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Part I contains a combinatorial proof of a multivariable Lagrange inversion for- 
mula. Part II discusses the various multivariable Lagrange inversion formulas of 
Jacobi, Stieltjes, Good, Joni, and Abhyankar and shows how they can be derived 
from each other. CJ 1987 Academic Press. Inc. 

1. Introduction 

The Lagrange inversion formula is one of the most useful formulas in 
enumerative combinatorics. Many proofs of it are known, including com- 
binatorial proofs of Raney [45] and Labelle [37, 381. Multivariable 
generalizations of the Lagrange inversion formula have many applications 
[l, 4, 5, 11, 21-26, 31, 321. In Part I we give a combinatorial proof of the 
following form of multivariable Lagrange inversion: 

Let the formal power series f, ,..., fm in the variables x, ,..., x, be defined 
by 

fi = xig,(f, Y..,fA i = l,..., m, 

for some formal power series g,(x, ,..., x,). Then the coefficient of 

x;’ x2 . xy -...- 
n, ! n,! 

* g;qx, )...) xm) . . . gZ(xl )...) x,) In k,!“‘Q 

is equal to the coefficient of 

X”l X"" . f'rl '...m 
n, ! n,! 

--..$‘det(fi,-x,gj”(f ,,..., 
In k,! k,! 

f,)), 

where gjji(x, ,..., x,) = (a/ax,) g,(x, ,..., xm). 
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The combinatorics underlying the proof is quite simple.Let A be a subset 
of a finite set B. To any function from A to B we associate a digraph on B 
with an arc from each element of A to its image. The connected com- 
ponents of these digraphs are of two types.The first type is a rooted tree 
with all arcs directed towards the root. The root is in B - A and every 
other vertex is in A. The second type consists only of vertices in A, and 
contains a single directed cycle, with all arcs not in the cycle directed 
towards the cycle. 

The defining relations L. = x, gi(f, ,...,f,) h ave the interpretation that fi 
counts trees with vertices colored in m colors, where the root has color i. 
The vertices are weighted by “color-refined” degree, and the gi are the 
generating functions for these weights. 

The coefficient of 

X;’ x”m . -...m X;’ X2 

I n,. n,! 
in k,...k,?g;““‘RZ 

counts functions from A to B, where B contains ni vertices of color i and 
B-A contains ki vertices of color i. The digraph associated to such a 
function will have ki roots of color i. It is easy to show that 
(f:I/k, !) *.* (fk/k,,,!) counts sets of trees with kj roots of color i. A little 
more work shows that the reciprocal of the determinant counts sets of 
components of the second type. 

Labelle [37,38] has given a proof of a one-variable Lagrange inversion 
formula similar to the one given here. Labelle proved a different version of 
the formula which, while more convenient in the one-variable case, 
apparently does not generalize easily. 

The use of exponential generating functions enables us to work with 
labeled trees. Raney’s proof [45] of the one-variable formula used ordinary 
generating functions and (implicitly) plane (or ordered) trees. Chottin 
[6,7] and Cori [8] generalized Raney’s proof to a specialized two-variable 
formula. A combinatorial proof of the general formula using only ordinary 
generating functions may be possible, but is probably more difficult than 
the proof given here. Such a proof might lead to a multivariable 
generalization of the noncommutative Lagrange inversion formulas of 
c171. 

Many different multivariable Lagrange inversion formulas have been 
found, such as those of Jacobi [33], Stieltjes [48], Good [21], Joni [35], 
and Abhyankar [ 1 J. In Part II we show how these formulas and the for- 
mula proved in Part I can be transformed into each other by simple 
algebraic manipulation. We also give a new version of multivariable 
Lagrange inversion (Theorem 4) which is more convenient in some 
applications than previous formulas. 
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PART I 

2. Colored Labeled Structures 

In this section we develop some of the properties of exponential 
generating functions in several variables. 

