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SUMMARY

Neuroanatomical and functional asymmetries are
universal features of the vertebrate CNS, but how
asymmetry is generated is unknown. Here we show
that zebrafish fgf8 mutants do not elaborate fore-
brain asymmetries, demonstrated by the failure of
the parapineal nucleus to migrate from its initial
midline position to the left side of the brain. Local
provision of Fgf8 restores the asymmetric migration
of parapineal cells, usually to the left, irrespective
of the location of the Fgf8 source. This laterality
bias is due to left-sided Nodal signaling and when
the bias in Nodal signaling is removed, parapineal
cells migrate toward the source of Fgf8 protein.
This study presents a mechanism for breaking neuro-
anatomical symmetry through Fgf8-dependent regu-
lation of bistable left- or right-sided migration of the
parapineal. The combined action of Fgf and Nodal
signals ensures the establishment of neuroanatom-
ical asymmetries with consistent laterality.

INTRODUCTION

Brain asymmetry is conserved among all vertebrates studied

and is thought to confer greater efficiency of processing,

whereby specialization of one hemisphere leaves the opposite

free to perform other tasks (Vallortigara and Rogers, 2005).

Compromised brain asymmetries have been linked to several

neuropathologies including schizophrenia, autism, and neuronal

degenerative diseases (Escalante-Mead et al., 2003; Li et al.,

2007; Toth et al., 2004).

The best-described example of a conserved brain asymmetry

is displayed in the diencephalic epithalamus of vertebrates

(Concha and Wilson, 2001; Concha, 2004; Bianco and Wilson,

2009). In zebrafish embryos, bilaterally positioned parapineal

precursors migrate leftward from the dorsal midline, establishing

a left-sided nucleus (Concha et al., 2003; Signore et al., 2009).

Subsequently, the parapineal promotes the elaboration of left-

sided character in habenular neurons, such that the paired

habenular nuclei show left-right (L/R) asymmetries in gene
expression, neuropil organization, and axonal projections

(Aizawa et al., 2005; Bianco et al., 2008; Concha et al., 2003;

Gamse et al., 2003, 2005).

The leftward migration of the parapineal nucleus is dependent

on left-sided epithalamic Nodal signaling (Concha et al., 2000),

which is itself dependent on left-sided Nodal signals from the

lateral plate mesoderm (Carl et al., 2007; Inbal et al., 2007;

Long et al., 2003). Crucially, in the absence of unilateral Nodal

signaling, brain asymmetries develop but are randomized

(Concha et al., 2000), with left- or right-sided migration of the

parapineal and corresponding habenular asymmetry equally

likely outcomes. Therefore, while consistent directional laterality

(handedness) relies on Nodal signaling, development of an

asymmetric brain per se does not, and must be dependent on

other signals. The ability to produce either laterality state

suggests that both sides of the brain are equally competent to

initiate and reinforce asymmetric development.

In order to elucidate the genetic basis underlying the Nodal-

independent breaking of brain symmetry, we screened lines of

fish for mutant phenotypes in which the epithalamus appeared

symmetric. Here, we describe the phenotype of the fgf8 mutant,

acerebellar (Reifers et al., 1998), which shows symmetric

development of the epithalamus. We demonstrate that Fgf8,

expressed bilaterally in habenular precursor cells, is required

for the asymmetric migration of the parapineal nucleus and

that in the absence of Nodal signaling, Fgf8 is sufficient to direct

the laterality of migration. This study describes a genetic basis

for breaking symmetry in the brain, and suggests that

mechanisms to generate asymmetry and direct laterality can

be uncoupled and probably evolved sequentially.

