=
etadata, citation and similar papers at core.ac.uk brought to you by )i COR

provided by Elsevier - Publisher Connect

Available online at www.sciencedirect.com

Topology
SCIENCE DIRECT?®*

: @ and its
s Applications
ELSEVIER Topology and its Applications 152 (2005) 44-69

www.elsevier.com/locate/topol

Multidimensional constant-length substitution
sequences

Natalie Priebe Frank

Vassar College, Department of Mathematics, Box 248, Poughkeepsie, NY 12604, USA
Received 30 September 2003

Abstract

We consider multidimensional substitutions of constant length in a primarily expository setting,
explaining how results from both symbolic dynamics and tiling dynamical systems can be applied.
We focus in particular on ergodic and spectral theoretic concepts in an analysis that includes results
and proofs extending what is known to our case. Tools such as the frequency measure, spectral
measures, and the multidimensional odometer are used. We investigate several examples, among
them the class of bijective substitutions. Bijective substitutions are of particular interest due to their
mixed dynamical spectrum and because they are skew products over multidimensional odometers.
For these, a condition is given allowing a full decomposition of the spectral measures.

0 2004 Elsevier B.V. All rights reserved.

MSC: primary 37B50, secondary 37A30

Keywords:Self-similar tilings; Substitution sequences; Dynamical spectrum

E-mail addressnafrank@vassar.edu (N.P. Frank).

0166-8641/$ — see front mattét 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2004.08.014


https://core.ac.uk/display/81152726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

N.P. Frank / Topology and its Applications 152 (2005) 44—69 45

1. Substitution dynamical systems
1.1. Sequences, the tiling model, and shift dynamical systems

Let A be a finite setdlphabe} and let asequence ifZ¢ be a functiorZ : Z¢ — A. The
collection of all such sequences,ibzd; the action ofranslationby an elemen§ € Z¢ on
T e A% yields the sequencE — j whosekth element is

(T -k =Tk+7]). 1)

This is also called ahiftbecause it shifts the sequence so that the element that used to be
at j is now at0.

We will write elements ofZ? as j = (j1, jo. ..., ja); the sup norm of such a vector
will be written |j| = maxc1.2... 4 1ji|- A block B is a map from some finite subset Bf
into A; a subblock of7 is the mappingdZ restricted to a finite subset. In this paper, we
will in general assume that our sequencesadm@ost periodicthere is a radiu®(B) > 0
such that for any/ € 74, a copy of the blockB appears i somewhere within the set
{7 +k: |I§| < R(B)}. (We refer to a copy of the block since any block has a fixed domain
in Z4 that is usually not in the sd§f + k: |k| < R(B)}.) We will_also assume in general
that our sequences anenperiodic 7 — 7 =7 if and only if 7 = 0.

Sequences ii? may be thought of aflings of R? by considering/ to be composed of
unit cubic tiles that are colored or labeled by elementgloEverything appearing in this
paper can be framed in this more general environment, and we will use fundamental results
from papers such as [17,21,22] and references therein for this perspective. In addition
we refer to the sources [3,16] and references therein for the discrete dynamical system
perspective.

For any sequence® and 7’ ¢ A% with T # T we write N(7,7") =infln >0
such that7(j) # 7'(j) for some|j| = n}, and we define the metrid(7,7") =
exp(—N(7T,T")). ForT =T’ the distance is defined to be zero. This metric is similar
to those seen in [16,17], and since this metric yields the product topology we find%hat
is compact. Considering all block, the metric topology has a basis given by tydin-
der setdB]={7 € AZd such thatB is a subblock of7'}. We denote the Boret-algebra
corresponding to this topology .

Fixing an almost periodic, nonperiodig € AZd, we define the sequence space

X = X7, ={To— j such thatj € Z4}. (2)

This space is invariant under the action of translation and is compact because it is closed.
The setX along with the action of translation by elementsZsf compose the dynami-

cal system(X, Z¢). Putting a translation-invariant Borel probability measuren B, we

have the measure-theoretic dynamical syst&nZ<, 1), which is sometimes calledsift
dynamical systerar asubshift ofAZ" .

1.2. Substitution sequencesZiA

These generalize one-dimensional substitutions sequences where the substitution is con-
stant length. They can also be seen as self-similar tilin@ otvith particularly simple tile
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geometry. The general notion is that every letterirs assigned a replacement rule that is
ad-dimensional ‘rectangular’ array of letters, and iterated application of the replacement
rule results in an infinite sequence.

Fix a dimensiond andlengthsiy,lo,...,1;, positive integers with each > 1. The
location seffor the d-dimensional substitution arrays is deno®dwhere

¢ ={j=(j1..., ja), suchthat €0,1,....; —1foralli=1,...,d}. (3)

A substitutionS is a map fromA x 7¢ into A. For each element € A, it assigns a
map which we denots, : 7¢ — A. Fork e 7¢, the mappingS restricted to the element
is a mapping fromA to A which we denotep;. We will frequently think ofS as a block
of maps(py)iza-

Example 1. An example of a substitution rule on the alphaldet {0, 1} with d = 2 and
I1 =1 =5 s given here:

0111 100 0 1
11011 00100

Sox=|1 000 1|, Smw=|0 1 1 1 o], (4)
110 1 1 00100
01110 1000

where both blocks are located #f as prescribed bg?, with their lower left corners at
the origin. If instead we wish to se® as a matrix(p;); .2 of maps onA, denote bygo
the identity map ang1 the map switching 0 and 1, we obtain:

g0 81 81 81 &0
81 81 & 81 &1
S(*I%) =(ppierz=| 81 80 g g & |- (5)
81 81 & 81 &1
g0 81 &1 81 &0
For example, we see thaig o) = go andp(3 1) = g1.

Since the location séf¢ has a total ofkK =1y - I - -1; elements, we can consider the
size of the substitution to b& . Moreover, there is a naturakpansion magiven by the
linear mapg :R¢ — R? that acts on the basis vectar by multiplication by/;, so that
¢(¢;) =Il;¢;. SinceK = det(¢), we can call it theexpansion constartf the substitution.
Every element oZ¢ can be expressed in the form

D=¢()+k

for somej e Z¢ andk € Z¢, so we can consider the substitutiSras an action frord%
into itself by assigning

ST (p(J) +k) = S17) (k). (6)

The substitution can be considered to act on any subblo@kiofthe obvious manner.

Definition 1.1. A substitution sequence fdt is a nonperiodic, almost periodic sequence
invariant under the action @&* for some positive intege.
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Fig. 1. Part of a substitution sequence.

