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Abstract Dopamine (DA) quinone as DA neuron-specific oxi-
dative stress conjugates with cysteine residues in functional pro-
teins to form quinoproteins. Here, we examined the effects of
cysteine-rich metal-binding proteins, metallothionein (MT)-1
and -2, on DA quinone-induced neurotoxicity. MT quenched
DA semiquinones in vitro. In dopaminergic cells, DA exposure
increased quinoproteins and decreased cell viability; these were
ameliorated by pretreatment with MT-inducer zinc. Repeated
L-DOPA administration markedly elevated striatal quinoprotein
levels and reduced the DA nerve terminals specifically on the
lesioned side in MT-knockout parkinsonian mice, but not in
wild-type mice. Our results suggested that intrinsic MT protects
against L-DOPA-induced DA quinone neurotoxicity in parkin-
sonian mice by its quinone-quenching property.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Dopamine (DA) is stable in the synaptic vesicle under nor-

mal physiological conditions. However, damaged DA neurons

may release excess cytosolic DA outside the synaptic vesicle,

inducing neurotoxicity through the generation of reactive oxy-

gen species (ROS) and reactive DA quinones [1]. DA quinones

are cytotoxic through their interaction with the sulfhydryl

group of cysteine amino acids in various bioactive molecules,

resulting predominantly in the formation of 5-cysteinyl-DA

[1,2]. Since cysteine sulfhydryl groups often form at the active

site of functional proteins, covalent modification of cysteine

residues by quinones to form 5-cysteinyl-DA irreversibly alters

or inhibits protein function. Indeed, DA quinone covalently

binds to key molecules in DA neurons including tyrosine

hydroxylase (TH), DA transporter (DAT), and parkin protein,

consequently inactivating those molecules [3–5]. The neurotox-

icity of DA quinones formed via auto-oxidation or enzymatic

oxidation has received attention recently as dopaminergic neu-
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ron-specific oxidative stress. In Parkinson’s disease, L-DOPA

therapy is a standard approach as it is designed to replenish

the loss of DA from dopaminergic neurons. Despite the

marked benefits of L-DOPA, long-term use may cause adverse

effects, especially motor fluctuations including the wearing-off

phenomenon and dyskinesia, as well as psychiatric symptoms

[6]. In advanced Parkinson’s disease, L-DOPA does not com-

pletely replenish DA because few dopaminergic neurons re-

main in the nigrostriatal pathway. The toxicity of L-DOPA

and DA has been well documented. We and other groups dem-

onstrated that L-DOPA itself is a potential L-DOPA quinone

radical and that the repeated administration of L-DOPA in-

creases lipid peroxidation in the striatum of parkinsonian mice

[7–10]. Controversy remains, however, regarding the non-toxic

or protective effects of L-DOPA in naive animals or moder-

ately lesioned parkinsonian models [8,11].

DA-induced formation of DA quinones and the consequent

dopaminergic cell damage in vitro and in vivo are successfully

prevented by treatment with superoxide dismutase, glutathione

(GSH), and some thiol reagents due to their quinone-quench-

ing activity [3,12–16]. The sulfhydryl group of free cysteine in

GSH and thiol reagents competes with the sulfhydryl group on

cysteine in functional proteins bound by DA quinones. Metal-

lothioneins (MTs) are a family of low molecular weight, cys-

teine-rich (30% of the protein), ubiquitous, and inducible

intracellular proteins that bind to heavy metals such as zinc,

copper, and cadmium, participating in metal homeostasis

and detoxification [17]. The mammalian MT family comprises

four isoforms: MT-1, MT-2, MT-3, and MT-4. While MT-3 is

predominantly brain-specific, expressed in neurons and stimu-

lated glial cells [18], the two major isoforms, MT-1 and -2, are

expressed in most organs including the brain. MT-1 and -2

help to regulate metal homeostasis in the brain, as well as neu-

ral protective functions in various pathological and inflamma-

tory conditions [17,19]. In fact, MT-1 is more abundantly

expressed in astrocytes than MT-3 [17]. Attention has been fo-

cused on MTs as radical scavengers because of their abundant

thiol groups, which participate exclusively in the formation of

metal-thiolate clusters [17,20,21]. For example, MT-1 and -2

are considered by some investigators to have a therapeutic po-

tential by providing neuroprotection [19,22]. MT-1 and -2

genes (but not MT-3 or -4) are highly inducible by several hea-

vy metals such as zinc, cadmium, mercury, and copper, with

zinc the most potent of these in vitro and in vivo [23,24]. This
blished by Elsevier B.V. All rights reserved.
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study examined the effects of MT on DA quinone-induced