RESULTS

Fgf8 Is Required to Break Symmetry in the Brain
To elucidate the genetic mechanisms underlying the Nodal-

independent breaking of brain symmetry, we screened lines of

fish for mutant phenotypes in which the epithalamus appeared

symmetric. We observed that in fgf8 mutants (acerebellarti282

[aceti282] or ace; Reifers et al., 1998) and morphants (Draper

et al., 2001), parapineal and habenular nuclei develop symmetri-

cally (Figures 1A–1H). Although a discrete parapineal nucleus is

not evident in ace embryos (Figures 1A and 1B), the expression

of parapineal-specific markers confirms that these cells are
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specified but fail to migrate from their initial midline position at

the rostral limit of the pineal nucleus (Figures 1C–1F). At the

stage when the parapineal initiates migration, the habenulae

are morphologically evident and contain neuronal precursors/

neurons (data not shown). By later stages, markers of habenular

asymmetry are, however, reduced and symmetrically expressed

Figure 1. The fgf8 Mutant Has a Symmetric Epithalamus

(A–D) Dorsal views of confocal images of the epithalamus in wild-type and ace

3 dpf embryos, with anterior to the top. (A and B) 3D reconstructions of pineal/

parapineal nuclei and axons [green, Tg(foxD3:GFP)] and neuropil of the habe-

nular nuclei (red, anti-acetylated tubulin; white-edged arrowheads). (C and D)

The parapineal-specific marker Tg(ET11:GFP) is present (green), but express-

ing cells remain at the midline in the ace embryo compared with those of the

wild-type embryo at 3 dpf. Brain morphology is visualized using the nuclear

marker TOPRO3 (red). A single z-slice is presented for each example. (E and

F) Frontal view of parapineal-specific gfi expression in wild-type and ace 3

dpf embryos, with dorsal to the top. Parapineal cells are at the midline in ace

(F). (G–J) Dorsal views of habenular lov (G and H) and brn3a (I and J) expression

in wild-type and ace embryos at 4 dpf; expression of both markers is reduced

in left and right habenulae.
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in ace mutants (Figures 1G and 1H and data not shown). The loss

of asymmetry in habenular markers could in part be due to

defective parapineal migration because the parapineal influ-

ences lateralized gene expression in the left habenula (Concha

et al., 2003; Gamse et al., 2003). However, the bilaterally reduced

expression of both asymmetric and symmetric markers (Figures

1I and 1J) suggests that Fgf signaling is required during the

development of both left and right habenulae. Altogether, these

data indicate that Fgf8 activity is required for the leftward

migration of parapineal cells and for the subsequent elaboration

of neuroanatomical asymmetries in the epithalamus. We next

addressed where and when Fgf8 is required to promote the

migration of the parapineal primordium.

Fgf8 Is Expressed Adjacent to Migrating Parapineal
Cells and Is Required during the Period of Migration
fgf8 is expressed bilaterally in the epithalamus from stages prior

to the leftward migration of parapineal cells (22 somites [ss];

Figure S1A available online) and persists until at least 3 days

postfertilization (dpf) (Figure S1C). High-resolution analysis

revealed fgf8 expression to be subtly asymmetric, such that at

22 ss, expression on the right is usually slightly higher than on

the left. (Figure S1A, Table S1 available online). At 24 hr

postfertilization (hpf), in addition to overtly symmetric bilateral

expression domains, fgf8 is expressed in a small group of cells

immediately rostral to the parapineal nucleus, which, prior to

migration, is evident as a coherent cluster of cells at the dorsal

midline (Figures 2A and 2B). By 28 hpf, when the parapineal initi-

ates migration, most embryos have higher levels of fgf8 expres-

sion on the left (Figure 2D, Table S1). Later expression is

restricted to the anterior and medial part of the habenulae

(Figures 2E, S1B, and S1C). To better understand which cells

are able to respond to Fgf8 signals, we analyzed the expression

of the four known Fgf receptors (FgfRs) in this region. Although all

four FgfRs are widely expressed in the brain (data not shown),

fgfr4 (Thisse et al., 1995) shows elevated levels of expression

in parapineal cells (Figure 2F) as does etv5 (Figure S1D), an Ets

family gene likely to be a target of the Fgf pathway (Roussigne

and Blader, 2006). These results suggest that parapineal cells

are able to respond to Fgf signals during their unilateral migra-

tion. To determine when Fgf signaling is required for parapineal

cells to migrate, we abrogated Fgf signaling in a temporally

controlled manner, using the SU5402 drug (Mohammadi et al.,

1997).