Example 1 (continued. In Fig. 1, we have used the tiling model to depict a portion of a
substitution sequence given by (4). The origin is at the lower left of the image, 0 and 1 are
white and black unit squares, respectively, and we see three iterations of the substitution
applied to 0. An interesting optical effect of the construction is that this image is a stere-
ogram that can resolve itself in many ways, one of which shows three smaller bars from
the tiling in the foreground and the rest dissolves into the background. Some people find
the image uncomfortable to look at, and that may be because of the interference between
many copies of positive and negative images.

By (6) we can consider the action 8f on sequences. It is natural to consid¥ras
a substitution mapping as well. When we do this we consider the #6¢k) as being
defined on the seZ¢)* = {J: 0< j; <I¥ — 1}. A substitutionS is calledprimitiveif there
is a positive integek such that for each € A, S¥(a) contains all of the elements of.
Conditions for primitivity for sequences are discussed in [16] and for tilings in [15. If
does not admit any periodic substitution sequences, then we refer to n@spariodic
substitution. Note that the substitution in Example 1 is both primitive (With 1) and
nonperiodic.

Considering a substitution sequeriggfor a nonperiodic, primitive substitutiof, we
construct the tiling spac& for 7o as described in (2). The reader should note that there
is an alternative method for constructifggiven as follows. Consider tHanguageof the
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substitution to be the s&X(S) comprised of all subblocks of blocks of the fo$(a), k €

7t anda € A. We may defineX to be the set of all sequenc@&se AZ" such that every
block in7 is a translate of some block ii(S). By primitivity, 7o contains every possible
Sk(a), so the space created via (2) must contain that created by déi#ig And sinceT

is contained in the space created £§5) the two spaces must coincide. In this case we
refer to(X, Z¢) as thedynamical system associated3pand it will be minimal.

Definition 1.2. We say the substitutios is a bijective substitutionf each mapp; is a
bijection of the alphabetl.

The substitution rule given in (4) is an example of a bijective substitution. We will see
that bijective substitutions generate dynamical systems that are isomorphic to skew prod-
ucts over odometer transformations. We will also see that if the substitution is bijective,
then the frequency distribution of letters fraris uniform.

1.3. Examples

Example 2 (Chair tiling). The tiles of this tiling areL-triominoes three squares attached
in an L shape. There is a well-known substitution given by:

5~ [

It was shown in [18] that this tiling can be recoded agZasubstitution on a four-letter
alphabet as follows:

2 0 1 3 2 3 2 3
0—><0 1), 1—><0 1), 2—><0 2), 3—><3 1).

This is not a bijective substitution and in fact has “coincidences” (see Section 3.2), imply-
ing that it has purely discrete spectrum.

Example 3 (Table tiling). The tiles of this tiling are simplgominoestwo squares attached
along an edge. There is a well-known substitution given by:

L] —

It was shown in [18] that this tiling can be recoded a&%asubstitution on a four-letter
alphabet as follows:

2 3 11 0 2 30
O—><0 O)’ 1—><2 3), 2—><1 2), 3—><3 1).

This is a bijective substitution and so, as discussed in Section 3.3, we have that there is a
continuous spectrum component to its dynamical system. A complete spectral analysis of
the system appears in [18].
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Fig. 2. Factoring the sequence from Example 4 onto two letters.

Example 4. We present one from a family of examples that was introduced in [4]. Letting

li=lhb=d=2andA={1,2,3,4, 1,2 3, 4}, we assign the substitution rule as follows.
34 3|4 3|4 3|4
S~ 115 S@ 15 S35 S@ > (=1
- 34 = 34 = 3|4 . 3|4
S = S —1— S@3 ——= N _
()—>12 ()—>12 ()—>12 ()—>12

Note that the substitution for a letterand its barred counterpart are opposite. It is
apparent that the substitution is not bijective, but there are no coincidences (see Section 3.2)
and it is proved in [4] that there is an absolutely continuous component to the spectrum.
Since what really matters is the placement of the barred elements in the tiling, in Fig. 2 we
show six iterations of the letter 1 with the barred elements drawn black and the unbarred
drawn white.

1.4. Unique ergodicity and the frequency measure

Self-similar tiling dynamical systems are uniquely ergodic (see [21] and references
therein) with the frequency measure being the unique translation-invariant measure. This
result applies in our situation because the tiling model uses tiles that have area 1, and so
the frequencies for th&¢ action are the same as those for the tiling action. For a cylinder
set[B] corresponding to a fixed block, the measure ([ B]) represents the frequency of
occurrence of the block in any sequence i [21]. We will discuss this measure as it is
used in our context. Then, using the tiling model and relying heavily on Sections 2 and 3
of [21], we will give a condition forcing uniform frequency of letters.

Let S be a primitive, nonperiodic substitution with size- I ---1; = K and let¢p be
the natural expanding map. Théhhas an|A| x |.A| subdivision matrixM defined by
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letting M;; be the number of letters of typg in S(a;). SinceS is primitive, Corol-
lary 2.4 in [21] implies that the largest eigenvalue Mf must be equal tgdetp| = K.
The Perron—Frobenius theorem (see [20]) states that there are unique (up to scalar multi-
plication) strictly positive right and lefeerron eigenvectors and/ for which

[-F=1, and limK"M"=F-I. 7)

n— o0

Additionally, we know from [21] that’ should be taken to be the vector given by the
volumes of thg.4] tiles under consideration, which in our case are all 1. This implies that

Zl.ﬁ'lri =1 and that

rl rl oo rl
im kM= | 22 "2
n—o : : :
MA TIAL Tl

Following [21], in order to find the frequency of a lettgrin an arbitrary sequence i,
it suffices to compute the frequency in larger and larger substituted blocks. By primitivity
it does not matter which type of block we substitute so we will look at iterationsg of
Denote byN,, (B) the number of occurrences of the letigiin a blockB. Then

. N ) Sﬂ

freq(a;) = lim M, (8)
n—o0 n

sinceK™" is the volume of the substituted bloé¥ (a1). The numerator is easily computed

since it is simplyM;. Thus we have thdteq(a;) = lim, .. K" M}, = r;, and so com-

putation offreq(a;) reduces to computation of the right eigenvector¥br

Proposition 1.1. LetS be a primitive, nonperiodic substitution. Théh has the property
thatZ'j“i'1 M;;=Kforalliel,2,...,|Alifand only if the frequency of any letter € A
is1/|Al.

Proof. If Z'jfill M;; = K, then the vectoF with each coordinate equal tg[14] is a right
eigenvector forM. Sincel - 7 = 1 it must be the right Perron eigenvector fof sat-
isfying (7), and sincdreq(a;) = r; the result follows. Conversely, if; = 1/|.A| for all

i=12...,|A], then since is a right eigenvector we have that
| Al
(MF); = Mij/|Al = (K7)i = K /| Al
j=1

and the result follows. O

Corollary 1.2. If S is a primitive, nonperiodic, bijective substitution, then the frequency of
any lettera; € Ais 1/|A|.

