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1. Substitution dynamical systems

1.1. Sequences, the tiling model, and shift dynamical systems

LetA be a finite set (alphabet) and let asequence inZd be a functionT :Zd → A. The
collection of all such sequences isAZ

d
; the action oftranslationby an element� ∈ Zd on

T ∈ AZ
d

yields the sequenceT − � whose�kth element is

(T − � )(�k) = T (�k + � ). (1)

This is also called ashift because it shifts the sequence so that the element that used
at � is now at�0.

We will write elements ofZd as � = (j1, j2, . . . , jd); the sup norm of such a vecto
will be written | � | = maxi∈1,2,...,d |ji |. A block B is a map from some finite subset ofZ

d

into A; a subblock ofT is the mappingT restricted to a finite subset. In this paper,
will in general assume that our sequences arealmost periodic: there is a radiusR(B) > 0
such that for any� ∈ Z

d , a copy of the blockB appears inT somewhere within the se
{ � + �k: |�k| � R(B)}. (We refer to a copy of the blockB since any block has a fixed doma
in Z

d that is usually not in the set{ � + �k: |�k| � R(B)}.) We will also assume in gener
that our sequences arenonperiodic: T − � = T if and only if � = �0.

Sequences inZd may be thought of astilings ofRd by consideringT to be composed o
unit cubic tiles that are colored or labeled by elements ofA. Everything appearing in thi
paper can be framed in this more general environment, and we will use fundamental
from papers such as [17,21,22] and references therein for this perspective. In a
we refer to the sources [3,16] and references therein for the discrete dynamical
perspective.

For any sequencesT and T ′ ∈ AZ
d

with T �= T ′ we write N(T ,T ′) = inf{n � 0
such thatT ( � ) �= T ′( � ) for some | � | = n}, and we define the metricd(T ,T ′) =
exp(−N(T ,T ′)). For T = T ′ the distance is defined to be zero. This metric is sim
to those seen in [16,17], and since this metric yields the product topology we find thaAZ

d

is compact. Considering all blocksB, the metric topology has a basis given by thecylin-
der sets[B] = {T ∈ AZ

d
such thatB is a subblock ofT }. We denote the Borelσ -algebra

corresponding to this topology byB.
Fixing an almost periodic, nonperiodicT0 ∈ AZ

d
, we define the sequence space

X = XT0 = {
T0 − � such that� ∈ Zd

}
. (2)

This space is invariant under the action of translation and is compact because it is
The setX along with the action of translation by elements ofZ

d compose the dynam
cal system(X,Z

d). Putting a translation-invariant Borel probability measureµ onB, we
have the measure-theoretic dynamical system(X,Z

d ,µ), which is sometimes called ashift
dynamical systemor asubshift ofAZ

d
.

1.2. Substitution sequences inZ
d

These generalize one-dimensional substitutions sequences where the substitutio
stant length. They can also be seen as self-similar tilings ofR

d , with particularly simple tile
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geometry. The general notion is that every letter inA is assigned a replacement rule tha
a d-dimensional ‘rectangular’ array of letters, and iterated application of the replace
rule results in an infinite sequence.

Fix a dimensiond and lengthsl1, l2, . . . , ld , positive integers with eachli > 1. The
location setfor thed-dimensional substitution arrays is denotedId where

Id = { � = (j1 . . . , jd), such thatji ∈ 0,1, . . . , li − 1 for all i = 1, . . . , d
}
. (3)

A substitutionS is a map fromA × Id into A. For each elemente ∈ A, it assigns a
map which we denoteSe : Id →A. For �k ∈ Id , the mappingS restricted to the element�k
is a mapping fromA to A which we denotep�k . We will frequently think ofS as a block
of maps(p�k)�k∈Id .

Example 1. An example of a substitution rule on the alphabetA = {0,1} with d = 2 and
l1 = l2 = 5 is given here:

S0(∗) =


0 1 1 1 0
1 1 0 1 1
1 0 0 0 1
1 1 0 1 1
0 1 1 1 0

 , S1(∗) =


1 0 0 0 1
0 0 1 0 0
0 1 1 1 0
0 0 1 0 0
1 0 0 0 1

 , (4)

where both blocks are located inZ2 as prescribed byI2, with their lower left corners a
the origin. If instead we wish to seeS as a matrix(p�k)�k∈I2 of maps onA, denote byg0
the identity map andg1 the map switching 0 and 1, we obtain:

S
(∗,I2) = (p�k)�k∈I2 =


g0 g1 g1 g1 g0
g1 g1 g0 g1 g1
g1 g0 g0 g0 g1
g1 g1 g0 g1 g1
g0 g1 g1 g1 g0

 . (5)

For example, we see thatp(0,0) = g0 andp(3,1) = g1.

Since the location setId has a total ofK = l1 · l2 · · · ld elements, we can consider t
size of the substitution to beK . Moreover, there is a naturalexpansion mapgiven by the
linear mapφ :Rd → R

d that acts on the basis vector�ei by multiplication byli , so that
φ( �ei) = li �ei . SinceK = det(φ), we can call it theexpansion constantof the substitution
Every element ofZd can be expressed in the form

�w = φ( � ) + �k
for some� ∈ Z

d and�k ∈ Id , so we can consider the substitutionS as an action fromAZ
d

into itself by assigning

ST
(
φ( � ) + �k) = ST ( � )(�k). (6)

The substitution can be considered to act on any subblock ofT in the obvious manner.

Definition 1.1. A substitution sequence forS is a nonperiodic, almost periodic sequen
invariant under the action ofSk for some positive integerk.
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Fig. 1. Part of a substitution sequence.

Example 1 (continued). In Fig. 1, we have used the tiling model to depict a portion o
substitution sequence given by (4). The origin is at the lower left of the image, 0 and
white and black unit squares, respectively, and we see three iterations of the subs
applied to 0. An interesting optical effect of the construction is that this image is a
ogram that can resolve itself in many ways, one of which shows three smaller bars
the tiling in the foreground and the rest dissolves into the background. Some peop
the image uncomfortable to look at, and that may be because of the interference b
many copies of positive and negative images.

By (6) we can consider the action ofSk on sequences. It is natural to considerSk as
a substitution mapping as well. When we do this we consider the blockSk(a) as being
defined on the set(Id)k = {� : 0� ji � lki −1}. A substitutionS is calledprimitive if there
is a positive integerk such that for eacha ∈ A, Sk(a) contains all of the elements ofA.
Conditions for primitivity for sequences are discussed in [16] and for tilings in [15].S
does not admit any periodic substitution sequences, then we refer to it as anonperiodic
substitution. Note that the substitution in Example 1 is both primitive (withk = 1) and
nonperiodic.

Considering a substitution sequenceT0 for a nonperiodic, primitive substitutionS , we
construct the tiling spaceX for T0 as described in (2). The reader should note that t
is an alternative method for constructingX given as follows. Consider thelanguageof the
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substitution to be the setL(S) comprised of all subblocks of blocks of the formSk(a), k ∈
Z

+ anda ∈ A. We may defineX to be the set of all sequencesT ∈ AZ
d

such that every
block inT is a translate of some block inL(S). By primitivity, T0 contains every possibl
Sk(a), so the space created via (2) must contain that created by usingL(S). And sinceT0
is contained in the space created byL(S) the two spaces must coincide. In this case
refer to(X,Z

d) as thedynamical system associated toS , and it will be minimal.

