joining 8~ and 8b, i.e., 

8(t) = ( 8 , ( t ) , . . . ,  @ ( t ) ) ,  to <_ t <_ tb, 

with 8(ta) = 8a and 8(tb) = 8b, then the distance between the probability density functions 
f (x ,  8a) and f (x ,  8b) along the curve 8(t) is given by 

tb U ~ / ~  

s(8o, o~) = i=l j=lEgiJ(8) - ~  dt J dt, 

where, for ease of exposition, we have written 8, 8i and 8j instead of 8(t), 8~(t) and 8j(t), respec- 
tively. In our case, this is usually a geodesic pseudo-distance (a pseudo-distance satisfies all the 
postulates of distance except that  it may vanish for elements which are distant). In particular, 
the curve joining 8a and 8b, for which S(Sa, 8b) is shortest, is of interest. Such a curve is called a 
geodesic and is given as the solution of the differential equations (the Euler-Lagrange equations) 

M M 
E gij(8) d28i dO~ dSj 

-dV + ~ [i, ~; k] at dt - o, j = 1 , . . . , M ,  

where [i,j; k] is the Christoffel symbol of the first kind, and it is defined by 

[i,y; k] = ~ \ ~ + 08---7- 08k ] '  i , j , k  = 1 , . . . , M .  

The geodesic distance between 8a and 8 b W a s  proposed by Rao to measure the distance between 
distributions with parameters 8a and 85. We can also observe that  the geodesic distance between 
probability distributions are typically as follows: 

S ( 8 1 ,  82) - -  Ih(8,) - h(82)1 • (2) 

In this paper, we propose a test based on the distance (2), and we obtain the asymptotic 
A A 

distribution of the distance S(01, 82), where 8" is the M.L.E. of 8, for those cases where it is not 
possible to get the exact distribution of the test statistic. 

2.  A S Y M P T O T I C  D I S T R I B U T I O N  O F  G E O D E S I C  D I S T A N C E S  

When dealing with parametric distributions, statistical tests based on the geodesic distance can 
be constructed by substituting one or the two parameters by convenient estimators. To clarify 
this idea, let us consider the Pareto distribution (x0 fixed) and the Rao distance S(01, 82). To 
test the hypothesis H0 : 8 = 80, is equivalent to test the hypothesis S(8, 00) = 0, so we can use 
the statistic T = S(8, 80) = I log ~ ' - l o g  801, where 

is the maximum likelihood estimator of 8. We reject the null hypothesis, at a level a,  if T1 > ca, 
where Poo (TI > ca) = c~. A straightforward calculus yields to the following decision rule 

1, i f  (21 < T 2 ( X l , . . .  x n )  < c2,  

¢(x l , . . ,x~)  = 0, if T 2 ( X l , . . . X n )  < Cl or T2(xx , . . .xn)  > c2, 
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where 

(1) Fx~(c2 ) - F×~,(cl) = 1 - a,  

(2) Cl c2 = 4n 2, 

and 
n 

T2(Xl , . . . ,  Xn) = 280 ~ log 
i = l  X0 

Finally, note that  Rao distance test coincides with the unbiased uniformly most powerful test 
if we change condition (2) by 

(2') Fx~(~+,)(c2 ) - Fx~(,+,)(Cl ) = 1 - a. 

In general, it will be not possible to get the exact distribution of the statistic S(81,82); so, we 
will have to use its asymptotic distribution. To do this, we consider the function 

S*(81,82) -- ¢ (]h(81) - h(02)12), 

¢ being an increasing function with ¢(0) = 0. The null hypothesis Ho : 0 = 00 or Ho : 81 -- 82 
will be rejected if S*(0", 80) or S*(01,82) are greater than a critical value. If we write f E Ci (B)  
to denote tha t  the real function f has continuous partial derivatives of ith order on the set B, 
then we obtain the following result. 