Proof. The row sums of represent how many times a lettgrappears in the substitu-
tions of all letters inA taken together. Sinc8 is bijective,a; can appear in any given spot
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in the substitution blocks no more than once, and so we se@lbé‘g M;; < K. But if
there is a spot in which; never appears, then this would imply that some other letter from
A had to appear in that spot two times, and this would contradict the bijectiviy 8D it

must be tha{j‘;i'l M;; > K, and we see that for a bijective substituti®nthe subdivision
matrix satisﬁesZ'j“i'l M;j=K. O

The proposition also applies to the substitutions seen in [4] such as Example 4.

2. Theodometer representation

Assume fixed a primitive, nonperiodic substitutiSron Z¢ with lengthsiy, i, ..., 1,
and let(X,Z4, 1) denote the dynamical system 8f We will show that this dynamical
system factors onto a direct productdKakutani odometers (i.e., adic transformations)
of lengthsliy, Io, ..., 1, respectively. To show this, each e X will be represented by a
one-sided sequence of values fr@ththat codes the location of the origin with respect to
levels of the hierarchical structure @f. Whens is a bijective substitution, we will show
that its dynamical system is measure-theoretically isomorphic to a skew product over a
d-dimensional odometer.

The representation shown here follows standard arguments done by Kakutani [8], Keane
[9,10], Goodson [6], Ferenczi [2], Kwiatkowski [11], and others. However, since the gen-
eralization to multidimensional actions is somewhat nontrivial, it seems worthwhile to
present the result. We begin with a brief description of a one-dimensional odometer.

2.1. von Neumann-Kakutani odometers

The description of the classical one-dimensional odometer is based on [14]. Consider
the set of digitsD = {0, 1, 2, ...,/ — 1} for somel € Z. The odometer is a transformation
on the spac®! that acts on a sequence by increasing the first element that is less that
[ — 1, resetting the previous ones to zero, and leaving the rest alone. One should think of
their automobile’s odometer with= 10. For eachx € DY for which it makes sense, define

n(x) = min{m such thaty,, <[ — 1}. (9)
Forx#({—-1,1—-1,1—1,...), the odometer action is:
0 n< n(x)s
(V), =1 x+1 n=nx), (10)
Xn n > n(x)
and we definé/ (1 —1,/—1,1—1,...) = (0,0,0,...). Putting the product topology ¢
and considering the Bernoulli//,1/1,...,1/1) measure gives us an invertible measure-

preserving map.

When we are concerned with the skew product representation of a substitution we will
need to restricDY to the setX of all sequences that are not eventually identically O or
identicallyl — 1. On X' the actionV is well-defined and invertible, an¥ is a set of full
measure. It is the measure-preserving syst8mV, u x) that forms the base of the skew
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product representation for bijective substitutions (described below) and for the dynamical
systems in [4].

2.2. Factoring substitution systems onto odometers

To establish the factor map from the substitution dynamical system to the odometer, we
need the notion ofinique compositiof22] of a sequencd € X (calledrecognizability
[13] in the one-dimensional case). The basic idea is that any sequeXcmirst look like
the image unde§ of a unique sequence that is alsoXn That is to say, the letters in
7T can be put together in a unique way to form composite blocks that are the images of
letters undelS. The work of Solomyak [22] can be applied, considering our sequences as
tilings; or the work of Mossé [13] can be generalized to arrive at the definitiamiofue
compositionfor Z¢ substitutions: for every € X, there exists a uniqué&?! € X and a
unique J € 79 such thatZ = S(71) — j. WheneverS is nonperiodic and primitive the
result in [22] implies thaS has the unique compaosition property.

Unique composition implies that for any € Z* there exists a uniqu&¥ e X and
jezd with j; €0,1,2,...., /1M —1foralli €1,2,...,d such thatT = SM(TM) — J.
For any lettelz € 7™, we callS¥ (a) — j alevel-M block of T, of typea. Each levelM
block B of 7 is composed oK level-(M — 1) blocks of7 whose positions inside df are
indexed byZ? in the obvious manner. We define functio®s;: X — quas follows: for
T € X, Ou(7T) is the position of the leveld — 1) block of 7 containing0 in its level/
block. We write7% = T, so that®1(7) is the position of7 (0) in its level-1 block.

With this map, we are ready to define our codingXfinto an odometer space. Let
Yo=(7¢ )Z+ denote the set of all one-sided sequences of vectorsfaret ¥ ¢ g be
the set of all sequences such thatforiall 1, 2, .. ., d, theith coordinate is not eventually
identically O or/; — 1. Put the product topology oBg and denote by 5> the Borel prob-
ability measure assigning the measuy&1to cylinder sets with one coordinate fixed, so
that X is a set of full measure. Then we have a measurable @haiX, 1) — (Xo, ux)
given by

OT) ={Ou(D)}5_;-

Itis clear that? maps onta¥y since there will always be a tiling situated according to any
given sequence itp.

Example 5. Let d = 2 andl1 = I, = 2, so thatZ? = {(0, 0), (1, 0), (0, 1), (1, 1)} and
suppose thasS is a nonperiodic primitive substitution with these parameters. In Fig. 3,
we diagram the coding for an arbitrary sequece X. We have outlined the begin-
ning of the leveld skeleton around the origif0, 0) for 7, and we see tha® (7) =
{(1,0),(1,1),(1,0),(0,12),...}.

Now let us examine what happens to the codingofvhen it has been translated by
the standard basis elemeit A look at Fig. 4 will convince the reader thé(7 — ¢;) and
©(T) are identical in all but theéth coordinate sequence. Unlegsis situated in a very
special way, there will be some smallégtfor which both7 and7 — ¢; are in the same
level-M tile. The Mth coordinate of théth sequence o (7)) will be increased by one to
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it

0,0)

Fig. 3. A sketch of how a typical sequengec X codes intoXy.

0,0)

Fig. 4. How the shift affects the coding.

obtain that of® (7 — ¢;), and all previous coordinates will be reset to 0. But this is exactly
the odometer action, which we now make precise.

Use the notatiotix,,} € X, leaving implicit thatn runs from 1 toco, and writex,, € Z7¢
asx,, = (x,%l, e, x,fl). Thinking of {x,,} asd infinite sequences, we will havkodometers,
each defined as in Section 2.1. We defineX — Z* which keeps track of the first time
anx, can be augmented in ttith coordinate and remain If':

ni ({Xm}) = min{m such thatc, <7; — 1}. (11)
We define the odometer on thih coordinate to be:
(el ximh o X xd n<n({xn),
(Vi({)?m}))n =1 L. x )l L xd) n=n({Ea), 12)
(x,}, ,x,"l_l, x,’%, xiﬂ'l .. .xff) n>n{xn)).