Definition 1.2. We say the substitutionS is a bijective substitutionif each mapp�k is a
bijection of the alphabetA.

The substitution rule given in (4) is an example of a bijective substitution. We wil
that bijective substitutions generate dynamical systems that are isomorphic to skew
ucts over odometer transformations. We will also see that if the substitution is bije
then the frequency distribution of letters fromA is uniform.

1.3. Examples

Example 2 (Chair tiling). The tiles of this tiling areL-triominoes; three squares attache
in anL shape. There is a well-known substitution given by:

It was shown in [18] that this tiling can be recoded as aZ
2 substitution on a four-lette

alphabet as follows:

0→
(

2 0
0 1

)
, 1→

(
1 3
0 1

)
, 2→

(
2 3
0 2

)
, 3→

(
2 3
3 1

)
.

This is not a bijective substitution and in fact has “coincidences” (see Section 3.2), i
ing that it has purely discrete spectrum.

Example 3 (Table tiling). The tiles of this tiling are simplydominoes: two squares attache
along an edge. There is a well-known substitution given by:

It was shown in [18] that this tiling can be recoded as aZ
2 substitution on a four-lette

alphabet as follows:

0→
(

2 3
0 0

)
, 1→

(
1 1
2 3

)
, 2→

(
0 2
1 2

)
, 3→

(
3 0
3 1

)
.

This is a bijective substitution and so, as discussed in Section 3.3, we have that th
continuous spectrum component to its dynamical system. A complete spectral ana
the system appears in [18].
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Fig. 2. Factoring the sequence from Example 4 onto two letters.

Example 4. We present one from a family of examples that was introduced in [4]. Le
l1 = l2 = d = 2 andA = {1,2,3,4, 1̄, 2̄, 3̄, 4̄}, we assign the substitution rule as follows

S(1) → 3 4̄
1 2

S(2) → 3̄ 4
1 2

S(3) → 3 4̄
1 2̄

S(4) → 3 4̄
1̄ 2

S(1̄) → 3̄ 4
1̄ 2

S(2̄) → 3 4̄
1̄ 2̄

S(3̄) → 3̄ 4̄
1̄ 2̄

S(4̄) → 3̄ 4̄
1 2̄

Note that the substitution for a lettera and its barred counterpart are opposite. I
apparent that the substitution is not bijective, but there are no coincidences (see Sect
and it is proved in [4] that there is an absolutely continuous component to the spe
Since what really matters is the placement of the barred elements in the tiling, in Fig
show six iterations of the letter 1 with the barred elements drawn black and the un
drawn white.

1.4. Unique ergodicity and the frequency measure

Self-similar tiling dynamical systems are uniquely ergodic (see [21] and refere
therein) with the frequency measure being the unique translation-invariant measur
result applies in our situation because the tiling model uses tiles that have area 1,
the frequencies for theZd action are the same as those for the tiling action. For a cyli
set[B] corresponding to a fixed blockB, the measureµ([B]) represents the frequency
occurrence of the blockB in any sequence inX [21]. We will discuss this measure as it
used in our context. Then, using the tiling model and relying heavily on Sections 2
of [21], we will give a condition forcing uniform frequency of letters.

Let S be a primitive, nonperiodic substitution with sizel1 · l2 · · · ld = K and letφ be
the natural expanding map. ThenS has an|A| × |A| subdivision matrixM defined by
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letting Mij be the number of letters of typeai in S(aj ). SinceS is primitive, Corol-
lary 2.4 in [21] implies that the largest eigenvalue ofM must be equal to|detφ| = K .
The Perron–Frobenius theorem (see [20]) states that there are unique (up to scala
plication) strictly positive right and leftPerron eigenvectors�r and�l for which

�l · �r = 1, and lim
n→∞K−nMn = �r · �l. (7)

Additionally, we know from [21] that�l should be taken to be the vector given by
volumes of the|A| tiles under consideration, which in our case are all 1. This implies∑|A|

i=1 ri = 1 and that

lim
n→∞K−nMn =


r1 r1 · · · r1
r2 r2 · · · r2
...

...
...

r|A| r|A| · · · r|A|

 .

Following [21], in order to find the frequency of a letterai in an arbitrary sequence inX,
it suffices to compute the frequency in larger and larger substituted blocks. By prim
it does not matter which type of block we substitute so we will look at iterations oa1.
Denote byNai

(B) the number of occurrences of the letterai in a blockB. Then

freq(ai) = lim
n→∞

Nai
(Sn(a1))

Kn
, (8)

sinceKn is the volume of the substituted blockSn(a1). The numerator is easily compute
since it is simplyMn

i1. Thus we have thatfreq(ai) = limn→∞ K−nMn
i1 = ri , and so com-

putation offreq(ai) reduces to computation of the right eigenvector forM .

Proposition 1.1. LetS be a primitive, nonperiodic substitution. ThenM has the property
that

∑|A|
j=1 Mij = K for all i ∈ 1,2, . . . , |A| if and only if the frequency of any letterai ∈A

is 1/|A|.

Proof. If
∑|A|

j=1 Mij = K , then the vector�r with each coordinate equal to 1/|A| is a right
eigenvector forM . Since�l · �r = 1 it must be the right Perron eigenvector forM sat-
isfying (7), and sincefreq(ai) = ri the result follows. Conversely, ifri = 1/|A| for all
i = 1,2, . . . , |A|, then since�r is a right eigenvector we have that

(M�r)i =
|A|∑
j=1

Mij/|A| = (K�r)i = K/|A|

and the result follows. �
Corollary 1.2. If S is a primitive, nonperiodic, bijective substitution, then the frequenc
any letterai ∈ A is 1/|A|.

Proof. The row sums ofM represent how many times a letterai appears in the substitu
tions of all letters inA taken together. SinceS is bijective,ai can appear in any given sp
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in the substitution blocks no more than once, and so we see that
∑|A|

j=1 Mij � K . But if
there is a spot in whichai never appears, then this would imply that some other letter f
A had to appear in that spot two times, and this would contradict the bijectivity ofS . So it
must be that

∑|A|
j=1 Mij � K , and we see that for a bijective substitutionS , the subdivision

matrix satisfies
∑|A|

j=1 Mij = K . �
The proposition also applies to the substitutions seen in [4] such as Example 4.

2. The odometer representation

Assume fixed a primitive, nonperiodic substitutionS on Z
d with lengthsl1, l2, . . . , ld ,

and let(X,Z
d ,µ) denote the dynamical system ofS . We will show that this dynamica

system factors onto a direct product ofd Kakutani odometers (i.e., adic transformatio
of lengthsl1, l2, . . . , ld , respectively. To show this, eachT ∈ X will be represented by
one-sided sequence of values fromId that codes the location of the origin with respec
levels of the hierarchical structure ofT . WhenS is a bijective substitution, we will show
that its dynamical system is measure-theoretically isomorphic to a skew product
d-dimensional odometer.