Blocking Fgf signaling in the period immediately preceding

migration disrupted parapineal migration, with most cells

remaining at the midline (Figures 2G–2H0). Parapineal nuclei

were often disaggregated such that a few cells were scattered

to the left or right of the midline, but these never migrated later-

ally as a cohesive group and remained ventral to the pineal

nucleus. This largely phenocopies the parapineal migration

defect of ace mutants, although the extent of disaggregation of

the parapineal primordium was more severe following SU5402

treatment (data not shown). In addition, blocking signaling during

the migratory phase led to arrest of parapineal migration, sug-

gesting a continuous requirement for Fgf activity (Figures 2I–2J0).

However, if SU5402 was applied to embryos earlier in develop-

ment and was then washed out before migration started,
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Figure 2. Temporally Controlled Abrogation of Fgf Signaling Iden-

tifies a Critical Window for Fgf-Dependent Parapineal Migration

(A and C–E) Expression of fgf8 in the epithalamus at 24 hpf ([A], dorsal view,

TOPRO3 nuclear marker in gray, parapineal primordium highlighted in blue),

28 hpf ([C], lateral, black arrowhead; [D], dorsal, black arrowhead denotes

stronger left-sided expression), and 36 hpf ([E], dorsal). Dashed ellipse indi-

cates position of pineal nucleus (D and E). (B) Schematic depicting pineal

organ (po), parapineal nucleus (pp, blue), fgf8 expression domains (red), and

midline (dashed line), as visualized in (A). (F) fgfR4 expression at 36 hpf (dorsal).

Dashed lines indicate position of pineal nucleus (large ellipse), parapineal

nucleus (small ellipse), and midline (straight line). (G–J) 3D reconstructions

and (G0–J0) single z-slices of dorsal views of the epithalamus in control- (G,

G0, I, and I0) and SU5402- (H, H0, J, and J0 ) treated Tg(foxD3:GFP) 4 dpf

embryos, with anterior to the top. Pineal cells have been pseudocolored in

blue in single z-slices and dashed lines indicate position of pineal nucleus

and midline (G0–J0 ). SU5402 treatment at 24–28 hpf completely abolished

the initial leftward migration of the parapineal to lateral and dorsal positions

(H, and H0). Treatment at 36–44 hpf abrogated later translocation of the para-

pineal to ventral and medial locations relative to the pineal nucleus, and

parapineal cells remain at dorso-lateral positions adjacent to the pineal

([J and J0], white arrowheads). L, left; R, right.
parapineal migration proceeded as normal and epithalamic

asymmetry was undisturbed (data not shown). These data

support the idea that parapineal cells require Fgf signaling to

initiate and maintain their migration.

Locally Applied Exogenous Fgf8 Rescues Leftward
Parapineal Migration
To test the hypothesis that it is the local activity of Fgf8 that is

required for the parapineal primordium to move leftward from

its initially symmetric location, we provided ace embryos with

a focal source of exogenous Fgf8 protein. This was achieved

by implantation of Fgf8-loaded microbeads rostral to the pineal

complex at 26 ss–24 hpf. Beads were implanted either at, or

to the left or right of, the midline (Figures 3B, 3F, 3J, and 3N;

Table S2).

Exogenous Fgf8 efficiently restored lateralized parapineal

migration in ace mutants such that by 3 dpf, 56% of ace embryos

with an implanted Fgf8 bead showed a migrated parapineal

nucleus (Figures 3D and 3D0; **p = 0.0015 for ace + Fgf8 where

29/52 migrated, versus ace + BSA where 3/18 migrated; see

Statistics in Experimental Procedures), whereas BSA-soaked

beads had no effect on parapineal migration (Figures 3C and

3C0; Table S2). In contrast, habenular development was not

obviously restored (Figures S2A–S2D), suggesting that the

migration defect in ace mutants is not due to the absence of

a suitable substrate for navigation on the habenular nuclei. This

result also suggests that persistent Fgf8 is required in both left

and right habenulae and that although the parapineal influences

habenular development (Concha et al., 2003; Gamse et al.,

2003), it cannot compensate for a loss of Fgf8. Surprisingly, in

these experiments, 76% of the migrated parapineal nuclei

were positioned on the left, irrespective of the location at which

the bead was placed (Figure 3Q). This suggests that additional

signals influence the direction of migration once movement has

been initiated by Fgf8. An obvious candidate is the Nodal

signaling pathway because it is known to determine the direc-

tional laterality of epithalamic asymmetries (Concha et al.,

2000). Therefore, we next assessed whether left-sided Nodal

signaling was intact in ace mutants.