Returning to the sequen@eof Example 5, we have that (© (7)) = 4 and tha®) (7 —
¢1) will have the codind (0, 0), (0, 1), (0,0), (1, 1), ...} as represented in Fig. 4.

So we see tha® intertwines the action of translation anwith the action ofV on X
so that we have a measure-theoretic factor map f&nZ?, 1) onto (Xo, V, ux).
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2.3. Bijective substitutions as skew products over the odometer

Give the alphabe#d the discrete topology with counting measurg (a) = 1/|.A| for
alla € A. EveryT € X is coded using the may : X — X x A by

W (T) = ({Ou(D)}5_.. TO0). (13)

The map¥ is one-to-one on a set of full measureXncomposed of tilings that encode
in the first coordinate t&@. This is due to the bijectivity of the substitution: once we know
what the symbol at the origin is and its position in its level-1 tile, we know the rest of the
letters in the level-1 tile. But knowing the level-1 tile along with its position in its level-2
tile allows us to fill in the rest of the level-2 tile. We can continue filling in the letterg of
in this fashion, and as long as the origin is not eventually always on the edge of itailevel-
blocks, we will uniquely specify the letters if for all of Z¢. The set of all sequences that
are eventually always on the edge of their lemeblocks has measure zero and maps onto
Xo— 2.

The map¥ is a measure-theoretic isomorphism betwé&nu) and (X x A, uy x
u ). To check this, we can show that a generating set for the Bosdebras have their
measures preserved . Let [B] be the cylinder set in¥ given by fixing the firstn
coordinate$B] = {bl, bz, .. bn, *, %, %, ....}. The collection of all set§ B],a) Cc ¥ x A
for all B and alla € A will generate the Boreb-algebra. Naturallyts x u4([B],a) =
1/K"™-1/|A|. The cylinder B] not only fixes the location of the levelblock at the origin
precisely inside its leveln + 1) block, it fixes all of the blocks down to the level-0 block.
That is, we know the coding of any sequencedinl([B], a) precisely out to the:ith
place, and therefore the frequency of this block/&1. Fixing a tells us which of the A|
possibilities our sequence is in, and so we find fnak ~1([B], a)) must be 1K" - 1/|A|.

We are ready to define the cocycle mafysthat keep track of the change on the
second coordinate o x A resulting from translation. Since the formula seems com-
plicated, it will be useful to describe the cocycle for the example from Figs. 3 and 4 first,
then write down the general formula. We know that7) = ({x,,}, 7 (0, 0)) = ({(1, 0),
(1,1),(1,0),(0,1),...},7(0,0)) and that? (7 — (1, 0)) = (V1({Xn}), (7 — (1,0))(0,0))
= ({(0,0), (0,1),(0,0), (1,1),...},7(1,0)). But in order to define an action ab x A
that commutes with translation, we must be able to determine the second coordinate with-
out reference t@ (1, 0).

For each{x,,} € X, we figure out the value of (1, 0) inductively. Knowing7 (0, 0)
and knowingx1 = (1, 0) means that we can use the inverse of the substitution pyg®
to figure out the type of the level-1 block at the origin: it must have typ 2% (7(0,0)).

(Note that the invertibility of the substitution map follows from its bleCtIVIty) Knowing

the type of the level-1 block and knowing that= (1 1) aIIows us to figure out the type of

the level-2 block at the origin: it must have typel P 1 0) (7 (0, 0)). We can continue in

this fashion until we have figured out the type of the ﬁevel 4 block at the origin, and for this
sequence that is going to be enough because our shift to the left occurs inside this block
(which is to sayn1({X.}) = 4). So we know the type of the level-4 block at the origin is
determined by the bijection:

(P({1.0. (L1, (10.0.1....}) " = pgy, rlo Pan P
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Now that we know the type of the level-4 block at the origin, we may use the maps given
by Vi({x,x}) = {(0,0), (0, 1), (0, 0), (1, 1), ...} to work our way back down to the type of
the letter7 (1, 0). The type of the level-3 block at the origin i — (1, 0) must bep 1)
applied to the type of the level-4 block, then the type of the level-2 block mugtdig
applied to that, then the type of the level-1 blockig 1y applied to that, and finally the
type of the level-0 block ig,0) applied to that. That is, we can define a map that works
its way back down to the level-0 block as:

P1(v1({(1.0). (1. 1), (1,0). (0. D). ...})) = P0.0) PO.1) P(0.0) P(L.1)-

Thus we can specify the type af(1,0) entirely by knowing the codingdx,,} and by
knowing7 (0, 0) by writing

T, 0)=Pi(Vi({Zn})) o (P1({Fn}) T (0, 0) = ¢1 (1% })T (0, 0).

Now we can give the general definition of the cocycle m@pthat act on the second
coordinate of the coding to produce the correct letter change as we shift We define
¢i: X — S 4 in such a way that the mag x ¢; : ¥ x A — ¥ x A commutes with the
action of translation by; on the sequence spage In order to figure out the type of the
next letter in theg; direction in the tiling coded by (7) = ({X,,}, 7 (0)), we use the first
n: ({xn}) terms of{x,,} to figure out the type of the level-({x,,}) block using the inverses
of the substitution maps, then use the fifst{x,,}) terms ofV; ({x,,}) to work our way
back down to the level-0 block we want. The iterative step in both cases can be defined in
terms of a map

Pi({(¥m}) = PiaPsp PRy i - (14)
So that we define the cocycle to be:
¢ (1En}) = Pi (Vi (1a})) © (i ({Zm))) (15)
We can define th&? action onX x A to be generated by the action
Vi x i (1%}, @) = (Vi ({(¥m}), 1 ((Xm})a), (16)

for eachi € {1,2,...,d}. In this case it is clear by construction that the actions of the
generators commute with the action of translatiorglpyand we have that

Vi x i (¥ (1)) = Vi x ¢: (|On(T)}, T(0))
= (Vi({ou(D)}), ¢ ({On(D})(T(©@))
= ({Ou(T —é)}, T (@) =w(T - é&).

SoV is a measure-theoretic isomorphism between the dynamical sysirig, 1) and
(T x A2 us x pa).