The representation shown here follows standard arguments done by Kakutani [8],
[9,10], Goodson [6], Ferenczi [2], Kwiatkowski [11], and others. However, since the
eralization to multidimensional actions is somewhat nontrivial, it seems worthwh
present the result. We begin with a brief description of a one-dimensional odometer

2.1. von Neumann–Kakutani odometers

The description of the classical one-dimensional odometer is based on [14]. Co
the set of digitsD = {0,1,2, . . . , l − 1} for somel ∈ Z. The odometer is a transformatio
on the spaceDN that acts on a sequence by increasing the first element that is les
l − 1, resetting the previous ones to zero, and leaving the rest alone. One should t
their automobile’s odometer withl = 10. For eachx ∈DN for which it makes sense, defin

η(x) = min{m such thatxm < l − 1}. (9)

Forx �= (l − 1, l − 1, l − 1, . . .), the odometer action is:

(
V (x)

)
n

=
{0 n < η(x),

xn + 1 n = η(x),

xn n > η(x)

(10)

and we defineV (l −1, l −1, l −1, . . .) = (0,0,0, . . .). Putting the product topology onDN

and considering the Bernoulli(1/l,1/l, . . . ,1/l) measure gives us an invertible measu
preserving map.

When we are concerned with the skew product representation of a substitution w
need to restrictDN to the setΣ of all sequences that are not eventually identically 0
identically l − 1. OnΣ the actionV is well-defined and invertible, andΣ is a set of full
measure. It is the measure-preserving system(Σ,V,µΣ) that forms the base of the ske
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product representation for bijective substitutions (described below) and for the dyna
systems in [4].

2.2. Factoring substitution systems onto odometers

To establish the factor map from the substitution dynamical system to the odomet
need the notion ofunique composition[22] of a sequenceT ∈ X (calledrecognizability
[13] in the one-dimensional case). The basic idea is that any sequence inX must look like
the image underS of a unique sequence that is also inX. That is to say, the letters i
T can be put together in a unique way to form composite blocks that are the ima
letters underS . The work of Solomyak [22] can be applied, considering our sequenc
tilings; or the work of Mossé [13] can be generalized to arrive at the definition ofunique
compositionfor Z

d substitutions: for everyT ∈ X, there exists a uniqueT 1 ∈ X and a
unique � ∈ Id such thatT = S(T 1) − � . WheneverS is nonperiodic and primitive th
result in [22] implies thatS has the unique composition property.

Unique composition implies that for anyM ∈ Z
+ there exists a uniqueT M ∈ X and

� ∈ Z
d with ji ∈ 0,1,2, . . . , lMi − 1 for all i ∈ 1,2, . . . , d such thatT = SM(T M) − � .

For any lettera ∈ T M , we callSM(a) − � a level-M block ofT , of typea. Each level-M
blockB of T is composed ofK level-(M −1) blocks ofT whose positions inside ofB are
indexed byId in the obvious manner. We define functionsOM :X → Id as follows: for
T ∈ X, OM(T ) is the position of the level-(M − 1) block ofT containing�0 in its level-M
block. We writeT 0 = T , so thatO1(T ) is the position ofT (�0) in its level-1 block.

With this map, we are ready to define our coding ofX into an odometer space. L
Σ0 = (Id)Z

+
denote the set of all one-sided sequences of vectors fromId . Let Σ ⊂ Σ0 be

the set of all sequences such that for alli = 1,2, . . . , d , theith coordinate is not eventuall
identically 0 orli − 1. Put the product topology onΣ0 and denote byµΣ the Borel prob-
ability measure assigning the measure 1/K to cylinder sets with one coordinate fixed,
thatΣ is a set of full measure. Then we have a measurable mapΘ : (X,µ) → (Σ0,µΣ)

given by

Θ(T ) = {
OM(T )

}∞
M=1.

It is clear thatΘ maps ontoΣ0 since there will always be a tiling situated according to
given sequence inΣ0.

Example 5. Let d = 2 and l1 = l2 = 2, so thatI2 = {(0,0), (1,0), (0,1), (1,1)} and
suppose thatS is a nonperiodic primitive substitution with these parameters. In Fig
we diagram the coding for an arbitrary sequenceT ∈ X. We have outlined the begin
ning of the level-M skeleton around the origin(0,0) for T , and we see thatΘ(T ) =
{(1,0), (1,1), (1,0), (0,1), . . .}.

Now let us examine what happens to the coding ofT when it has been translated b
the standard basis element�ei . A look at Fig. 4 will convince the reader thatΘ(T − �ei) and
Θ(T ) are identical in all but theith coordinate sequence. UnlessT is situated in a very
special way, there will be some smallestM for which bothT andT − �ei are in the same
level-M tile. TheM th coordinate of theith sequence ofΘ(T ) will be increased by one t
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Fig. 3. A sketch of how a typical sequenceT ∈ X codes intoΣ0.

Fig. 4. How the shift affects the coding.

obtain that ofΘ(T − �ei), and all previous coordinates will be reset to 0. But this is exa
the odometer action, which we now make precise.

Use the notation{�xm} ∈ Σ , leaving implicit thatm runs from 1 to∞, and write�xm ∈ Id

as�xm = (x1
m, . . . , xd

m). Thinking of{�xm} asd infinite sequences, we will haved odometers
each defined as in Section 2.1. We defineηi :Σ → Z

+ which keeps track of the first tim
an �xn can be augmented in theith coordinate and remain inId :

ηi

({�xm}) = min
{
m such thatxi

m < li − 1
}
. (11)

We define the odometer on theith coordinate to be:

(
Vi

({�xm}))
n

=


(x1

n, . . . , xi−1
n ,0, xi+1

n . . . xd
n ) n < ηi({�xm}),

(x1
n, . . . , xi−1

n , xi
n + 1, xi+1

n . . . xd
n ) n = ηi({�xm}),

(x1
n, . . . , xi−1

n , xi
n, x

i+1
n . . . xd

n ) n > ηi({�xm}).
(12)

Returning to the sequenceT of Example 5, we have thatη1(Θ(T )) = 4 and thatΘ(T −
�e1) will have the coding{(0,0), (0,1), (0,0), (1,1), . . .} as represented in Fig. 4.

So we see thatΘ intertwines the action of translation onX with the action ofV on Σ

so that we have a measure-theoretic factor map from(X,Z
d ,µ) onto(Σ0,V ,µΣ).
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2.3. Bijective substitutions as skew products over the odometer

Give the alphabetA the discrete topology with counting measureµA(a) = 1/|A| for
all a ∈ A. EveryT ∈ X is coded using the mapΨ :X → Σ0 ×A by

Ψ (T ) = ({
OM(T )

}∞
M=1,T (�0)

)
. (13)

The mapΨ is one-to-one on a set of full measure inX composed of tilings that encod
in the first coordinate toΣ . This is due to the bijectivity of the substitution: once we kn
what the symbol at the origin is and its position in its level-1 tile, we know the rest o
letters in the level-1 tile. But knowing the level-1 tile along with its position in its leve
tile allows us to fill in the rest of the level-2 tile. We can continue filling in the letters oT
in this fashion, and as long as the origin is not eventually always on the edge of its lem

blocks, we will uniquely specify the letters inT for all of Z
d . The set of all sequences th

are eventually always on the edge of their level-m blocks has measure zero and maps o
Σ0 − Σ .