An exponential generating function in m variables is a formal power series 
of the form 

X’f’ 
Ca n,..$. n, / “2 . . . . . n, 7 . 

n, ,.... n, ??I. 
(2.1) 

It will be convenient to denote m-vectors by boldface letters; thus n denotes 
the vector (n,, q,..., n,). We add, subtract, multiply, and divide vectors 
term by term; however, we interpret x” as x;‘x;~.. . xz and n! as 
nl. 1 n2 ! . . n, ! Then (2.1) may be written as C. a,(x”/n !). Exponential 
generating functions in m variables arise in counting labeled objects in 
which the labels are colored in m colors. In this section we review some of 
the basic enumerative properties of these generating functions. For other 
approaches to exponential generating functions, see Beissinger [2], Bender 
and Goldman [3], Doubilet, Rota, and Stanley [lo], Foata [12], Getu 
and Shapiro [19], Goulden and Jackson [26], Joni [36], Joyal [37], 
Labelle [40], Reilly [46], and Stanley [47]. 

Let P and N be the positive and nonnegative integers, and let 
[n] = { 1, 2,..., n}, with [0] = @. We will need m disjoint copies of P, 
which we may construct by setting Pi= P x (i} for i in Cm]. We think 
of Pi as P “painted” in color i. Let P,=IFDx [m]=P,u . . . UP,. 
Let [n],sP; be [n]x {i}. For n=(n,,...,n,) in N”, let 
[n] = [n,], u [n212u ... u [n,],. For any subset A of P,, let /IAll EN” 
be (IA n P, I,..., IA n p,,I). Thus, for example, II[n]ll = n. Let 
ei= (0 ,..., l,..., 0), with a 1 in the ith place and O’s elsewhere. 

An m-colored labeled structure L with weight function w  assigns to each 
A s.P, a set L(A) such that CXEL,A) W(M) depends only on llA[l. We 
require in addition that if A #B, L(A) and L(B) must be disjoint. We 
define the generating function T(L) for L by 

assuming that the sum exists as a formal power series. Two structures L 
and M are isomorphic (written L z M), if for every A E P, there is a 
weight-preserving bijection from L(A) to M(A). It is clear that if L E M 
then T(L) = T(M). (In most applications the weaker equivalence 
T(L) = T(M) would be sufficient. On the other hand, one might require the 
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stronger condition that the bijection L(A) --f M(A) be “natural.” See Joyal 
[37] and Labelle [40].) 

If L and A4 are structures such that all sets L(A) and M(B) are disjoint, 
then we define the sum L+M by (L+ M) (A)= L(A)u M(A) with the 
obvious weight. It is clear that ZJL + M) = T(L) + T(M). We define infinite 
sums of structures the same way. 

We define the product LA4 for any structures L and M by 

(LM)(A) = (J L(B) x M(C), 
BuC=A 
BnC=@ 

where the weight of (~1, fl) is w(a) w(b). (By abuse of notation we denote all 
weights by w, even though the same object may have different weights in 
different structures.) A straightforward argument shows that 
l-(LM) = T(L) T(M). 

If L(0) = 0 we define a structure L (k) for k in N : Ltk’(A) is the set of all 
c( = (a,, a2 ,..., ak} such that for some partition {A ,,..., Ak} of A, aiE L(A,). 
Here w(a)= w(al)... w(ak). Since each element of LCk’(A) corresponds to 
k! elements of Lk(,4), we have ZJL’k’) = r( L)k/k !, and consequently, 
r(zp= o L’k’) = eTCL). 

3. The Proof 

THEOREM 1. For each i in [m] and j in N”, let gi,j be an indeterminate. 
Set g,(x) = Cj gi,j(Xj/j !). Then there is a unique formal power series solution 
fi(x),..., f,(x) to the system 

fi = xigi(f); i = l,..., m. (3.1) 

Let gy)(x)=ag,(x)/ax,. Then the coefficient of x”/n! in (xk/k!) g”(x) is 
equal to the coefficient of x”/n! in (P/f!)/det(b,- x,gy)(f)). 

Proof. Equating coefficients of x” in (3.1) gives a system of recurrences 
for the coefficients of thefi which is easily seen to have a unique solution. 
Therefore it is sutlicient to find a solution f which satisfies the conditions of 
the theorem. We shall do this by counting digraphs in two ways in which 
every vertex has out-degree 0 or 1. For simplicity, we use the word digraph 
for a digraph of this type. 

Let D be a digraph with vertex set in P * . Let o be a vertex of D of color 
i, and suppose that of the vertices u for which MU is an arc of D, j, are of 
color 1 for each I in [ml. We say that u is of type (i, j). We define the 
weight of v to be g,j, and we define the weight of D to be the product of 
the weights of its vertices. A root of a digraph is a vertex of,out-degree zero. 
We say that a digraph is of type k if it has k, roots of color i for each i. 
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We now prove: 

(i) The sum of the weights of the digraphs on [n] of type k is the 
coefficient of x”/n ! in (xk/k!) g”(x). 