We have shown that our shift dynamical system is an almdispoint extension of the
product ofd odometers. It should be noted that in this form, it is not a group extension.
Nonetheless, we will see in Section 4 a spectral decomposition which looks quite like that
for a standard group extension. In fact, one can refer to [16] to see a description of how
to derive a group extension from this which is in some cases isomorphic and in all cases
closely related to our system.
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3. Spectral theory and bijective substitution sequencesin Z¢

Consider the unitarfZ?-action on a Hilbert space given mgﬁ (L2(X,pn) = L3(X, )
with U7 (f(T)) = f(T — J) for all 7 € Z¢. We can analyze the action @' on X by
consideration of the action @’ on L?(X, ). Thespectral coefficientsf an L2(X, 1)
function are given, for eacfie Z4, by

FG)=(U7 5. f)= / Ul F(T) T du(T). (17)
X

Itis known that these coefficients form a positive definite sequence and that therefore there
is a unique measukey on thed-torus [19] with:

f(f)=/zfdaf(z), (18)

Td

wherez/ = zJ*...z/¢. For a fixed f € L2(X, u1), we consider theyclic subspaceen-

erated by the closed linear span pfasZ(f) = spar{U/(f) 7 € Z4}. The action ofU
restricted toZ (f) is unitarily equivalent to the actiovi’ : L2(T¢, o) — L?%(T?, o) given

by V7 (g(2)) =2/ g(Z). A survey of a wide variety of spectral results in the context of dy-
namical systems appears in [7].

Any Borel measure on the torus can be decomposed into at most three mutually sin-
gular parts: a discrete part corresponding to purely atomic measure, a singular continuous
part that is nonatomic but singular with respect to Lebesgue measure, and a part that is
absolutely continuous with respect to Lebesgue measure. It follows from [21] that every
substitution sequence ¢ has functions whose spectral measures are purely discrete.
This is because the expansion const&irdf aZ¢ substitution must be an integer, which is
a Pisot number, and that is the condition precluding weak mixing. We have included exam-
ples of substitution sequences having mixed spectrum: bijective substitutions, substitutions
like Example 4 (see [4]), and the “table” substitution of Example 3 (see [18]).

3.1. Eigenvalues and eigenfunctions

We refer to a constarit € RY as aneigenvalueof the actionU/ if there is a function
f e L3(X, w) for which

Ul f=exp(2ni@-J))f (19)

for all 7 € Z¢. (Herea - j denotes the usual dot product®f.) One can check that the
spectral measure of such an eigenfunction is the atomic measure supporte@ari@xp:
(exp2riay), ..., exp(2riag)) € T¢. Every function with an atomic spectral measure is in
the linear span of the eigenfunctions, which we denfdteand call thediscrete compo-
nentof the spectrum. Since the spectral measures of distinct eigenfunctions are mutually
singular, a nontrivial result from spectral theory is tihgs can be written as a single cyclic
subspace.
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The discrete component df?(X, i) for any substitution sequence of the type con-
structed in this paper must contain eigenfunctions given by the odometer coding. The
eigenvalues for the odometer system take the form

(%)
=\ g )
ll ld

wherem; andn; areinQ1,2,... (i.e.,d-tuples of the;-adic numbers). One can specify
the value of the associated eigenfunctipevaluated af” € X by knowing the location of

0 in the level tile of 7 for an appropriate choice @¥. Since each eigenvalue can have
only one eigenfunction, we see theZ") depends only on the coding @finto X and not
on7(0).

In many cases the odometer transformation forms the maximal equicontinuous factor
of the system. In some cases there may be additional eigenfunctions that arise from an
underlying periodicity of a sort we describe next. In the one-dimensional, constant-length
case this happens when the “height” of the substitution is nontrivial; a complete character-
ization is proved in [1] and summarized in [3]. In the one-dimensional case, the keight
of a substitution of constant lengghis defined to be:

h:max{n)l, (n,g)=1n |ng{a: u(a):u(O)}}, (20)

whereu is a fixed point of the substitution. That isjs the largest number that divides all
return times to the lettar(0) and is relatively prime tq.
To generalize this notion to higher dimensions, it is necessary to translate these concepts
relative to sublattices dt¢. We begin with a generalization of greatest common divisor. If
L1 andL, are sublattices dt?, we define(L1, £5) to be the smallest lattic& containing
both £1 and L2, where the word “smallest” means that any other latticeontaining;
and £, must containC; it is the lattice generated b§; and 2. Note that if one considers
the sublatticeaZ andmZ of Z, our definition gives the sublattideZ, wherek = (n, m).
Thus ifn andm are relatively prime, we have thatZ, mZ) = Z.
Following [21], choosing any” € X we define the set of return times

g ={7 ez thereexistd € Z¢ with T(k + J) = T (%)} (21)

Note that this is well-defined independentBfby minimality. Define the latticel(Z)
to be the smallest lattice containirfg. Then theheight lattice A is the smallest lattice
containingL (=) for which (A, ¢(Z9)) = Z4. If A =74, the height is said to bgivial.
Examples of substitutions with nontrivial height appear in Section 5.

Letting A* represent the dual lattice of (the lattice of all elements @&¢ that have in-
teger inner product with all elements aj, the eigenvalue group is given by, >, ¢ ™" A*.
Thus the height is trivial if and only if the odometer is the maximal equicontinuous factor.

3.2. Coincidences and purely discrete spectrum

Recall that the location set forkatimes substituted letter is given b))% = {7 € Z¢:
0<j;i < lf}. We say a substitutio® admits acoincidencef there is ak € 1,2, ... and
aje (I9k such thatS*(a, j) = S, 7) for all a,b € A. That is, if one iterates the
substitution enough times, there will be a location in which all of the letters agree.
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In [1] Dekking showed that for substitutions of constant length {thke 1 case in this
paper), height 1 implies that coincidence is equivalent to purely discrete spectrum. If the
height is nontrivial, Dekking characterizes purely discrete spectrum in terms of coinci-
dences in the “pure base” of the substitution. In Section 6 of [21], Solomyak adapts this
result to tilings ofR! andR2. Moreover, Theorem 6.1 in the same paper gives a sufficient
condition for pure discrete spectrum for tilingsif that applies to the sequences given in
this paper. One can check that the hypotheses of Theorem 6.1 hold iesubstitution
admits a coincidence, and thus we have purely discrete spectrum in this case.