The mapΨ is a measure-theoretic isomorphism between(X,µ) and (Σ × A,µΣ ×
µA). To check this, we can show that a generating set for the Borelσ -algebras have the
measures preserved byΨ . Let [B] be the cylinder set inΣ given by fixing the firstn
coordinates[B] = { �b1, �b2, . . . , �bn,∗,∗,∗, . . . .}. The collection of all sets([B], a) ⊂ Σ ×A
for all B and alla ∈ A will generate the Borelσ -algebra. NaturallyµΣ × µA([B], a) =
1/Kn · 1/|A|. The cylinder[B] not only fixes the location of the level-n block at the origin
precisely inside its level-(n + 1) block, it fixes all of the blocks down to the level-0 bloc
That is, we know the coding of any sequence inΨ −1([B], a) precisely out to thenth
place, and therefore the frequency of this block is 1/Kn. Fixing a tells us which of the|A|
possibilities our sequence is in, and so we find thatµ(Ψ −1([B], a)) must be 1/Kn · 1/|A|.

We are ready to define the cocycle mapsφi that keep track of the change on t
second coordinate ofΣ × A resulting from translation. Since the formula seems c
plicated, it will be useful to describe the cocycle for the example from Figs. 3 and 4
then write down the general formula. We know thatΨ (T ) = ({�xm},T (0,0)) = ({(1,0),

(1,1), (1,0), (0,1), . . .},T (0,0)) and thatΨ (T − (1,0)) = (V1({�xm}), (T − (1,0))(0,0))

= ({(0,0), (0,1), (0,0), (1,1), . . .},T (1,0)). But in order to define an action onΣ × A
that commutes with translation, we must be able to determine the second coordinat
out reference toT (1,0).

For each{�xm} ∈ Σ , we figure out the value ofT (1,0) inductively. KnowingT (0,0)

and knowing�x1 = (1,0) means that we can use the inverse of the substitution mapp(1,0)

to figure out the type of the level-1 block at the origin: it must have typep−1
(1,0)(T (0,0)).

(Note that the invertibility of the substitution map follows from its bijectivity.) Knowi
the type of the level-1 block and knowing that�x2 = (1,1) allows us to figure out the type o
the level-2 block at the origin: it must have typep−1

(1,1)p
−1
(1,0)(T (0,0)). We can continue in

this fashion until we have figured out the type of the level-4 block at the origin, and fo
sequence that is going to be enough because our shift to the left occurs inside thi
(which is to say,η1({�xm}) = 4). So we know the type of the level-4 block at the origin
determined by the bijection:(

P1
({

(1,0), (1,1), (1,0), (0,1), . . .
}))−1 = p−1 p−1 p−1 p−1 .
(0,1) (1,0) (1,1) (1,0)
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Now that we know the type of the level-4 block at the origin, we may use the maps
by V1({�xm}) = {(0,0), (0,1), (0,0), (1,1), . . .} to work our way back down to the type o
the letterT (1,0). The type of the level-3 block at the origin inT − (1,0) must bep(1,1)

applied to the type of the level-4 block, then the type of the level-2 block must bep(0,0)

applied to that, then the type of the level-1 block isp(0,1) applied to that, and finally th
type of the level-0 block isp(0,0) applied to that. That is, we can define a map that wo
its way back down to the level-0 block as:

P1
(
V1

({
(1,0), (1,1), (1,0), (0,1), . . .

})) = p(0,0)p(0,1)p(0,0)p(1,1).

Thus we can specify the type ofT (1,0) entirely by knowing the coding{�xm} and by
knowingT (0,0) by writing

T (1,0) = P1
(
V1

({�xm})) ◦ (
P1

({�xm}))−1T (0,0) = φ1
({�xm})T (0,0).

Now we can give the general definition of the cocycle mapsφi that act on the secon
coordinate of the coding to produce the correct letter change as we shift by�ei . We define
φi :Σ → SA in such a way that the mapVi × φi :Σ × A → Σ × A commutes with the
action of translation by�ei on the sequence spaceX. In order to figure out the type of th
next letter in the�ei direction in the tiling coded byΨ (T ) = ({�xm},T (�0)), we use the firs
ηi({�xm}) terms of{�xm} to figure out the type of the level-ηi({�xm}) block using the inverse
of the substitution maps, then use the firstηi({�xm}) terms ofVi({�xm}) to work our way
back down to the level-0 block we want. The iterative step in both cases can be defi
terms of a map

Pi

({�xm}) = p�x1p�x2 · · ·p�xηi {�xm} . (14)

So that we define the cocycle to be:

φi

({�xm}) = Pi

(
Vi

({�xm})) ◦ (
Pi

({�xm}))−1
. (15)

We can define theZd action onΣ ×A to be generated by the action

Vi × φi

({�xm}, a) = (
Vi

({�xm}), φi

({�xm})a)
, (16)

for eachi ∈ {1,2, . . . , d}. In this case it is clear by construction that the actions of
generators commute with the action of translation by�ei , and we have that

Vi × φi

(
Ψ (T )

) = Vi × φi

({
Om(T )

}
,T (�0)

)
= (

Vi

({
OM(T )

})
, φi

({
OM(T )

})(
T (�0)

))
= ({

OM(T − �ei)
}
,T ( �ei)

) = Ψ (T − �ei).

SoΨ is a measure-theoretic isomorphism between the dynamical systems(X,Zd ,µ) and
(Σ ×A,Z

d,µΣ × µA).
We have shown that our shift dynamical system is an almost|A|-point extension of the

product ofd odometers. It should be noted that in this form, it is not a group exten
Nonetheless, we will see in Section 4 a spectral decomposition which looks quite lik
for a standard group extension. In fact, one can refer to [16] to see a description o
to derive a group extension from this which is in some cases isomorphic and in all
closely related to our system.
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3. Spectral theory and bijective substitution sequences in Z
d

Consider the unitaryZd -action on a Hilbert space given byU � :L2(X,µ) → L2(X,µ)

with U � (f (T )) = f (T − � ) for all � ∈ Z
d . We can analyze the action ofZ

d on X by
consideration of the action ofU � on L2(X,µ). Thespectral coefficientsof an L2(X,µ)

function are given, for each� ∈ Z
d , by

f̂ ( � ) = 〈
U � f, f

〉 = ∫
X

U � f (T )f (T )dµ(T ). (17)

It is known that these coefficients form a positive definite sequence and that therefor
is a unique measureσf on thed-torus [19] with:

f̂ ( � ) =
∫
Td

z � dσf (z), (18)

wherez � = z
j1
1 · · · zjd

d . For a fixedf ∈ L2(X,µ), we consider thecyclic subspacegen-

erated by the closed linear span off asZ(f ) = span{U � (f ): � ∈ Zd}. The action ofU
restricted toZ(f ) is unitarily equivalent to the actionV � :L2(Td , σf ) → L2(Td , σf ) given
by V � (g(�z)) = z � g(�z). A survey of a wide variety of spectral results in the context of
namical systems appears in [7].