Analysis of Nodal pathway gene expression in ace mutants

revealed that the pathway is still activated unilaterally on the

left side of the epithalamus (pitx2, 90% left epithalamic expres-

sion, n = 21; Figures S3C and S3D) and body axis (southpaw

[spaw], 97% left lateral plate mesoderm expression, n = 73;

Figures S3A and S3B) in the majority of ace embryos. Thus,

the leftward migration bias of ace mutant parapineal nuclei

provided with exogenous Fgf8 is potentially due to left-sided

Nodal signaling.

Exogenous Fgf8 Can Specify the Direction of Parapineal
Migration in the Absence of Biased Nodal Signaling
To assess whether exogenous Fgf8 can instruct laterality in ace

embryos that lack biased Nodal signaling, we generated condi-

tions of symmetric Nodal signaling. Embryos with bilateral and

absent Nodal signaling were obtained using notail (ntl) and

spaw morpholinos (Concha et al., 2000; Long et al., 2003),

respectively (Figures 3I and 3M). In spaw and ntl morphants,
Neuron 61, 27–34, January 15, 2009 ª2009 Elsevier Inc. 29
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Figure 3. Local Provision of Fgf8 Restores Parapineal Migration in ace Embryos and Directs Laterality of Migration in the Absence of a Nodal

Signaling Bias

(A, E, I, and M) Frontal views of lefty1 expression (as a marker of Nodal signaling) in ace (A), wild-type (E), ntlMO/ace (I), and spawMO/ace (M) embryos at 20 hpf,

with dorsal to the top. (B, F, J, and N) dorsal views of live brains showing Fgf8-soaked beads implanted rostrally and to the left (B), right (J and N), and midline (F) of

the pineal complex visualized by Tg(foxD3:GFP) expression, in ace (B), wild-type (F), ntlMO/ace (J), and spawMO/ace (N) embryos. Anterior is to the top. (C, C0, D,

D0, G, G0, H, H0, K, K0, L, L0, O, O0, P, and P0) 3D reconstructions and single z-slices of dorsal views of the epithalamus in ace (C–D0), wild-type (G–H0), ntlMO/ace

1(K–L0), and spawMO/ace (O–P0) Tg(foxD3:GFP) embryos at 3 dpf implanted with BSA- (C, C0, G, G0, K, K0, O, and O0) or Fgf8- (D, D0, H, H0, L, L0, P, and P0) loaded

beads. Pineal/parapineal complex (green) is visualized as before. Pineal cells have been pseudocolored in blue in single z-slices. Anterior is to the top. (Q) Graph

representing proportions of embryos with right (green), left (blue), or static (gray) parapineal nuclei after epithalamic implantation of BSA- and Fgf8-loaded beads

in ace embryos, ace embryos with modulated Nodal, and spawMO embryos. Results are grouped according to position (left, middle, or right) of bead

implantation.
parapineal migration occurs normally but with randomized direc-

tionality (Concha et al., 2000; Gamse et al., 2005).

To determine whether Fgf8 signaling is likely to be activated in

the absence of epithalamic Nodal signaling, we assessed fgf8

expression in spaw morphants at 22 ss and 28 hpf. At both

stages, expression levels were similar to those of wild-type,

but the subtle L/R differences were usually abolished such that

fgf8 was expressed symmetrically across the midline (Table S1).

We saw the same loss of asymmetry in late zygotic oep (LZoep)

mutant embryos at 28 hpf (Figures S3E and S3F), which also lack

epithalamic Nodal signals (Yan et al., 1999). This indicates that

Nodal signaling is not required for fgf8 expression but is respon-

sible for the subtle L/R asymmetries in fgf8 expression observed

in wild-type embryos.