neurotoxicity using DA-treated dopaminergic cells and L-

DOPA-injected MT-1- and 2-knockout or wild-type (WT)

hemi-parkinsonian model mice.
2. Materials and methods

2.1. ESR spectrometry of semiquinone radicals from DA
The spectra of semiquinone radicals generated in vitro from DA

were recorded with an electron spin resonance (ESR) spectrometer
(JES-FR30, JEOL, Tokyo, Japan) using a flat quartz cuvette as re-
ported previously [13]. DA was dissolved in 10 mM phosphate buffer
(PB, pH 7.4), and the pH was adjusted to 7.0 by adding 0.1 M NaOH
at 4 �C. For the preliminary experiment on time-dependency, the pH-
adjusted DA (5 mM) was immediately incubated for 0.75–10 min at
37 �C, and the spectra for these combinations were analyzed. The rel-
ative peak height of the second signal of the semiquinone radical spin
adduct compared to a manganese ion signal as internal standard was
evaluated, since this is directly proportional to double integration of
the spectra. For the simultaneous incubation of MT-1 recombinant
protein (Sigma–Aldrich, St. Louis, MO), the pH-adjusted DA
(5 mM, pH 7), with or without various concentrations of MT-1
(100 nM to 50 lM) dissolved in 10 mM PB, was immediately incu-
bated for 1 min at 37 �C, and the spectra for these combinations were
analyzed. The ESR spectrometer was set as follows to estimate semi-
quinone radicals, magnetic field, power, modulation frequency, modu-
lation amplitude, response time, temperature, amplitude, and sweep
time: 335.5 ± 5 mT, 4 mW, 9.41 GHz, 125 lT, 0.1 s, 25 �C, 1 · 1000,
and 1 min, respectively.

2.2. Cell culture
Dopaminergic CATH.a cells (ATCC; #CRL-11179), derived from

mouse DA-containing neurons, were cultured at 37 �C and 5% CO2

in RPMI 1640 culture medium (Invitrogen, San Diego, CA) supple-
mented with 4% fetal bovine serum, 8% horse serum, 100 U/ml penicil-
lin, and 100 lg/ml streptomycin. Cells were seeded in 96-well culture
plates to measure cell viability, and in 6-well plates for extraction of
total RNA used for the measurement of MT-1 mRNA expression,
and preparation of total cell lysates to measure protein-bound qui-
none, at a density of 1.0 · 105 cells/cm2.

2.3. Metallothionein induction by zinc treatment in CATH.a cells
Expression of MT-1 mRNA in CATH.a cells was examined after

treatment with ZnCl2 (25–50 lM) for 16–40 h by RT-PCR using spe-
cific primer sets for MT-1 genes: 5 0-TCACCAGATCTCG-
GAATGG-30 (20 lM) as the upstream primer and 5 0-CAGGG-
TGGAACTGTATAGGA-30 (20 lM) as the downstream primer.
After reverse transcription of extracted total RNA from CATH.a cells,
PCR was performed under the following conditions: 95 �C for 1 min,
55 �C for 1 min, for 30 cycles. Each PCR reaction mixture was electro-
phoresed on a 2% agarose gel, and the MT-1 signals visualized by
staining with ethidium bromide. b-Actin cDNA was simultaneously
amplified as an internal control.

2.4. WST-1 assay for measurement of cell survival
CATH.a cells were exposed to 100–200 lM DA diluted in H2O for

24 h with/without pretreatment with 30 lM ZnCl2 for 24 h. Cell viabil-
ity was determined by a colorimetric WST-1 assay (Wako Pure Chem-
ical Industries, Osaka, Japan), which is a modification of the standard
MTT assay [13].

2.5. Animal experiments
Homozygous MT-1-, -2-KO (MT KO) mice were purchased from

Jackson Laboratories (Bar Harbor, ME). The 129/Sv mice were
employed as WT controls, since the KO mice were raised on a 129/
Sv genetic background. All animal procedures undertaken in this study
accorded strictly with the Guidelines for Animal Experiments at Oka-
yama University Medical School. Unilateral striatal lesions were gen-
erated by intrastriatal injections of 6-OHDA as reported previously
[25]. Ten micrograms of 6-OHDA was injected at two sites in the right
striatum of KO and WT mice (9–10 weeks old) at the following coor-
dinates: A + 0.7 mm, L + 2.0 mm, V + 3.0 mm; A + 0.2 mm,
L + 2.4 mm, and V + 3.0 mm from the bregma according to the atlas
of the mouse brain [26]. Apomorphine-induced rotation tests were per-
formed 2 weeks after the 6-OHDA-injection to confirm lesion induc-
tion. Mice that exhibited asymmetric rotation behavior towards the
contralateral side of >50 turns every 10 min after apomorphine injec-
tion (0.5 mg/kg, s.c.) were selected for subsequent experiments. Two
weeks after the apomorphine test, hemiparkinsonian mice were intra-
peritoneally injected with L-DOPA/carbidopa (50/5 mg/kg/day) sus-
pended in 0.5% methylcellulose once a day for 7 days. One day after
the final administration, animals were used to assay protein-bound
quinone formation or for immunohistochemistry.