Any Borel measureσ on the torus can be decomposed into at most three mutually
gular parts: a discrete part corresponding to purely atomic measure, a singular con
part that is nonatomic but singular with respect to Lebesgue measure, and a part
absolutely continuous with respect to Lebesgue measure. It follows from [21] that
substitution sequence inZd has functions whose spectral measures are purely disc
This is because the expansion constantK of aZ

d substitution must be an integer, which
a Pisot number, and that is the condition precluding weak mixing. We have included
ples of substitution sequences having mixed spectrum: bijective substitutions, substi
like Example 4 (see [4]), and the “table” substitution of Example 3 (see [18]).

3.1. Eigenvalues and eigenfunctions

We refer to a constant�α ∈ R
d as aneigenvalueof the actionU � if there is a function

f ∈ L2(X,µ) for which

U � f = exp
(
2π i(�α · � )

)
f (19)

for all � ∈ Z
d . (Here �α · � denotes the usual dot product inR

d .) One can check that th
spectral measure of such an eigenfunction is the atomic measure supported on exp(2π i �α) =
(exp(2π iα1), . . . ,exp(2π iαd)) ∈ T

d . Every function with an atomic spectral measure is
the linear span of the eigenfunctions, which we denoteHD and call thediscrete compo
nentof the spectrum. Since the spectral measures of distinct eigenfunctions are m
singular, a nontrivial result from spectral theory is thatHD can be written as a single cycl
subspace.
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The discrete component ofL2(X,µ) for any substitution sequence of the type co
structed in this paper must contain eigenfunctions given by the odometer coding
eigenvalues for the odometer system take the form

�α =
(

m1

l
n1
1

, . . . ,
md

l
nd

d

)
,

wheremi andni are in 0,1,2, . . . (i.e., d-tuples of theli -adic numbers). One can spec
the value of the associated eigenfunctiong evaluated atT ∈ X by knowing the location o
�0 in the level-N tile of T for an appropriate choice ofN . Since each eigenvalue can ha
only one eigenfunction, we see thatg(T ) depends only on the coding ofT into Σ0 and not
onT (�0).

In many cases the odometer transformation forms the maximal equicontinuous
of the system. In some cases there may be additional eigenfunctions that arise f
underlying periodicity of a sort we describe next. In the one-dimensional, constant-l
case this happens when the “height” of the substitution is nontrivial; a complete cha
ization is proved in [1] and summarized in [3]. In the one-dimensional case, the heh
of a substitution of constant lengthq is defined to be:

h = max
{
n � 1, (n, q) = 1, n | gcd

{
a: u(a) = u(0)

}}
, (20)

whereu is a fixed point of the substitution. That is,h is the largest number that divides a
return times to the letteru(0) and is relatively prime toq.

To generalize this notion to higher dimensions, it is necessary to translate these co
relative to sublattices ofZd . We begin with a generalization of greatest common diviso
L1 andL2 are sublattices ofZd , we define(L1,L2) to be the smallest latticeL containing
bothL1 andL2, where the word “smallest” means that any other latticeL′ containingL1
andL2 must containL; it is the lattice generated byL1 andL2. Note that if one consider
the sublatticesnZ andmZ of Z, our definition gives the sublatticekZ, wherek = (n,m).
Thus ifn andm are relatively prime, we have that(nZ,mZ) = Z.

Following [21], choosing anyT ∈ X we define the set of return times

Ξ = { � ∈ Z
d : there exists�k ∈ Z

d with T (�k + � ) = T (�k)
}
. (21)

Note that this is well-defined independent ofT by minimality. Define the latticeL(Ξ)

to be the smallest lattice containingΞ . Then theheight latticeΛ is the smallest lattice
containingL(Ξ) for which (Λ,φ(Zd)) = Z

d . If Λ = Z
d , the height is said to betrivial .

Examples of substitutions with nontrivial height appear in Section 5.
LettingΛ∗ represent the dual lattice ofΛ (the lattice of all elements ofRd that have in-

teger inner product with all elements ofΛ), the eigenvalue group is given by
⋃

n�1 φ−nΛ∗.
Thus the height is trivial if and only if the odometer is the maximal equicontinuous fa

3.2. Coincidences and purely discrete spectrum

Recall that the location set for ak-times substituted letter is given by(Id)k = {� ∈ Z
d :

0 � ji < lki }. We say a substitutionS admits acoincidenceif there is ak ∈ 1,2, . . . and
a � ∈ (Id)k such thatSk(a, � ) = Sk(b, � ) for all a, b ∈ A. That is, if one iterates th
substitution enough times, there will be a location in which all of the letters agree.
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In [1] Dekking showed that for substitutions of constant length (thed = 1 case in this
paper), height 1 implies that coincidence is equivalent to purely discrete spectrum.
height is nontrivial, Dekking characterizes purely discrete spectrum in terms of c
dences in the “pure base” of the substitution. In Section 6 of [21], Solomyak adap
result to tilings ofR1 andR

2. Moreover, Theorem 6.1 in the same paper gives a suffic
condition for pure discrete spectrum for tilings ofR

d that applies to the sequences given
this paper. One can check that the hypotheses of Theorem 6.1 hold when aZ

d substitution
admits a coincidence, and thus we have purely discrete spectrum in this case.

3.3. Continuous spectrum

Bijective substitution sequences inZ
d do not have a purely discrete spectrum. One w

to see this is to exhibit a function inL2(X,µ) that is orthogonal to the eigenfunctions.
the trivial height case, this is a simple matter: take the alphabetA and any one-to-one ma
F :A → {1,2, . . . |A|}. Define the function

f (T ) = exp

(
2π i

F(T (�0))

|A|
)

. (22)

For any eigenfunctiong with eigenvalueα, we check:

〈U � g, f 〉 =
∫
X

U � g(T )f (T )dµ(T ) =
∫
X

e2π iα· � g(T )f (T )dµ(T )

=
∑
a∈A

∫
Xa

e2π iα· � g(T )e2π i F(a)
|A| dµ(T )

=
∑
a∈A

e2π i F(a)
|A|

(∫
Xa

e2π iα· � g(T )dµ(T )

)
,

whereXa is the cylinder set of all sequences withT (�0) = a. Sinceg is the eigenfunction
of a substitution of trivial height, it only depends on the odometer codings of tilings inXa .
Because of bijectivity eachXa has exactly one tiling for each coding inΣ ; moreover the
measure of any subset ofXa on whichg is constant is independent ofa. This shows tha
each of the integrals are equal to a constantC(g). So we have that〈

U � g, f
〉 = C(g)

∑
a∈A

e2π i F(a)
|A| = 0.

Sincef is orthogonal to all of the eigenfunctions, its spectral measure is purely con
ous. Because of its specialized nature, it can be used to compute correlation meas
sequencesT ∈ X.