3.3. Continuous spectrum

Bijective substitution sequencesZid do not have a purely discrete spectrum. One way
to see this is to exhibit a function ib2(X, ) that is orthogonal to the eigenfunctions. In
the trivial height case, this is a simple matter: take the alphdlstd any one-to-one map
F:A—{1,2,...|A|}. Define the function

F(T(6>)>
Al )

For any eigenfunctiog with eigenvaluex, we check:

f(T)= exp<2ni (22)

(Uig, f) = / Ul g(T) £(T) du(T) = f 1T ¢(T) £ (T) du(T)

X

X
=2 f &mieT o (T)e? T du(T)
ae.AXa

=Y e ( / I g(T) du(T)),
Xa

acA

whereX, is the cylinder set of all sequences \Mﬂ(f)) = a. Sinceg is the eigenfunction
of a substitution of trivial height, it only depends on the odometer codings of tilings in
Because of bijectivity eacl(, has exactly one tiling for each coding i; moreover the
measure of any subset &f, on whichg is constant is independent af This shows that
each of the integrals are equal to a constafyt). So we have that
(UTg. f)=Ce Y T —o.
acA

Since f is orthogonal to all of the eigenfunctions, its spectral measure is purely continu-
ous. Because of its specialized nature, it can be used to compute correlation measures of
sequenceg € X.

If the height is nontrivial, one must be somewhat more careful with the definition of the
function f to ensure that it is also orthogonal to the extra functions in the discrete spectrum
that arise apart from the odometer.



N.P. Frank / Topology and its Applications 152 (2005) 44—69 59

3.4. Correlation measures

When one has a one-sided sequefgg of real or complex numbers, one can consider
the correlation measurefl6] given by measures on the circle with spectral coefficients

y (k)= N'E“m% > ity (23)
n<N

provided the limit exists. If the limit does not exist, one proceeds either by taking the
lim sup or by going along subsequences. In the case of a primitive substitutive sequence, the
shift dynamical system generatedfay, } is uniquely ergodic [12], and this implies that the
correlation measures will exist and be dominated by the maximal spectral type of the shift
dynamical system (see [16] for details). We can analyze a specific substitution sequence
even if it is not on an alphabet of complex humbers by considering a bijection from the
alphabetA onto the|A|th roots of unity as in (22). By considering every such bijection,
we will have a family of correlation measures which should in some sense encompass
every autocorrelation possible for the sequence. Indeed, work in the one-dimensional case
in [16], which we do not generalize in this paper, indicates that the maximal spectral type
of the system is probably dominated by the sum of these correlation measures.

In order to create a limit that would apply to substitution sequence&?inwe
can consider avan Hove sequencef subsets{A4,} of R?, following the usage in
[21]. Define 8(A)t" = {x: dist(X, 3(A)) < r}, the set of all points iR within r of
the boundary of the sefi. A sequence of subsets will be a Van Hove sequence if
lim,,—. oo VOI(3(A,)) ™" /VOI(A,) =0

Consider a primitive substitution sequeri€and any bijectiory’ from A into the|.A|th
roots of unity as given in Eq. (22). Thefy can be defined to be the sequence given by
Tr(j)= f(T())) forall je 74, so that7; is a sequence on a complex alphabet with
correlation coefficients

1
yr) = fim VoI (A,) 2

Y TG+0T (). (24)
An

If A c C, then we can find the correlation measuraithout reference tgf.

We prove that the correlation coefficients exist whenelas a primitive substitution
sequence by relying again on [21]. Note that the prodf,ucf+ k)T (j) can assume only
a finite number of values that depend entirely Bty + k) and T(J) Givena,b € A,
denote byP,, the set of all sequencé&8 € X with T’(k) =a andT’(O) b, and lety,y,
denote the indicator function at,;,. We can rewrite the correlation coefficient:

yrky=lim 3" OI(A)ZXah(T 1 @F®)
(a.b)eAx A "

— b I )
(@, ngAf(a)f( ) o Vo |(A ) Z Xab(T = 7)

= Z f (@) f(B)(Pap),
(a,b)e Ax A



60 N.P. Frank / Topology and its Applications 152 (2005) 44—69

where the last step follows from the unique ergodicity proved in [21]: the interior limit is
the integral ofy,;, over X, which is simply the frequency measureRy,.

In unpublished computations the author found that for two specific examples on a two-
letter alphabet, the only continuous spectrum is singular. It seems that this will be the case
for many (if not all) bijective substitutions. For instance, we have the following proposition
whenever the substitution is generated by a cyclic group of avder

Proposition 3.1. Let N > 1 be a positive integerw = exp2ri/N), and let A =
{1 w,w?, ..., wN"1}. Suppose has the property tha§(w“, /) = w*S(1, /) foralla € Z
and all/ € Z¢. Then ifS is a primitive substitution we have that

y(¢(®) =y &)
forall k € Z4.
Proof. Let A,, be any Van Hove sequence, to be used in the computatiqr(lbf and
assume thaf is a substitution sequence fSrinvariant undeS? by renamings to be a
power of itself if necessary. The sequeraet,,) is also a Van Hove sequence and we will
use this to computg (¢ (k))

Fixing A,, let 7 € A, andl € 7¢. We know that7 (j) = w® and 7 (j + k) = w? for
somea, b € Z. SinceS(w”) = w”~4S(w*) by hypothesis, we now know that(¢(j) +
¢ k) +1) = wb=2T($(7) +1). So for alll € Z¢ we have that

T(p() +¢®) +1)T(p(7)+1)
=" T(p(H+1)T($(G)+1) =
=TG+0TQ).

Hence we see that

Y TGHOT(N = Y., TG+OT()
= Vol<¢<A D

and the result follows. O

VOI(An)

In this case if there is any nonzero veciorsuch thaty(l_é) # 0, then immediately
we have that the correlation measure is singular continuous. The known examples with
Lebesgue components to the spectrum are not bijective [4].

4. Spectral decomposition of bijective substitutions

For some substitutions, the spectrifi X, ) of the dynamical system associatedto
can be decomposed into orthogonal subspaces that are invariant under the action of trans-
lation. The condition making the decomposition possible is the existence of translation-
commutingletter inversions
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4.1. Letter inversions

Since almost every sequerifes X is determined by its coding over the odometer along
with the letter at the origin, we see that changih@) will result in a change of all the
letters of 7 in a specified manner, and we will arrive at a new sequéfice X which
has the same odometer codingZasut different letters. Depending on the nature of the
bijections p; constitutingS, there may exist translation-commutitegter inversionsr <
S 4 defined by the equatiam(leE)) = 7/(/2) fqr all k e 4. So for eacle;,iel,2,...,d,
we would have that (7 — ¢;(0)) = 7’ — ¢;(0). When passed to the skew product this
would require that:

Vi X @i ({(¥m}, o0a) = (Vi({xm}), 0 i ({Xm})a).

SinceV; x ¢; ({Xn}, 0a) = (V;({Xn}), ¢i ({Xn})oa), we see thap; ({X,})oa = o ¢; ({Xn}a
for all possible{x,,}. So we obtain

o1 (1Fm))o = di (X)) (25)

So there is a translation commuting letter inversion if and only if thererisatisfying the
above equation for all possibieand{x,,}.