2.6. Measurement of protein-bound quinone (quinoprotein)
CATH.a cells were exposed to 100–150 lM DA for 24 h with/

without pretreatment with 30 lM ZnCl2 for 24 h before preparation
of total cell lysates. Cell lysates were prepared with 10 lg/ml phenyl-
methylsulfonyl fluoride in ice-cold RIPA buffer [phosphate buffered
saline; PBS (pH 7.4), 1% NP-40, 0.5% sodium deoxycholate, and
0.1% sodium dodecyl sulfate]. For hemiparkinsonian MT KO/WT
mice injected with L-DOPA/carbidopa, the striatal tissue was homo-
genized with 50 mM PB (pH 7.4), and then the same volume of 10%
trichloroacetic acid was added for protein precipitation. The precipi-
tate centrifuged at 1000 · g for 10 min was washed twice with ethanol,
further treated with chloroform-methanol (2:1, v/v), vortexed vigor-
ously, and centrifuged at 5000 · g for 10 min. The delipidated protein
precipitate was suspended with 2 M potassium glycinate (pH 10). For
detection of protein-bound quinones (quinoprotein), the NBT/glycin-
ate assay was performed on lysates as described previously [27]. Briefly,
the protein sample was added to 500 ll of NBT reagent (0.24 mM
NBT in 2 M potassium glycinate, pH 10) followed by incubation in
the dark for 2 h on a shaker. Absorbances were measured at 530 nm.

2.7. Tissue preparation for immunohistochemistry
Mice were transcardinally perfused with saline followed by a fixative

containing 4% paraformaldehyde and 0.35% glutaraldehyde in 0.1 M
PB (pH 7.4) under sodium pentobarbital anesthesia (70 mg/kg, i.p.) 1
day after L-DOPA/carbidopa treatment of hemiparkinsonian MT
KO/WT mice. The perfused brains were postfixed for 24 h in 4% para-
formaldehyde and then cryoprotected in 15% sucrose in PB for about
48 h. Brain snap-frozen with powdered dry ice was cut coronally on a
cryostat at levels containing the mid-striatum (+0.6 to +1.0 mm from
the bregma) and the substantia nigra pars contacta (SNpc) (�2.8 to
�3.0 mm from bregma) at 20-lm thickness.

2.8. Immunohistochemistry
TH-immunopositive cells in the SNpc and striatum, and DAT-

immunopositive cells in the striatum were stained by standard free-
floating immunohistochemistry. The sections were incubated with
anti-TH rabbit polyclonal antibody (diluted 1:5000; Protos Biotech,
New York, NY) or anti-DAT rat monoclonal antibody (diluted
1:1000; Chemicon International, Temecula, CA) for 18 h at 4 �C, fol-
lowed by incubation for 2 h at room temperature with biotinylated
goat anti-rabbit IgG secondary antibody for TH (diluted 1:1000; Vec-
tor Laboratories, Burlingame, CA) or biotinylated rabbit anti-rat IgG
secondary antibody for DAT (diluted 1:1000; Vector Laboratories).
Following washes in 10 mM PBS containing 0.2% Triton X-100, the
sections were incubated with avidin–biotin peroxidase complex (di-
luted 1:2000, Vector Laboratories) for 1 h at room temperature. TH-
or DAT-immunopositive cells were visualized by 3,3 0-diaminobenzi-
dine, nickel, and H2O2. TH-immunoreactive neurons in the SNpc were
counted manually under a microscope at ·100 magnification using a
superimposed grid. The boundary between the SNpc and ventral teg-
mental area was defined as a line extending dorsally from the most
medial boundary of the cerebral peduncle. Counting was performed
blindly. The relative density of TH- or DAT-positive cells over the en-
tire area containing midstriatum was assessed microscopically at ·40
magnification using a Macintosh computer-based image analysis sys-
tem (NIH Image J 1.37v).