In embryos where Nodal signaling is either bilaterally

symmetric or absent, we find that exogenous Fgf8 is sufficient

to direct migration of the parapineal primordium. In ntlMO/ace

embryos in which Fgf8-loaded beads were transplanted rostral
30 Neuron 61, 27–34, January 15, 2009 ª2009 Elsevier Inc.
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and to the right of the parapineal, 8 of 9 parapineal nuclei that

migrated (9/12 showed migration) did so toward the position of

the bead (Figures 3I–3L0 and 3Q). Similarly, in spawMO/ace

embryos, rescued parapineal migration was usually toward the

bead (n = 7/10 from 15 cases; Figures 3M–3P0 and 3Q). The

most parsimonious explanation of these results is that Fgf8

can break initial symmetry by inducing parapineal migration

and, in addition, has the potential to influence the laterality of

the asymmetry by acting as an attractive signal for migrating

cells. To further test this hypothesis, we performed related

experiments to assess whether exogenous Fgf8 can influence

migration in wild-type embryos, where parapineal cells are able

to follow their normal migratory pathways.

In support of the idea that Fgf8 can direct migrating parapineal

cells, we found that an exogenous source of Fgf8 rostral to the

parapineal primordium of wild-type embryos could, in some

cases, direct parapineal cells away from their normal leftward

trajectory toward the bead (*p = 0.0111 for wild-type + Fgf8

where 7/33 migrated ectopically, versus wild-type + BSA where

0/31 migrated ectopically; Figures 3E–3H0). Furthermore, exoge-

nous Fgf8 can bias the direction of parapineal migration in

spawMO embryos in which the influence of the Nodal pathway

is removed but endogenous Fgf8 signaling remains intact. We

implanted Fgf8 beads in the right side of the epithalamus of

spawMO embryos at 20–22 ss, a stage we considered early

enough to ensure that endogenous Fgf8 signaling had not yet

committed parapineal cells to migration to either the left or the

right. Almost all embryos implanted with a right-sided Fgf8

bead had a right-sided parapineal nucleus (*p = 0.0172 for

Fgf8 bead where 11/14 had a right parapineal, versus BSA

bead where 3/11 had a right parapineal; Figure 3Q; Table S2).

Together, these results strongly support the idea that Fgf8

signaling is indispensable for the initial symmetry break in the

epithalamus, and that it can additionally influence the direction

of asymmetries if there is no bias conferred by Nodal signaling.

DISCUSSION

Although recent studies have elucidated the signals required for

consistent lateralization of the epithalamus in zebrafish (Bianco

et al., 2008; Carl et al., 2007; Concha et al., 2000, 2003; Gamse

et al., 2003; Inbal et al., 2007; Long et al., 2003), nothing was

known about the mechanisms involved in generating

asymmetry. The observation that each side of the epithalamus

is competent to produce either a ‘‘left character’’ or ‘‘right

character’’ laterality state led us to speculate that any signaling

pathways required for breaking symmetry in the brain could

potentially be activated in a bilateral manner.

We have demonstrated that Fgf8, expressed bilaterally in

habenular precursors, is required for the asymmetric migration

of parapineal cells. Accordingly, the fgf8 mutant ace and

embryos in which Fgf signaling is blocked pharmacologically

never initiate parapineal migration and the epithalamus remains

symmetric. We were able to effectively rescue parapineal migra-

tion in ace mutants by the provision of exogenous Fgf8, and

additionally, in ace mutants with no L/R bias in Nodal signaling,

exogenous Fgf8 was able to direct the laterality of parapineal

migration.
These results suggest Fgf8 signals could be chemotactic for

parapineal cells, and/or that exogenous Fgf8 could establish

a permissive ‘‘pathway,’’ allowing motility of parapineal cells

within areas close to the Fgf8 source. Although motility and

directionality are difficult processes to separate in vivo, some

of our results lend support to the hypothesis that Fgf8 is chemo-

tactic to parapineal cells. First, in wild-type embryos where

endogenous Fgf8 and Nodal signals are intact, an exogenous

source of Fgf8 is able to direct parapineal cells away from their

usual migratory trajectory. Second, in embryos with no epitha-

lamic Nodal signaling, increasing the levels of Fgf8 on one side

positively influences the laterality of migration. Neither result

would be expected if Fgf8 acts solely to establish a permissive

pathway for parapineal migration. Fgf signaling has been repeat-

edly implicated in chemotactic migration of many cell types

during development, via mechanisms including induction of

cytoneme-like filopodia and competition for lead cell position

based on levels of FgfR activity (Ghabrial and Krasnow, 2006;