It is easy to see that (xk/k!) g”(x) is the generating function for the 
structure Lk,” defined as follows: &,,,(A) is the set of fUndOnS 

$: A + (0) u [n] such that Il$P’(0)ll = k, in which the weight of $ is 
rI,, [II] iT,.,LX,. ~11/1-‘(2’lll~ where c(u) is the color of v. If $ is in Lk,.(n) we 
associate to it the digraph on n in which there is an arc from u to v if and 
only if $(u) = U. This correspondence is easily seen to be a weight-preserv- 
ing bijection onto the digraphs on [n] of type k, and thus (i) is proved. 

By the components of a digraph, we mean the connected components of 
its underlying graph. It is not hard to show that the number of roots in a 
component is either zero or one. and that a component with no roots con- 
tains a unique directed cycle. We call a component with one root a tree and 
a component with no roots a unicyclic digraph. 

Let Fj,j be the structure of trees with root of type (i, j) and let F, = Ii Fj,j 
be the structure of trees with root of color i. Let X,j be the structure such 
that if JIAI( =ei then X,,j(A)=A, with weight gi,j; otherwise, Xi,j(A)= 0. 
In other words, an X,,j-object is a point of color i weighted as though it 
were a vertex of type (i, j) in a digraph. 

A tree with root of type (i, j) consists of a root of color i together withj, 
trees of root color 1 for each 1 in [m]. Thus Fj,j E X,,j F\jl’ Fp’ ... Fp), so 
summing on j we have 

(3.2) 

Now set f, = r(F,). Applying r to (3.2), we have 

(ii) The generating functionsfi for trees with root of color i satisfy 

fi=xjSj(fi~~~~~fm); i = l,..., m. 

A digraph of type k has ki components which are trees of root color i for 
each i, and the other components are unicyclic digraphs. Thus if U(X) is the 
generating function for unicyclic digraphs, the generating function for 
digraphs of type k is (f’/k!) e’. We shall show 

(iii) u(x) = trace log JP’, where J is the m x m matrix (6,-xi@(f)). 
A unicyclic digraph may be viewed as a set of trees, together with 

additional arcs which join the roots of the trees into a cycle. Since the 
additional arcs change the weights of the roots, we must work with 
“modified trees”: We define the structure T, of modified trees of 
specification (i, j) so that T,(A) is the set of all trees on A of root color i, 
but with a modified weight. The weights of the nonroot vertices are as 
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before, but a root of type (i, k) is assigned the weight gi.k+ e,. Thus the 
weight of the root is what it should be when we add an entering arc from a 
vertex of color j. We have 

= xi g!j'(f) I . (3.3) 

Let us say that a sequence of s modified trees is compatible if their 
specifications are of the form (il, i2), (i2, i3),..., (is-i, i,), (i,, ii). A unicyclic 
digraph is obtained with the correct weight by connecting cyclically the 
roots of a compatible sequence of modified trees. The generating function 
for compatible sequences of s modified trees is easily seen to be trace IV, 
where M is the m xm matrix (x;gjj)(f)). But each cyclic ordering of s 
modified trees corresponds to s sequences (obtained by choosing one of the 
modified trees as the first), so the generating function for unicyclic digraphs 
is 

u(x)= f itrace M”=tracelog(6,-x,gj”(f)))‘, 
SE] s 

and (iii) is proved. 
Thus the generating function for digraphs of type k is (f’/k!) 

exp(trace log J-l). From the matrix identity 

det exp A = exp trace A, (3.4) 

we have exp(trace log J-l) =exp(log det J-i) = (det J)-‘. The theorem 
now follows from (i) and (ii). 

We note that a combinatorial proof of (3.4) has been given by Foata 
[13]. Jackson [28] and Foata and Garsia [14] have applied this identity 
to other combinatorial problems. 