It is not difficult to check that letter inversions form a groGpof bijections of. 4 and
thatifo € G fixes any letter in4, then it is the identity. Moreover, if any; is the identity,
then every substitution bijectiop; must commute with each € G. If the substitution
bijections generate an abelian group, then they are clearly letter inversions.

Fix a lettera € A, and consider any sequerifes X with 7 (0) =a. Foro € G, suppose
thatoa =a’. If a’ = a, theno must be the identity map. If not, then for any lettee A,
we can determine b, sinceb must appear iff and the value of b is uniquely determined
because commutes with translation. Thus every letter inversion is completely determined
by where it sends the letter and this shows thaG| < | A|.

Proposition 4.1. LetS be given by(p;); .7« Theno € G iff o commutes with all products
P Pi, " PRy wherek; € Z¢ and N is the order of anyy.

Proof. Fix anN so thatpY =id for somek € 7¢. One can consider the substitution map
given byS", which, whens is primitive and nonperiodic, will generate the same dynam-
ical system(X, Z¢, ) thatS does. That is becauseT§ is a substitution sequence f6r
which is invariant undes*, thenTy is invariant undeSV*, making it a substitution se-
quence forSY as well. (This is also easily seen by comparing the languags$’) and
L£(S).) Note that the substitution bijections definis§’ encompass all possible products

of N of the p; permutations. Since by assumption one of these products is the identity, it
is clear that the letter inversions f6Y must commute with all such products.

We claim that letter inversions f&” are letter inversions fa$. The dynamical system
(X,Z¢, ) codes into skew products for both substitutions, and the codings must be iso-
morphic. The cocycle actions will look different, but they must be identical because for any
given7 € X, atranslation-commuting letter inversion appliedt@®) will be independent
of the coding. O
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4.2. Spectral decomposition in the presence of letter inversion

We now assume that our substitutiSrhas a nontrivial groug; of letter inversions. In
the event that th@;'s generate an abelian group, that group is automatically the group of
letter inversions for the system. We will use the representation of the dynamical system as a
skew product over an odometer to decompb$eX,, 1) in terms of functions that are well-
behaved with respect to letter inversion. In Section 5, we list some examples satisfying the
hypotheses of the following theorem and examine the consequences of it.

It should be noted that the result is very similar to an analogous result that holds for
compact group extensions, even though our skew product formulation is not quite in this
form. In the case thatp;, k € 77} generates an abelian group, one can rewrite the system
as a group extension that is equivalent to our product. If it does not, a group extension
exists that dominates our system [16]. We include the result here so that the reader can see
how standard arguments about functional decomposition can be applied to this situation.

Theorem 4.2. Let G C S 4 denote the group of translation-commuting letter inversions
on X, and letG denote the continuous group homomaorphisms fédito the complex unit
circle (i.e., the group characters @¥). If erg x (o) =0for all o € G with o # identity,
then

LA(Z x A,us xpp)=Ho® Hyy & & Hy =P Hy. (26)

xeG

where f € H, if f({¥n},0a) = x (61 f({Xn},a) for all ¢ € G. The decomposition is
invariant under the action dZ? on ¥ x A.

Note that the conditiofxea x (o) =0 for anyo € G is automatically satisfied @5 is
an abelian group.

Proof. Let f € L2(X x A, s x j14). Our goal is to decomposginto a sum of functions
that behave nicely with respect to letter inversions. We begin by noting that

Z x(d) f (1%}, @) = f (%), ).

Gl
XEG

sincex(id) is always equal to 1. Whenevers id we can write

Zx( o) f ({%m}, oa)—|A|f({x,n} 0a) Y x(@)=0.

Gl
XGG xEG

Letting o range througiG we see that

f({¥n}, a) Z Y x@) f({Zn). oa). (27)

XEGUGG
Write

Ix ({;Cm}’ a) = Z X(G)f({)?ln}v Ua)

oeG
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so that the above decomposition is given by= TéT era fx- We show thatf, € H,.

Fixing p € G, we have thatp € G for all o € G, and furthermorerp ranges througlt;
aso does. Thus

Fx({En}, pa) =" x(@) f({Fn), 0pa) =Y x@p)x (o) f({En}, opa)

oeG oeG

=x(p™) D x(op)f((Fm}.opa) = x (0~ ) fx ((¥n}. a).

opeG

Next we show that ify # ¢ for x,¢ € G, thenH, is orthogonal taH, . Let f € H, and
g € Hy, and leto € G such thaty (o) # ¢ (o). Using change of variables we have

/ f({im}v a)g({im}v a) d(us x ua)

IxA

= / f((Zn} 0a)g({Xn}, oa) d(us x p4)

IxA

= [ %@ (1) )l De(l- ) s x
IxA

Sincez(0—1) = ¢ (o), we have shown thatf, g) = x (c "1 (o) (f, g), and by choice of
o this can only happen iff, g¢) = 0. Thusf andg are orthogonal and we have shown that
the decomposition is a direct sum.

Finally we show that each subspaig is invariant under the action @’ ForfeH,,
andi € {1,2,...,d}, we show that the functio®; f is in H,, whereU; f ({X,},a) =
FVil{xn ), ¢i ({XnHa). Sinceo commutes with translation, we have that

Ui f () 0a) = £(Vi(iZm), ¢ ((Fn))oa) = £(Vi({(Fn}), 061 ({Fn))a)
= x(0 1) F(Vi((Fn)), 6 (18m))a) = x (0™ Ti £ ((Fn}, @)
ThusU; f € H,, which finishes the proof. O

5. Examples: Applications of Theorem 4.2

The condition for decomposition of the spectrum of the dynamical system of a bijective
substitutionS in Theorem 4.2 can manifest itself in a variety of ways. Interesting finite
groups from the symmetric group o4 can be used to form the substitution permutation
matrix for S. We will show only a few examples in the two- and four-letter cases.

5.1. Two letter alphabets

It is convenient to letd = {1, —1}, so that the two bijections ifi4 can be seen as mul-
tiplication by 1 (denotego) or —1 (denotecg1). The permutationg; of the substitution
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matrix must include both of these elements to ensure that substitution is nonperiodic. In
this case the translation commuting letter inversions@re {go, g1} and the character
groupG is:

80 81
xo 1 1
x1 1 -1

Assuming it is nonperiodic, the substitutigh will satisfy the conditions of Theo-
rem 4.2. Therefore the isomorphic skew product space will have spectral decomposition
L%(X x A, us x ua) = Ho® Hi. Any f € L2(X x A, us x n4) will be written as the
sum

F(Gn)a) = J({Xm}, @) +2f({fm}, —a) n f({xm}, @) —Zf({fm}, —a)

Of course functions i.?(X, 1) can be decomposed by considering their counterparts
on the skew product space. Thus one can consider very basic functions such as indicator
functionsI or I_1 and find that their decompositions into discrete and continuous parts
are:

I =1/2+ {1 —-1/2), I1=1/2+1_1—-1/2).