Sato and Kornberg, 2002). A future goal will be to analyze the

cellular response of the parapineal cells to the reception of Fgf

signals.

Two recent studies have shown Fgf signals to be required

for organization and migration of the lateral line primordium

(Lecaudey et al., 2008; Nechiporuk and Raible, 2008), a structure

that bears some similarity in terms of its organization to the para-

pineal primordium. In the case of the lateral line primordium,

abrogation of Fgf signaling prevents cells from coalescing into

the rosette-like structures that constitute nascent neuromasts,

and this eventually leads to stalled migration. It is currently not

known how Fgf signaling mediates this cohesion and adhesivity,

although one possibility is that it may influence epithelialization

and consequently the apical junctional complexes that form

between polarized epithelial cells (Lecaudey et al., 2008). In

ace mutants, we sometimes see disaggregation of a few parapi-

neal cells, but in most cases migration is stalled despite the para-

pineal forming a coherent and cohesive cluster of cells. Thus in

the ace mutants, compromised cohesivity is unlikely to underlie

the failure in migration. However, it is intriguing that when Fgf

signaling is more severely compromised pharmacologically, we

see a greater degree of disaggregation, suggesting that there

may be similarities in phenotype between the parapineal and

lateral line primordia in conditions where all Fgf signaling is

blocked.

We propose that the parapineal acts as a bistable ‘‘switch,’’

whereby once movement is initiated, the midline is an ‘‘unstable’’

location and consequently the parapineal inevitably migrates to

more ‘‘stable’’ locations on the left or right, promoting asym-

metric development of the adjacent habenula. Constraints

inherent in the system ensure that it produces only one outcome

(left OR right). For instance, cohesivity coupled with motility of

the parapineal nucleus may mean that it can only make one

directional choice in response to bilateral signals. During normal

development, Nodal signaling biases the laterality choice to the

left (Figure 4A). In the absence of Fgf8 signaling, the presence of

the left-sided Nodal signal is not sufficient to break anatomical

symmetry (Figure 4C). Conversely, in the absence of a Nodal

bias, asymmetry still develops dependent on the activity of

Fgf8 inducing the migration of parapineal cells (Figure 4B). In
Neuron 61, 27–34, January 15, 2009 ª2009 Elsevier Inc. 31
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Figure 4. The Role of Fgf8 Signaling in the Generation of Neuroanatomical Asymmetry

(A) In wild-type embryos: bilateral fgf8 signals from the habenulae (blue) induce migration of the parapineal primordium (green), making the midline an unstable

location; Nodal signals (red) ensure a leftward ‘‘choice’’ is made. The parapineal migrates from the ‘‘unstable’’ midline to a ‘‘stable’’ location to the left of the pineal.

(B) In embryos lacking Nodal signaling: symmetry is broken by Fgf8 inducing migration; stochastic factors (possibly L/R differences in Fgf8 levels) determine the

laterality of migration. Again the parapineal migrates away from the unstable midline location to more stable positions on left or right. (C) In ace mutant embryos:

asymmetric Nodal signaling is not sufficient to break anatomical symmetry and the parapineal remains at the midline, unable to migrate in either direction. pp,

parapineal; Lh, left habenula; Rh, right habenula; early, 24 hpf; late, 30 hpf.
such situations laterality is determined by a stochastic mecha-

nism, and we speculate that this could be differences in Fgf8

levels between left and right. In support of this, L/R differences

in Fgf activity imposed by exogenous Fgf8 are sufficient to direct

the laterality of asymmetries in the absence of unilateral Nodal

signaling.