The identity (3.4) has been attributed to Jacobi. See, for example, 
Zelobenko [Sl, p. 271. Although zelobenko gave no reference to Jacobi, 
he probably had in mind Jacobi’s 1844 paper on differential equations 
[34]. In Section 17 of this paper, Jacobi expressed the determinant of a 
matrix M associated with a system of linear homogeneous differential 
equations as the exponential of the trace of a matrix N. In the case in 
which the differential equations have constant coefficients, it is true that 
M= exp N, but Jacobi did not use the concept of exponentiation of 
matrices in this paper. The historical notes in Wedderburn [SO, p. 1711 
suggest that exponentiation of matrices was not considered until after 
Jacobi’s death in 185 1. 
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An accessible account of Jacobi’s determinant for differential equations 
can be found in Poole [44, pp. 7-S]. (I am grateful to John Lew for this 
reference.) For an account of the early history of the theory of matrices (as 
opposed to determinants), see Hawkins [27]. 

The earliest occurrence of (3.4) I have found is in an 1887 paper of 
Peano [43], on the same subject as Jacobi [34] (although Peano was 
apparently unaware of Jacobi’s work). Since there was little work on 
exponentiation of matrices before this time (see Wedderburn [SO, p. 1711 
and MacDuffee [4, pp. 97-991) it seems quite likely that (3.4) was first dis- 
covered by Peano. 

PART II 

We now show that the theorem proved in Section 3 is equivalent to 
other forms of multivariable Lagrange inversion. It is convenient to change 
our notation. We shall use ordinary, rather than exponential generating 
functions, and we shall work with formal Laurent series in the variables 
x1, x2 ,..., x, in which only finitely many terms with negative exponents 
may appear. We write [x”]f(x) for the coefficient of X” inf(x). We shall 
also use “dummy variables” t,, fz ,..., t,. We write [MI for the determinant 
of the matrix M. 

Henrici [28] gives a comprehensive historical account of multivariable 
Lagrange inversion formulas. 

4. The Formulas of Good 

THEOREM 2. Let g,(x, ,..., x,), i= l,..., m, be formal power series with 
coefficients in a field, and with nonzero constant terms. Then there exist 
unique formal power series f;(x) satisfying 

fix) = xi&M; i = 1, 2 ,..., m. (4.1) 

Let gyJ(t) = (8/8tj) g,(t) and let the m x m matrices J(t) and K(t) be defined 

by 

and 

J(t)=(6,-x-gqt)) I I 
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Then for any formal Laurent series Q(t) (not involving x) we have for all n in 
Z” 

Cx”1 wYlJ(f)l = Ct”l Q(t) g”(t) (4.2) 

@(f) = c x”[IU Mt)l Q(t) g”(t) (4.3) 

Cx”1 @(fYlml = Ll o(t) g”(t) (4.4) 

Lx”1 WI = Ct”l Iwt)l Q(t) g”(t). (4.5) 

ProoJ Theorem 1 is equivalent to the special case of (4.2) in which 
Q(t) = tk for some k in N”. (We can clearly assign any values to the g,j in 
Theorem 1, and once the factorials are removed, the formula is seen to be 
valid over any commutative ring of coefficients.) Now let ci be the constant 
term of gi(t). It follows from (4.1) that c, is also the constant term of 
fi(x)/xj. Then the case Q(t) = tk of (4.2) may be written (with n = r + k) as 

Cx’] wCx)k - = CU g’(t). kw/C)k. 
I J(f)1 

(4.6) 

It is clear that for fixed r E N”, both sides of (4.6) are polynomials in k. 
Thus since (4.6) holds for k in N”, it holds for all k. Going back, we find 
that (4.2) holds for Q(t) = tk for all n and k in Z”. Then by linearity it 
holds for all Q(t). 

Since J(t) involves x, we cannot replace Q(t) by @(t)lJ(t)l in (4.2). 
However, we may rewrite (4.2) as 

W/lJV)l = c x”Ct”l @j(t) g”(t). (4.7) 
n 

It is easy to see that we may substitute d(t) I J(t)1 for Q(t) in (4.7), to 
obtain (4.3). 

From (4.1), we have xi =x/g,(f). Thus J(f) = K(f), so (4.4) is the same as 
(4.2). Since K(t) does not involve x, we may replace Q(t) by @(t)lK(t)l in 
(4.4) to obtain (4.5). 

These formulas were found by Good [21]. (Good’s conditions were 
slightly different, since he worked with analytic functions rather than for- 
mal power series.) Formal power series proofs have been given by Tutte 
[49] and de Bruijn [S]. 