THEOREM 2.1. Let 01 and 02 be M.L.E. of 01 and 02 based on independent random samples of 
sizes n and m, respectively, where m / ( n + m )  ~,m--*o~ A C (0, 1). Assume the regularity conditions 

of C.R. and for the consistency of an M.L.E. hold. 

(a) I ra  2 = ATtIF(O1)- IT-b  (1 - A)S t IF(02) - IS  > 0, ¢ • Cl[0,0o) and h • C l ( e ) ,  then 

n ,  7Ta,---* OO 

where IF(8) is the Fisher information matr/x evaluated at 8, T -- ( t l , . . .  , tM)  t, S :- 
( S l , . . .  ,SM) t, 

a(01,02)=2(h(01)  - h(02))¢'((h(81) - h(02)2), 

n ~Oh(01) 0S*(01,02) = a(01,v2j ~ , 
t i = 081i  

- 0 ~ 0 h ( 0 2 )  05"(01,02) a(01, 2~ ~ , 
s~ = 082i 
i = l , . . . , M .  

(b) If01 = 82, ¢'(0) > 0, ¢ E C2[0,00) and h E C2(e) ,  then 

n m  
n q - m  ¢'(0) n,m-~o~ ~=1 

where the X 2 's are independent and the 1~ 's are the non-null eigenvalues of the matr /x  

0h(01) Oh(01) i , j  = 1 , . . . , M .  
AIR(81) -1,  A = (a~j)i,j=l,...M and aij = 081~ 081j ' 
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PROOF. 

(a) By the mean value theorem 

M 
~* (~'1'~2) -- S*(01'02)4- Z 0S*('~*) (~1i_014) 4- ~ 0~*(~/*) ( 0 2 i - 0 2 i )  

4=1 0014 4=1 002i ' 

A A 

~ ~ (o~,01~) ~, ~ ~ ~ where 7 (01,02) , V* = = = (01, 0~) a n d  Ir~* - ~ l l ~  < I1~ ~112. 

We conclude (c.f. [5, p. 385]) that 

nm ~1/2 ( a m  ~1/2 
n 4 . r n /  (S* (~'1' ~2) - S* (01' 02)) =a (Tt  (~'1 - 01) 4" St (~'2 - 02))  

where =a means "asymptotically distributed as." Finally, applying the Central Limit The- 
orem, the result follows. 

(b) If 01 = 02, then a 2 = S*(01, 02) = 0. By the mean value theorem 

where C = (ci j ) i j=l  ..... M, cij ---- O0~0e~j anu ~ , .  and ~ are defined and verify the condition 
given above. We conclude (c.f. [5, p. 385]) that  

- -  - - a  - -  - -  

n 4- m ¢'(0) 

so the result follows. 

COROLLARY 2.1. / f  the assumptions of Theorem 2.1 hold and 02 is known, then 

(a) n 1/2 (~* (~1,02) -- B'(01,02)) n,2--*~o Y (O, TtIF(O1)-IT) 

M 

(b) n ¢'(0) n,m-~oo i=l 

REMARK 2.1. 

(a) The asymptotic distribution in Theorem 2.1(b) and Corollary 2.1(b) is proportional to a 
chi-square distribution when 0 E R. 

(b) For testing the null hypothesis H0 : 01 = 02(H0 : 0 = 00), the asymptotic power function 
can be obtained from Theorem 2.1(a) (Corollary 2.1(a)). The proposed test procedures are 
consistent in the sense of Fraser because the asymptotic power function tends to one as 
n -~ oo in the alternative hypothesis. 

. . .  M 2 (c) Probabllltms P(~i=l/3~X1 > t) can be calculated by computer simulation. Rao and Scott [6] 
suggest to consider the approximate distribution of ~ M  1 f~4X2; which is given by ~ = X 2 ,  
where -~ = ~ M  1 Di/M. In this case, we can easily calculate the value ~, since )-~M 1 f~i = 
tr(AIF(O)-l). 
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