If the height is nontrivial, one must be somewhat more careful with the definition o
functionf to ensure that it is also orthogonal to the extra functions in the discrete spe
that arise apart from the odometer.
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3.4. Correlation measures

When one has a one-sided sequence{un} of real or complex numbers, one can consi
thecorrelation measures[16] given by measures on the circle with spectral coefficient

γ (k) = lim
N→∞

1

N

∑
n<N

un+kun (23)

provided the limit exists. If the limit does not exist, one proceeds either by taking
lim sup or by going along subsequences. In the case of a primitive substitutive sequen
shift dynamical system generated by{un} is uniquely ergodic [12], and this implies that t
correlation measures will exist and be dominated by the maximal spectral type of th
dynamical system (see [16] for details). We can analyze a specific substitution seq
even if it is not on an alphabet of complex numbers by considering a bijection from
alphabetA onto the|A|th roots of unity as in (22). By considering every such bijecti
we will have a family of correlation measures which should in some sense enco
every autocorrelation possible for the sequence. Indeed, work in the one-dimension
in [16], which we do not generalize in this paper, indicates that the maximal spectra
of the system is probably dominated by the sum of these correlation measures.

In order to create a limit that would apply to substitution sequences inZ
d , we

can consider aVan Hove sequenceof subsets{An} of R
d , following the usage in

[21]. Define ∂(A)+r = {�x: dist(�x, ∂(A)) � r}, the set of all points inRd within r of
the boundary of the setA. A sequence of subsets will be a Van Hove sequenc
limn→∞ Vol(∂(An))

+r/Vol(An) = 0.
Consider a primitive substitution sequenceT and any bijectionf fromA into the|A|th

roots of unity as given in Eq. (22). ThenTf can be defined to be the sequence given
Tf ( � ) = f (T ( � )) for all � ∈ Zd , so thatTf is a sequence on a complex alphabet w
correlation coefficients

γf (�k) = lim
n→∞

1

Vol(An)

∑
�∈An

Tf ( � + �k)Tf ( � ). (24)

If A ⊂ C, then we can find the correlation measureγ without reference tof .
We prove that the correlation coefficients exist wheneverT is a primitive substitution

sequence by relying again on [21]. Note that the productTf ( � + �k)Tf ( � ) can assume onl
a finite number of values that depend entirely onT ( � + �k) andT ( � ). Given a, b ∈ A,
denote byPab the set of all sequencesT ′ ∈ X with T ′(�k) = a andT ′(�0) = b, and letχab

denote the indicator function ofPab. We can rewrite the correlation coefficient:

γf (�k) = lim
n→∞

∑
(a,b)∈A×A

1

Vol(An)

∑
�∈An

χab(T − � )f (a)f (b)

=
∑

(a,b)∈A×A
f (a)f (b) lim

n→∞
1

Vol(An)

∑
�∈An

χab(T − � )

=
∑

f (a)f (b)µ(Pab),
(a,b)∈A×A
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where the last step follows from the unique ergodicity proved in [21]: the interior lim
the integral ofχab overX, which is simply the frequency measure ofPab.

In unpublished computations the author found that for two specific examples on a
letter alphabet, the only continuous spectrum is singular. It seems that this will be th
for many (if not all) bijective substitutions. For instance, we have the following propos
whenever the substitution is generated by a cyclic group of orderN .

Proposition 3.1. Let N > 1 be a positive integer,w = exp(2π i/N), and let A =
{1,w,w2, . . . ,wN−1}. SupposeS has the property thatS(wa, �l) = waS(1, �l) for all a ∈ Z

and all �l ∈ Id . Then ifS is a primitive substitution we have that

γ
(
φ(�k)

) = γ (�k)

for all �k ∈ Z
d .

Proof. Let An be any Van Hove sequence, to be used in the computation ofγ (�k), and
assume thatT is a substitution sequence forS invariant underS1 by renamingS to be a
power of itself if necessary. The sequenceφ(An) is also a Van Hove sequence and we w
use this to computeγ (φ(�k)).

Fixing An, let � ∈ An and�l ∈ Id . We know thatT ( � ) = wa andT ( � + �k) = wb for
somea, b ∈ Z. SinceS(wb) = wb−aS(wa) by hypothesis, we now know thatT (φ( � ) +
φ(�k) + �l) = wb−aT (φ( � ) + �l). So for all�l ∈ Id we have that

T
(
φ( � ) + φ(�k) + �l )T (

φ( � ) + �l )
= wb−aT

(
φ( � ) + �l )T (

φ( � ) + �l ) = wb−a

= T ( � + �k)T ( � ).

Hence we see that

1

Vol(An)

∑
�∈An

T ( � + �k)T ( � ) = 1

Vol(φ(An))

∑
�∈φ(An)

T ( � + �k)T ( � )

and the result follows. �
In this case if there is any nonzero vector�k such thatγ (�k) �= 0, then immediately

we have that the correlation measure is singular continuous. The known example
Lebesgue components to the spectrum are not bijective [4].

4. Spectral decomposition of bijective substitutions

For some substitutions, the spectrumL2(X,µ) of the dynamical system associated toS
can be decomposed into orthogonal subspaces that are invariant under the action o
lation. The condition making the decomposition possible is the existence of transl
commutingletter inversions.
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4.1. Letter inversions

Since almost every sequenceT ∈ X is determined by its coding over the odometer alo
with the letter at the origin, we see that changingT (�0) will result in a change of all the
letters ofT in a specified manner, and we will arrive at a new sequenceT ′ ∈ X which
has the same odometer coding asT but different letters. Depending on the nature of
bijectionsp � constitutingS , there may exist translation-commutingletter inversionsσ ∈
SA defined by the equationσ(T (�k)) = T ′(�k) for all �k ∈ Z

d . So for each�ei , i ∈ 1,2, . . . , d ,
we would have thatσ(T − �ei(�0)) = T ′ − �ei(�0). When passed to the skew product t
would require that:

Vi × φi

({�xm}, σa
) = (

Vi

({�xm}), σφi

({�xm})a)
.

SinceVi ×φi({�xm}, σa) = (Vi({�xm}),φi({�xm})σa), we see thatφi({�xm})σa = σφi({�xm})a
for all possible{�xm}. So we obtain

σ−1φi

({�xm})σ = φi

({�xm}). (25)

So there is a translation commuting letter inversion if and only if there is aσ satisfying the
above equation for all possiblei and{�xm}.

It is not difficult to check that letter inversions form a groupG of bijections ofA and
that if σ ∈ G fixes any letter inA, then it is the identity. Moreover, if anyp � is the identity,
then every substitution bijectionp � must commute with eachσ ∈ G. If the substitution
bijections generate an abelian group, then they are clearly letter inversions.

Fix a lettera ∈A, and consider any sequenceT ∈ X with T (�0) = a. Forσ ∈ G, suppose
thatσa = a′. If a′ = a, thenσ must be the identity map. If not, then for any letterb ∈ A,
we can determineσb, sinceb must appear inT and the value ofσb is uniquely determined
becauseσ commutes with translation. Thus every letter inversion is completely determ
by where it sends the lettera, and this shows that|G| � |A|.