Good also gave the following generalization of (4.5): Under the 
hypotheses of Theorem 2, for any Laurent series Y(t, x), we have 

Cx”1 w, XI = ca K(t)1 v4 a!(t)) g”(t). (4.7) 
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To prove this, we reduce by linearity to the case ‘P(t, x) = Q(t) x”; this case 
is equivalent to (4.5) with n-k substituted for n. Analogous 
generalizations of the other formulas of Theorem 2 follow similarly. 

5. The Formula of Jacobi 

For any Laurent series h(x), let us define the residue of h(x) in the 
variables xi by 

Res,h(x) = [x,‘x,’ . ..x.‘] h(x). 

In 1830 Jacobi [33] proved the following theorem for m < 3: 

(5.1) 

THEOREM 3. Let f,(x),..., f,(x) be Laurent series, and let n”‘~Z”’ be 
such that fi(x)/x”“’ is a formal power series with nonzero constant term. Then 
for any Laurent series Q(t) 

Res afi 

I I 
- Q(f) = (n!‘)J Res Q(t) 

x ax, I t . (5.2) 

Before discussing Jacobi’s proof, let us see why Theorem 2 is equivalent 
to the case n”’ = ei of Jacobi’s theorem. With the notation of Theorem 2, let 
us differentiate (4.1) with respect to xk. We obtain 

2 = 6&g,(f) + xi 2 sl”(f) -$ 
k j= 1 I 

which we may write as 

f [S, - x,gl”(f)] E = 6,g;(f). 
j= 1 k 

Writing this as a matrix identity, and taking determinants, we have 

= lQ,U)I = (g(f))’ = (f/x)‘, 

where 1 = (1, l,..., 1). Then (4.2) may be written 

[x”] 2 (x/f)‘@(f) = [t”] G(t) g’(t), 
I I J 

and if we replace n by n+ 1, and @(t) by t’@(t), we may write this as 

(5.3) 
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Now iffi(x) are any formal power series such that filxi has nonzero con- 
stant term, then there exist formal power series gi such that f,. = xi g,(f). 
Then Jacobi’s formula (5.2), with nji) = 6,, is just the special case n = -1 of 
(5.3). Conversely, assuming Jacobi’s theorem, iff, = xigi(f), then we have 

= Res, 

= Res,@(t)[g(t)/t]” + ’ = [t”] Q(t) g”+ ‘(t), 

and this is (5.3). 
It may be noted that Good proved the formulas of Section 4 by first 

proving a version of Jacobi’s formula. 
We now give a sketch of Jacobi’s proof. Similar proofs were found by 

Garsia [15] and Goldstein [20]. See also Goulden and Jackson 
[26, pp. 19-221 and Henrici [28]. The first step is to show that for any 
Laurent series f,(x) ,..., f,( x), 

(5.4) 

This will follow from the formula 

ah I I _ f a(fi4, 
aX, -i=, axi (5.5) 

where Ai is the cofactor of aJ1/axi in Iafi/dxjl, since for any h(x), ah/ax, has 
no terms in x; l. 

In his 1830 paper, Jacobi proved (5.5) for m = 2 and m = 3 by explicit 
computation. He proved it for all m in 1844 [34, Sect. 21 in his work on 
differential equations mentioned earlier. Here he derived it from the for- 
mula 

(5.6) 

from which it follows easily. Jacobi proved (5.6) by showing that when the 
left side is expanded, its terms cancel in pairs. 

Garsia proved (5.4) more easily by using multilinearity to reduce to the 
case in which the fi are monomials. 
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Next, Jacobi observed that if no component of k is - 1, then 

fk g, =&+I)-’ I I I 

(5.7) 

and hence has no residue. For k= -1, if fi(x)/x”“‘= c,h,(x) is a formal 
power series with constant term ci#O, then 

(5.8) 

and the residue is In;‘)/. Jacobi dealt with the remaining cases, in which 
k # -1, but some components of k are - 1, by special formulas for m = 2 
and m = 3, and as far as I know, never gave a complete proof for arbitrary 
m. However, this case is not hard to deal with. Following Garsia, we may 
combine (5.7) and (5.8) to get a determinant which may be reduced by 
multilinearity to a sum of determinants of the form of (5.7) and (5.8). Alter- 
natively, by (5.4), for any k(l) ,..., k’“’ in Z”, 

ar*"' 
Res, - 

I I axj 
= 0. 