The relationship between the Fgf and Nodal pathways is not

yet fully resolved, but we have found that subtle asymmetries

in fgf8 expression are lost in conditions where lateralized Nodal

signaling is absent. Could a subtle influence on fgf8 transcription

be the primary action of Nodal signaling in biasing parapineal

migration to the left? In wild-type embryos, such a mechanism

seems reasonable because once parapineal cells initiate

migration, the midline may become an unstable location and so

a small, transient, and/or localized bias between left and right

might be enough to tip the balance in favor of migration in one

or other direction. However, such a mechanism cannot easily

explain why migration is still usually to the left in ace embryos

where the exogenous source of Fgf8 is on the right. This result

implies that Nodal can act downstream of the Fgf8 ligand,

perhaps facilitating an aspect of migration or morphogenesis

that can occur without Nodal but would do so less efficiently.

Our studies support the idea that the evolution of directional

asymmetry from a symmetric ancestral structure is likely to

proceed in two steps (Palmer, 2004): the first induces asymmetry

without a directional bias (antisymmetry) and the second biases

this asymmetry in one direction. Loss of the pathway governing

the second step should lead to antisymmetry (as is the case with

loss of Nodal in the brain). This raises the possibility that the
32 Neuron 61, 27–34, January 15, 2009 ª2009 Elsevier Inc.
antisymmetry induced by bilateral Fgf8 signaling represents

a more ancient mechanism for generating brain asymmetry.

Left-sided Nodal signaling regulates visceral asymmetries

(Schier, 2003) and so we speculate that the unilateral activation

of the Nodal pathway was co-opted from the body axis to

provide consistent laterality to brain asymmetry, thereby leading

to evolutionary acquisition of a global mechanism for coordi-

nating laterality in the whole embryo. Studies in the worm have

demonstrated that an early body axis asymmetry is used to

‘‘tip the balance’’ of a later, bistable asymmetry-generating

mechanism in paired neurons (Poole and Hobert, 2006), sug-

gesting that such strategies may be commonly employed.

A mechanism that amplifies stochastic differences between

left and right sides of the brain would be sufficient to produce

antisymmetry (Cooke, 2004). The mechanism we have described

fits this criterion: the cohesive parapineal nucleus is like the prize

in a tug-of-war between the habenulae. It is inevitable that it is

‘‘pulled’’ one way or the other, and in doing so breaks the initial

symmetry and initiates events that lead to the eventual establish-

ment of lateralized circuitry in the brain.

EXPERIMENTAL PROCEDURES

Zebrafish Lines

Embryos were obtained by natural spawning from wild-type (*AB/Tu), aceti282

(Reifers et al., 1998), Tg(foxD3:GFP) (Gilmour et al., 2002), and Tg(ET11:GFP)

(Choo et al., 2006) fish. LZoep embryos were generated from MZoep mutants

as described (Yan et al., 1999) by injection of oep RNA at the 1-cell stage. All

embryos were reared and staged according to standard procedures (Wester-

field, 2000). Temperature shifts from 28�C to 25�C at tailbud stage were



Neuron

Fgf8 Breaks Symmetry in the Brain
performed to obtain late somite stage embryos for bead implantation. Lower

temperature shifts were never used because these can result in perturbations

of laterality (J.C.R., unpublished data). Occasionally 0.002% phenylthiourea

was added to fish water from 12 hpf to prevent pigment formation.

Morpholino Antisense Oligonucleotides

spaw morpholino oligonucleotide (spawMO; spaw-MO1; Long et al., 2003) and

ntl morpholino oligonucleotide (ntlMO; Feldman and Stemple, 2001) were

injected as described. Efficacy of spawMO and ntlMO was confirmed by

phenotype and analysis of pitx2 (Bisgrove et al., 1999) expression in the epitha-

lamus (absent in spaw morphants and bilateral in ntl morphants).