Proposition 4.1. LetS be given by(p�k)�k∈Id . Thenσ ∈ G iff σ commutes with all product

p�k1
p�k2

· · ·p�kN
, where�ki ∈ Id andN is the order of anyp�k .

Proof. Fix anN so thatpN
�k = id for some�k ∈ Id . One can consider the substitution m

given bySN , which, whenS is primitive and nonperiodic, will generate the same dyna
ical system(X,Z

d ,µ) thatS does. That is because ifT0 is a substitution sequence forS
which is invariant underSk , thenT0 is invariant underSNk , making it a substitution se
quence forSN as well. (This is also easily seen by comparing the languagesL(SN) and
L(S).) Note that the substitution bijections definingSN encompass all possible produc
of N of thep � permutations. Since by assumption one of these products is the iden
is clear that the letter inversions forSN must commute with all such products.

We claim that letter inversions forSN are letter inversions forS . The dynamical system
(X,Z

d ,µ) codes into skew products for both substitutions, and the codings must b
morphic. The cocycle actions will look different, but they must be identical because fo
givenT ∈ X, a translation-commuting letter inversion applied toT (�0) will be independen
of the coding. �
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4.2. Spectral decomposition in the presence of letter inversion

We now assume that our substitutionS has a nontrivial groupG of letter inversions. In
the event that thep � ’s generate an abelian group, that group is automatically the gro
letter inversions for the system. We will use the representation of the dynamical syste
skew product over an odometer to decomposeL2(X,µ) in terms of functions that are wel
behaved with respect to letter inversion. In Section 5, we list some examples satisfy
hypotheses of the following theorem and examine the consequences of it.

It should be noted that the result is very similar to an analogous result that hol
compact group extensions, even though our skew product formulation is not quite
form. In the case that{p�k, �k ∈ Id} generates an abelian group, one can rewrite the sy
as a group extension that is equivalent to our product. If it does not, a group exte
exists that dominates our system [16]. We include the result here so that the reader
how standard arguments about functional decomposition can be applied to this situa

Theorem 4.2. Let G ⊂ SA denote the group of translation-commuting letter inversi
on X, and letĜ denote the continuous group homomorphisms fromG to the complex uni
circle (i.e., the group characters ofG). If

∑
χ∈Ĝ χ(σ ) = 0 for all σ ∈ G with σ �= identity,

then

L2(Σ ×A,µΣ × µA) = H0 ⊕ Hχ1 ⊕ · · · ⊕ Hχ|Ĝ|−1
=

⊕
χ∈Ĝ

Hχ , (26)

wheref ∈ Hχ if f ({�xm}, σa) = χ(σ−1)f ({�xm}, a) for all σ ∈ G. The decomposition i
invariant under the action ofZd onΣ ×A.

Note that the condition
∑

χ∈Ĝ χ(σ ) = 0 for anyσ ∈ G is automatically satisfied ifG is
an abelian group.

Proof. Let f ∈ L2(Σ ×A,µΣ ×µA). Our goal is to decomposef into a sum of functions
that behave nicely with respect to letter inversions. We begin by noting that

1

|Ĝ|
∑
χ∈Ĝ

χ(id)f
({�xm}, a) = f

({�xm}, a)
,

sinceχ(id) is always equal to 1. Wheneverσ �= id we can write

1

|Ĝ|
∑
χ∈Ĝ

χ(σ )f
({�xm}, σa

) = 1

|Ĝ|f
({�xm}, σa

) ∑
χ∈Ĝ

χ(σ ) = 0.

Lettingσ range throughG we see that

f
({�xm}, a) = 1

|Ĝ|
∑
χ∈Ĝ

∑
σ∈G

χ(σ)f
({�xm}, σa

)
. (27)

Write

fχ

({�xm}, a) =
∑

χ(σ)f
({�xm}, σa

)

σ∈G
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so that the above decomposition is given byf = 1
|Ĝ|

∑
χ∈Ĝ fχ . We show thatfχ ∈ Hχ .

Fixing ρ ∈ G, we have thatσρ ∈ G for all σ ∈ G, and furthermoreσρ ranges throughG
asσ does. Thus

fχ

({�xm}, ρa
) =

∑
σ∈G

χ(σ)f
({�xm}, σρa

) =
∑
σ∈G

χ(σρ)χ
(
ρ−1)f ({�xm}, σρa

)
= χ

(
ρ−1) ∑

σρ∈G

χ(σρ)f
({�xm}, σρa

) = χ
(
ρ−1)fχ

({�xm}, a)
.

Next we show that ifχ �= ζ for χ, ζ ∈ Ĝ, thenHχ is orthogonal toHζ . Let f ∈ Hχ and
g ∈ Hζ , and letσ ∈ G such thatχ(σ) �= ζ(σ ). Using change of variables we have∫

Σ×A

f
({�xm}, a)

g
({�xm}, a)

d(µΣ × µA)

=
∫

Σ×A

f
({�xm}, σa

)
g
({�xm}, σa

)
d(µΣ × µA)

=
∫

Σ×A

χ(σ−1)f
({�xm}, a)

ζ
(
σ−1

)
g
({�xm}, a)

d(µΣ × µA).

Sinceζ(σ−1) = ζ(σ ), we have shown that〈f,g〉 = χ(σ−1)ζ(σ )〈f,g〉, and by choice o
σ this can only happen if〈f,g〉 = 0. Thusf andg are orthogonal and we have shown th
the decomposition is a direct sum.

Finally we show that each subspaceHχ is invariant under the action ofZ
d . Forf ∈ Hχ ,

and i ∈ {1,2, . . . , d}, we show that the function̂Uif is in Hχ , whereÛif ({�xm}, a) =
f (Vi({�xm}),φi({�xm})a). Sinceσ commutes with translation, we have that

Ûif
({�xm}, σa

) = f
(
Vi

({�xm}), φi

({�xm})σa
) = f

(
Vi

({�xm}), σφi

({�xm})a)
= χ

(
σ−1)f (

Vi

({�xm}), φi

({�xm})a) = χ
(
σ−1)Ûif

({�xm}, a)
.

ThusÛif ∈ Hχ , which finishes the proof. �

5. Examples: Applications of Theorem 4.2

The condition for decomposition of the spectrum of the dynamical system of a bije
substitutionS in Theorem 4.2 can manifest itself in a variety of ways. Interesting fi
groups from the symmetric group onA can be used to form the substitution permutat
matrix forS . We will show only a few examples in the two- and four-letter cases.

5.1. Two letter alphabets

It is convenient to letA = {1,−1}, so that the two bijections inSA can be seen as mu
tiplication by 1 (denotedg0) or −1 (denotedg1). The permutationsp � of the substitution
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matrix must include both of these elements to ensure that substitution is nonperio
this case the translation commuting letter inversions areG = {g0, g1} and the characte
groupĜ is:

g0 g1

χ0 1 1
χ1 1 −1

Assuming it is nonperiodic, the substitutionS will satisfy the conditions of Theo
rem 4.2. Therefore the isomorphic skew product space will have spectral decomp
L2(Σ ×A,µΣ × µA) = H0 ⊕ H1. Any f ∈ L2(Σ ×A,µΣ × µA) will be written as the
sum

f
({�xm}, a) = f ({�xm}, a) + f ({�xm},−a)

2
+ f ({�xm}, a) − f ({�xm},−a)

2
.