By the chain rule for Jacobians, this yields 

Res, fk”‘+ ... + klm)- 1 I,$,!i)l . it, - 0. 

I I J 

We then need only show that as long as k # -1, we can find k(l),..., k@‘) 
with kc”+ . . . + kc”’ - 1 = k and Ikj’)l # 0. 

Goldstein’s proof is similar, but instead of starting with (5.4), he writes 
fk lafjaxjl as a constant times a determinant in which every entry is either 
af:l+ ‘/ax, or $)/xi + (a/ax,) log hi. By multilinearity, this reduces to deter- 
minants in which the (i,j) entry is either aBi/axj or l/xi for some B,; by 
multilinearity again, this reduces to the case in which Bi is a monomial, 
and these determinants are easy to evaluate. 

6. The Formulas of Stieltjes, Abhyankar, and Joni 

We now look at Theorem 2 from another point of view. Let us assume, 
as before, that the coefficients of the gi are indeterminates. Then we may 
assume that our ring of constants contains the formal power series ring in 
these indeterminates and that the constant terms of the g, are invertible. 

Consider the system of equations 

Fi=gi(F); i= 1 ,..., m. (6.1) 
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It is not hard to see that (6.1) determines the Fi uniquely as formal power 
series in the coefficients of the gi. If we set x = 1 in (4.1), we obtain 

fi(l)=Si(f(l)h (6.2) 

and it is clear that g,(f(l)) exists as a formal power series in the coefficients 
of the gi. Thus since the Fi are unique, we must have Fi=f(l). 

Now (4.2) may be written 

@(fMJ(f)l = c x”Ct”l @j(t) g”(t). (6.3) 
” 

We may set x = 1 in (6.3) to get 

@WV IL(F)l = 1 Cf’l Q(t) g”(t), (6.4) 
” 

where L(t) = (6, - (a/at,) gi) is the matrix obtained by setting x = 1 in J(t). 

Similarly we may set x = 1 in the other formulas of Theorem 2: 

THEOREM 4. Let g,(t), i= l,..., m be formal power series whose coef- 
ficients are indeterminates. Then there is a unique solution F, ,..., F,,, to the 
system 

Fi=gAF); i = l,..., m, (6.5) 

as power series in the coefficients of the gi, andfor all Laurent series @p(t) we 
have 

@P(WIW)I =c Ct”l Q(t) g”(t)> (6.6) 
n 

@(F) = 1 Ct”llUt)l G(t) g”(t), (6.7) 
n 

@WIE((F)I = 1 Ct”1 Q(t) g”(t), (6.8) 
n 

QW) = 1 Ct”ll~tt)l G(t) g”(t), (6.9) 
” 

where the m x m matrices L(t) and K(t) are given by 

L(t)=(s,-y) and K(t)=(iS---&y) 
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It is clear that if the coefficients of the gi are not all indeterminates, these 
formulas will still hold as long as the F, are uniquely determined and the 
sums exist as formal Laurent series. 

As an example of Theorem 4, consider the system 

F, =(l +aF,)(l +bF,), 

Fz=(l+cF,)(l +dE;), 

where a, 6, c, and d are indeterminates. We find that 

IL(t,, f2)l = (1 -a(1 +bt2)}(1 -d(l +ct,)} -bc(l +at,)(l +dt,) 

and 

1 bet, t, 

‘K((t1~f2)‘=(l+ar,)(l+dr2)-(l+ct,)(l+bt2)~ 

Since IK(t,, f2)1 is simpler, we use (6.9). Setting @(t,, t2) = t;* ty in (6.9), we 
obtain 

F;‘F;z= c [t;‘-9’;-“I{(1 +at,)“-‘(1 +bfJ”(l +ct,)“2(1 +dt2)n2-1 
n,.m 

-bet, t2( 1 + a~,)“‘( 1 + bt2)- ‘( 1 + ~t,)~l-- ‘( 1 + df2)n*} 

x(i+k+r,)(i+:+r,)(if~r2)(j+:+r,)ui~ckd,. (6.10) 

(This formula must be modified if a denominator vanishes, i.e., if r, or r2 is 
a negative integer.) In the special case a = d= 0, we have 
F,=(l+b)/(l-bc)andF,=(l+c)/(l-bc),and(4.22)reducesto 