In unpublished work on two specifi£? substitutions, we have found that the spectral
measures associated to the continuous spectrum fundiionsl/2 andl_; — 1/2 are
singular with respect to Lebesgue measure.

5.2. Four-letter alphabets

The next four examples involve bijective substitutions with- {0, 1, 2, 3}. The differ-
ence in their construction lies in the letter inversion groups allowed by the set of bijections
{pj.je 7%}, In each example we will haw¢= 2 andi; = I, = 3, and we keep the substi-
tution permutation matriXp;) ;.72 fixed, changing the actual bijections in each case. The
substitution permutation matrix will be:

80 81 &0
(PPjerz=|81 8 &1 (28)
80 81 &80

Examples 6-9 will use the following four choices for the permutations, respectively
(go, g1, g2 expressed in cycle notation):

Py ={id, (01)(23), (02)(13)},

P, ={id, (0123, (02)(13)},

Pz ={id, (01)(23), (0123},

Py = {id, (01)(23), (023)}.

The interested reader can check that, witems used, the substitution matrices on the
individual letters become:
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Fig. 5. With P, there are four translation-commuting letter inversions.

3
I?I.
3
g &

i
o
i
i
o

! I:_ ! L l:;:. L ! _:I !

R Dt

Fig. 6. With P, the letter inversions form an order-four cyclic group.

010 1 01 2 3 2 3 2 3
0— <1 2 1), 1— (O 3 0), 2—><3 0 3), 3—)(2 1 2).
010 1 01 2 3 2 3 2 3

Using grey-scale tiles to denote the letters, from 0 being white to 3 being black, we can
look at the tilings that result from these choices. In each case Figs. 5-8 show four iterations
of the O tile.
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I.:+I.I .
o

e e T et e Rt e

i

o

e R R e R,

Fig. 8. WhenPy is used there are no nontrivial letter inversions.

Example 6. When Py is used it is not difficult to check that; o g2 = g3 = (03)(12), and
that these four bijections form an abelian subgroup of the symmetric groupafrorder
four. Since that is the order of, we know that the group of translation-commuting letter
inversions must b& = {go, g1, g2, g3}



N.P. Frank / Topology and its Applications 152 (2005) 44—69 67

In order to use Theorem 4.2 we need the group characte(s:for

80 81 82 &3

o 1 1 1 1
i1 1 -1 -1
2 1 -1 1 -1
3 1 -1 -1 1

This substitution has nontrivial height latticé generated by the vectox®, 0) and
(1, 1). One point of particular interest involves the factors onto two-letter sequences. We
can choose two letters to become 0 and let the other two become 1, and for two such choices
the resulting factor sequence will be a substitution sequence with a bijective substitution.
The remaining choice is periodic and that is due to the nontrivial height of this substitution.

Example 7. We begin by noting that the permutationsip form a cyclic group of order
four by addingg; o g2 = g3 = (0321), so this forms the grou of letter inversions. In
order to use Theorem 4.2, we again compute the group charactes for

80 81 82 &3

x 1 1 1 1
x1 1 i -1 —i
x 1 -1 1 -1
x3 1 —i -1

This substitution also has nontrivial height lattidegenerated by the vecto(g, 0) and
(1, 1). With the choices of substitution permutation matrix and specific permutations made
in this example, our system is the factor of a direct product of one-dimensional substi-
tutions. To see this, s&’ to be the one-dimensional substitution taking>0010, 1 —
121, 2 — 232 and 3— 303. Taking the alphabet’ to be the set of ordered paif$, k),
wherej, k € {0, 1, 2, 3}, we can construct a two-dimensional substitution on 16 letters as
the direct product o5’ with itself. This substitution factors ont§ by taking any letter
(j, k) onto j + k mod 4. One should note that a different choice of substitution permuta-
tion matrix may avoid this problem.

Example 8. We begin by noting that the bijections iy form a nonabelian group of order

8. The only nontrivial group element from the symmetric group/that commutes with

g1 andg2 is o1 = (02)(13), and so the groug is composed ofg = identityando;. Using

the substitution permutation matrix (28), we again get a primitive, nonperiodic substitution,
and so Theorem 4.2 does apply. The character tablé fsrgiven by:

op 01
xo 1 1
x1 1 -1

This example is intriguing because the continuous component should be more complex
than the individual components in the previous two examples. Further analysis should be
done to determine the spectral multiplicity of the system.
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Example 9. With P, as the choice of permutations there are no elements of the symmetric
group onA that commute with bottg; and g2, and so there can be no translation-
commuting letter inversions faf. There is no character table to compute for this sub-
stitution and Theorem 4.2 does not apply.

It is unclear to what extent the qualitative differences between these four examples are
due to the presence, absence, and nature of translation-commuting letter inversions.

6. Related questions

What accounts for the striking differences in appearance among substitution sequences
that have the same spectral decomposition as determined by Theorem 4.2? One can ex-
periment with the exact same set of bijections}, but place them differently i,
and find that the resulting substitution sequences can range from having large connected
components and/or obvious, coherent patterns to appearing quite randomly disordered. All
the while, the spectral information and frequency measures are identical! The same basic
guestion also extends to a discussion of the diffraction (spectral) images of substitution
sequences, which are related to the correlation measures. The interested reader can use our
MATLAB program [5] to experiment withZ? substitution sequences (up|td| = 10); the
program allows manipulation of many aspects of the systems, some of which are beyond
the scope of this paper.

We have obtained, in Theorem 4.2, a decomposition of the spectrum in the event that
there exist a nontrivial group of letter inversions. Even so, it is unclear exactly what the na-
ture of the invariant pieces are. The spectral multiplicity is almost certainly boundet| by
Inthe event that the group formed by the substitution bijectjpnis abelian, it may be that
each invariant piece is simple, and may have singular spectrum (this is what happens in the
one-dimensional case). If the situation is more like that in Example 8, whgre | A|, it
would appear that the invariant continuous component(s) are probably more complicated.
And in examples like Example 9, our theorem yields no information whatsoever—there is
one continuous invariant component that seems to contain all of the continuous spectrum
functions. It should be noted that the functions in the continuous spectrum part with the
form of (22) are in a sense transverse to the decomposition in Theorem 4.2, and further
investigation into their nature would certainly help answer the question about the nature
of the spectrum. The work in [16] should be used as a guide. Finally, it would be interest-
ing to give examples of constant-length substitution sequences with continuous spectrum
containing both the Lebesgue and singular types.
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