Of course functions inL2(X,µ) can be decomposed by considering their counterp
on the skew product space. Thus one can consider very basic functions such as in
functionsI1 or I−1 and find that their decompositions into discrete and continuous
are:

I1 = 1/2+ (I1 − 1/2), I−1 = 1/2+ (I−1 − 1/2).

In unpublished work on two specificZ2 substitutions, we have found that the spec
measures associated to the continuous spectrum functionsI1 − 1/2 andI−1 − 1/2 are
singular with respect to Lebesgue measure.

5.2. Four-letter alphabets

The next four examples involve bijective substitutions withA = {0,1,2,3}. The differ-
ence in their construction lies in the letter inversion groups allowed by the set of bije
{p � , � ∈ Id}. In each example we will haved = 2 andl1 = l2 = 3, and we keep the subs
tution permutation matrix(p � ) �∈I2 fixed, changing the actual bijections in each case.
substitution permutation matrix will be:

(p � ) �∈I2 =
(

g0 g1 g0
g1 g2 g1
g0 g1 g0

)
. (28)

Examples 6–9 will use the following four choices for the permutations, respec
(g0, g1, g2 expressed in cycle notation):

P1 = {
id, (01)(23), (02)(13)

}
,

P2 = {
id, (0123), (02)(13)

}
,

P3 = {
id, (01)(23), (0123)

}
,

P4 = {
id, (01)(23), (023)

}
.

The interested reader can check that, whenP1 is used, the substitution matrices on t
individual letters become:
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rations
Fig. 5. WithP1 there are four translation-commuting letter inversions.

Fig. 6. WithP2 the letter inversions form an order-four cyclic group.

0→
(0 1 0

1 2 1
0 1 0

)
, 1→

(1 0 1
0 3 0
1 0 1

)
, 2→

(2 3 2
3 0 3
2 3 2

)
, 3→

(3 2 3
2 1 2
3 2 3

)
.

Using grey-scale tiles to denote the letters, from 0 being white to 3 being black, w
look at the tilings that result from these choices. In each case Figs. 5–8 show four ite
of the 0 tile.
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ter
Fig. 7. UsingP3 there are only two letter inversions.

Fig. 8. WhenP4 is used there are no nontrivial letter inversions.

Example 6. WhenP1 is used it is not difficult to check thatg1 ◦ g2 = g3 = (03)(12), and
that these four bijections form an abelian subgroup of the symmetric group onA of order
four. Since that is the order ofA, we know that the group of translation-commuting let
inversions must beG = {g0, g1, g2, g3}.
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In order to use Theorem 4.2 we need the group characters forG:

g0 g1 g2 g3

χ0 1 1 1 1
χ1 1 1 −1 −1
χ2 1 −1 1 −1
χ3 1 −1 −1 1

This substitution has nontrivial height latticeΛ generated by the vectors(2,0) and
(1,1). One point of particular interest involves the factors onto two-letter sequence
can choose two letters to become 0 and let the other two become 1, and for two such
the resulting factor sequence will be a substitution sequence with a bijective substi
The remaining choice is periodic and that is due to the nontrivial height of this substit

Example 7. We begin by noting that the permutations inP2 form a cyclic group of orde
four by addingg1 ◦ g2 = g3 = (0321), so this forms the groupG of letter inversions. In
order to use Theorem 4.2, we again compute the group characters forG:

g0 g1 g2 g3

χ0 1 1 1 1
χ1 1 i −1 −i

χ2 1 −1 1 −1
χ3 1 −i −1 i

This substitution also has nontrivial height latticeΛ generated by the vectors(2,0) and
(1,1). With the choices of substitution permutation matrix and specific permutations
in this example, our system is the factor of a direct product of one-dimensional s
tutions. To see this, setS ′ to be the one-dimensional substitution taking 0→ 010,1 →
121,2 → 232, and 3→ 303. Taking the alphabetA′ to be the set of ordered pairs(j, k),
wherej, k ∈ {0,1,2,3}, we can construct a two-dimensional substitution on 16 letter
the direct product ofS ′ with itself. This substitution factors ontoS by taking any letter
(j, k) onto j + k mod 4. One should note that a different choice of substitution perm
tion matrix may avoid this problem.

Example 8. We begin by noting that the bijections inP4 form a nonabelian group of orde
8. The only nontrivial group element from the symmetric group onA that commutes with
g1 andg2 is σ1 = (02)(13), and so the groupG is composed ofσ0 = identityandσ1. Using
the substitution permutation matrix (28), we again get a primitive, nonperiodic substit
and so Theorem 4.2 does apply. The character table forG is given by:

σ0 σ1

χ0 1 1
χ1 1 −1

This example is intriguing because the continuous component should be more co
than the individual components in the previous two examples. Further analysis sho
done to determine the spectral multiplicity of the system.
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Example 9. With P4 as the choice of permutations there are no elements of the symm
group onA that commute with bothg1 and g2, and so there can be no translatio
commuting letter inversions forS . There is no character table to compute for this s
stitution and Theorem 4.2 does not apply.

It is unclear to what extent the qualitative differences between these four examp
due to the presence, absence, and nature of translation-commuting letter inversions

6. Related questions

What accounts for the striking differences in appearance among substitution seq
that have the same spectral decomposition as determined by Theorem 4.2? One
periment with the exact same set of bijections{p � }, but place them differently inId ,
and find that the resulting substitution sequences can range from having large con
components and/or obvious, coherent patterns to appearing quite randomly disorde
the while, the spectral information and frequency measures are identical! The sam
question also extends to a discussion of the diffraction (spectral) images of subst
sequences, which are related to the correlation measures. The interested reader ca
MATLAB program [5] to experiment withZ2 substitution sequences (up to|A| = 10); the
program allows manipulation of many aspects of the systems, some of which are b
the scope of this paper.

We have obtained, in Theorem 4.2, a decomposition of the spectrum in the eve
there exist a nontrivial group of letter inversions. Even so, it is unclear exactly what th
ture of the invariant pieces are. The spectral multiplicity is almost certainly bounded b|A|.
In the event that the group formed by the substitution bijectionsp � is abelian, it may be tha
each invariant piece is simple, and may have singular spectrum (this is what happen
one-dimensional case). If the situation is more like that in Example 8, where|G| < |A|, it
would appear that the invariant continuous component(s) are probably more compl
And in examples like Example 9, our theorem yields no information whatsoever—th
one continuous invariant component that seems to contain all of the continuous sp
functions. It should be noted that the functions in the continuous spectrum part wi
form of (22) are in a sense transverse to the decomposition in Theorem 4.2, and
investigation into their nature would certainly help answer the question about the
of the spectrum. The work in [16] should be used as a guide. Finally, it would be int
ing to give examples of constant-length substitution sequences with continuous sp
containing both the Lebesgue and singular types.
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