(1 +b)“(l +c)‘z 
(1 - bc)” +o = ; ;;;;;;Jy:;; (k f “>( J +kr2) hick, 

which is equivalent to Theorem 1 of [ 111. (See also [ 181.) 
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The special case of (6.5) in which g,(t) is of the form xi + Gi(t), where 
G(t) does not involve x, is of particular interest since the equations 
xi = Fj - G,(F) assert that the system F is the compositional inverse (in the 
variables xi) of the system x - G(x). The inversion formulas of Stieltjes, 
Abhyankar, Joni, and Labelle are concerned with this case. The following 
is Joni’s formula [35]. (See also Garsia and Joni [ 161.) Another proof has 
been given by Hofbauer [29]. 

THEOREM 5. Let the formal power series F;(x) be dtlfined by 

FJX)=Xi+Gi(F(X)); i= 1 )...) m, (6.11) 

where the G, are formal power series with no terms of degrees 0 or 1. Then 
for any formal power series Q(x), we have 

@(WlM(F)l = ;g Q(x) Gk(x) 

and 

.,F,=,+x,, @(x)Gk(x), (6.13) 

where M(x) is the m x m matrix (6, - aG,(x)/a.u,) and D, = c?/ax,. 

Proof: We first prove (6.12). From (6.6), with g,(t) = xi+ Gi(t), we have 

WWf(F)I = 1 Ct”l @(t)(x + G(t))“. (6.14) 
II>0 

Now since (Dk/k!)xn=([l:)...(~)x”~k, the right side of (6.12) is 

; gz x”Ct”l Q(t) GkO) 
. n 

=,c. [t”, cP(t,(II-:)---(2,)xn-kGk(t) 

=; Ct”1 @(t)(x + G(t))“, 

and (6.12) follows from (6.14). We can prove (6.13) the same way from 
(6.7), or derive it from (6.12). 
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Abhyankar [ 1, Theorem 2.11 proved the following formula. Suppose 
that L.(x) = X, + terms of degree 2 2, for i = l,..., m. Then for any formal 
power series U(x), 

U(x)=CD* afi U(f)(x-f)k. 
I I k k! ax, 

(6.15) 

To derive (6.15) from (6.13) we set fi=.~;--Gi. Then the right side of 
(6.15) is 

;$ IWx)l W(x)) GkW 

By (6.13), this is U(f(F)), where F satisfies (6.11), i.e., f(F)=x, and (6.15) 
follows. Similarly, (6.13) can be obtained by taking U = Q(F) in (6.15). 

Henrici [28] proved Abhyankar’s formula directly, using residues with 
more general Laurent series than those considered here. 

Stieltjes [48] found a variant of (6.12) in 1885, in what is probably the 
earliest complete proof of a general multivariable Lagrange inversion for- 
mula. (The two-variable case of this formula had been found in 1869 by 
Darboux [9].) Stieltjes proved the following: 

Let G,(x) be arbitrary formal power series, let ai be variables, and define 
formal power series F;(x), with coefficients which may be formal power 
series in the ai, by 

F,(x) =x, + a;G,(F(x)); i= 1 )...( m. (6.16) 

Then for any formal power series G(x), we have 

Q(F) A = 1 ak c G(x) G’(x), 
k 

where A = I aFi( x )/i?x, I. 
It is easily verified that A . IN( F)I = 1, where N(x) is the m x rn matrix 

(6,-a,(~?G,(x)/~x,)), so Stieltjes’s formula reduces to (6.12) when ai= 1. 
On the other hand, the variables ai can be absorbed into the Gi, so (6.17) 
can be recovered from (6.12) as long as the Gi have no terms of degree 0 or 
1. However, our restriction on terms of degree 0 or 1 in Gi is made only so 
that the series will converge; the same proof works for Stieltjes’s variant. 

The variables ai do play an essential role in Stieltjes’s proof; his key 
lemma is the formula 

L [A@(F)1 =$ CA@(F) G,(F)]. 
I I 

(6.18) 
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A similar approach was used much earlier by Laplace [41] in the one- and 
two-variable cases. 

Labelle [39] has given a different formula for G(F), where F satisfies 
(6.11). His formula involves “Lie series” and does not seem to be closely 
related to the formulas we have discussed here. 
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