Bead Implantation

Fgf8- and BSA-loaded beads were prepared as previously described (Maves

et al., 2002) with the exception that 15 mm polystyrene beads (Polysciences)

were used. Embryos were encased in 2% agarose and beads were implanted

rostral to the pineal complex at 22–24 hpf or 19–20 hpf using a tungsten nee-

dle. Embryos were selected on the basis of implantation accuracy with respect

to Tg(foxD3:GFP) expression and bead position was recorded. After 1 hr

recovery, embryos were released into fish water inoculated with penicillin

and streptomycin. Parapineal position was assessed at 2 dpf by live

compound imaging and at 3 dpf by confocal microscopy after fixation and

immunohistochemistry. Parapineal cells were identified by their ventral and/

or lateral location with respect to the pineal nucleus and their stereotypical

axonal projections (Concha et al., 2003). Tg(foxD3:GFP)-positive parapineal

cells identified in this way corresponded with gfi expression (Dufourcq et al.,

2004) in 100% of embryos (n = 6). Efficacy of bead implantation was assessed

by analysis of erm expression, an Fgf-target gene (Münchberg et al., 1999), in

BSA- and Fgf8-implanted embryos: 0/4 of wild-type and 0/4 of ace embryos

implanted with a BSA-loaded bead, and 5/5 of ace and 7/8 of wild-type

embryos implanted with an Fgf8-loaded bead showed a ring of erm expression

around the bead (Figures S2E–S2H and data not shown). Implantation of Fgf8-

loaded beads did not reactivate Nodal signaling in the epithalamus: 0/5 of wild-

type embryos implanted with a BSA-loaded bead, and 0/6 of wild-type

embryos implanted with an Fgf8-loaded bead at 26 ss, showed pitx2

expression in the epithalamus at 26 hpf (Figures S2I and S2J).

Blocking FgfR Activity

Embryos were treated with the drug SU5402 (Mohammadi et al., 1997)

according to standard protocols (Shanmugalingam et al., 2000).

Immunohistochemistry

In situ hybridization and antibody staining were performed as previously

described (Macdonald et al., 1994). brn3a (Aizawa et al., 2005), erm

(Münchberg et al., 1999), fgf8 (Reifers et al., 1998), fgfR4 (Thisse et al.,

1995), gfi (Dufourcq et al., 2004), leftover (kctd12.1) (Gamse et al., 2003), lefty1

(Bisgrove et al., 1999), pitx2 (Bisgrove et al., 1999), and spaw (Long et al., 2003)

probes were generated using standard procedures (Macdonald et al., 1994).

Embryos were stained using BM Purple (Roche) or BCIP and NBT (Roche)

as chromogen. For antibody staining, mouse anti-acetylated tubulin (Sigma,

T6793) and rabbit anti-GFP (Torrey Pines Biolabs, TP401) were used at

1:1000 dilutions in blocking buffer (1 x PBS + 0.8% Triton-X + 10% goat

serum + 1% DMSO). For nuclear staining, embryos were incubated in 1 x

PBS + 0.1% Triton-X + 1% bovine serum albumin containing ToPro (1:1000,

Molecular Probes).

Microscopy and Image Manipulation

Fluorescent labeling was imaged by confocal microscopy (Leica SP2)

using x25 oil immersion and x40 water-immersion objective lenses. z-stacks

were typically acquired at 1–2 mm intervals. 3D projections were generated

from the stack of images using Volocity (Improvision) software. Live, bead-

implanted transgenic embryos were imaged under x20 water-immersion DIC

optics (Axioskop 2 FS microscope, Carl Zeiss). In situ hybridization stainings

were photographed using a Jentopix C14 digital camera attached to a Nikon

Eclipse E1000 compound microscope. For presentation, image manipulation

was performed using Photoshop CS2 (Adobe) software. Parapineal cells
have been highlighted in single z-slices in Figures 2 and 3 by pseudocoloring

of adjacent pineal cells, which were selected by hand.

Statistics

Statistics were performed using InStat software (Graphpad). Categorical data

was analyzed using Fisher’s Exact test, where the p value is two tailed. Confi-

dence is denoted by *p < 0.05 and **p < 0.01.

SUPPLEMENTAL DATA

The supplemental data for this article include three supplemental Figures and

two supplemental Tables and can be found at http://www.neuron.org/

supplemental/S0896-6273(08)01052-0.
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