2.9. Protein measurement
Protein concentration was determined by the Bio-Rad DC protein

assay kit (Bio-Rad, Richmond, CA), based on the Lowry assay, using
bovine serum albumin as a standard.
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2.10. Statistical analysis
Results are presented as means ± S.E.M. Statistical significance was

determined by one-way or two-way ANOVA followed by post hoc
Fisher’s PLSD test. A P value less than 0.05 denoted the presence of
a statistically significant difference.
3. Results and discussion

3.1. Effects of MT-1 on DA-semiquinone formation in vitro

DA at neutral pH produced an ESR signal consistent with

semiquinone radical formation, characterized by four waves

(Fig. 1A). DA incubated at 37 �C started forming these DA-

semiquinone radicals immediately within 1 min, at which time

the signal peaked before gradually decreasing for 10 min (data

not shown). The simultaneous incubation of MT-1 recombi-

nant protein (100 nM to 50 lM) with DA at neutral pH

(5 mM) for 1 min at 37 �C dose-dependently decreased the for-

mation of DA-semiquinone radicals (Fig. 1A,B). We reported

previously that DA agonist, pergolide, also scavenges DA sem-

iquinones [25]. The scavenging effect of MT-1 on DA semiqui-

nones was stronger than that of pergolide, with MT-1 active at

lower concentrations (1–50 lM) than pergolide (100 lM–

2 mM). We also examined the effects of MT-1 on the generated

DA-semiquinone radicals. Following an advance 1-min incu-

bation of DA at 37 �C, MT-1 was added and incubated for a

further 1 min at 37 �C. The postincubation of MT-1 also de-

creased the signal intensity of the DA-semiquinone radicals

generated (data not shown), indicating a possible direct inter-

action of MT-1 with the DA semiquinones, probably through

its abundant cysteine residues.
Fig. 1. Effect of MT-1 on DA-semiquinone formation in vitro. (A) Rep
incubation at neutral pH (5 mM) for 1 min at 37 �C with/without MT-1 (1, 1
semiquinone radical formation in vitro. DA at neutral pH (5 mM) was simul
and then the relative signal intensity of DA-semiquinone radicals was measu
peak height of the second signal of the semiquinone radical spin adduct (*

means ± S.E.M. expressed as a percentage of the signal intensity for DA-sem
3.2. Effects of zinc on MT-1 mRNA expression and DA-induced

neurotoxicity in CATH.a cells

DA exposure (100–200 lM) for 24 h dose-dependently in-

duced cell death in CATH.a cells (Fig. 2B). Levels of quino-

protein formation also increased with DA treatment (100,

150 lM) for 24 h (Fig. 2C), coinciding with cell toxicity

(Fig. 2B). Zinc induces MT-1 and -2 mRNA and protein

expression under various conditions [22,28]. To examine

whether MT-1 could protect against DA-induced neurotox-

icity, we first confirmed the dose-dependent induction of

MT-1 mRNA by treatment with ZnCl2 (25–50 lM) for 16–

24 h in CATH.a cells (Fig. 2A). Since zinc itself is toxic for

CATH.a cells at high doses, we used ZnCl2 at a dose of

30 lM to induce MT-1 in the subsequent experiments on

DA-induced cell damage. Pretreatment of CATH.a cells with

this dose significantly reduced DA-induced neurotoxicity

(Fig. 2B) and blocked DA-induced elevation of quinoprotein

levels (Fig. 2C).

3.3. Involvement of MT in L-DOPA-induced quinoprotein

formation in hemiparkinsonian mice

We reported previously that repeated L-DOPA administra-

tion markedly increased DA-quinone formation in the stria-

tum of hemiparkinsonian mice [25]. To clarify the

involvement of MT-1 and -2 in quinoprotein formation

in vivo, we examined the striatal quinoprotein levels in hemi-

parkinsonian mice using L-DOPA-treated MT KO and WT

mice. Repeated L-DOPA administration (50 mg/kg/day for 7

days), which increases cytosolic free DA [7,25], resulted in

marked elevation of striatal quinoprotein levels specifically in

the ipsilateral striatum of MT KO mice (Fig. 3). In contrast,
resentative ESR spectra of DA-semiquinone radicals following DA
0, or 50 lM). (B) Effects of simultaneous incubation of MT-1 on DA-
taneously incubated with MT-1 (100 nM to 50 lM) for 1 min at 37 �C,
red by ESR spectrometry. The signal intensity was evaluated from the
) relative to the height of the MnO signal. Each value represents the

iquinone radicals in four independent experiments.



Fig. 2. Effects of ZnCl2 on MT-1 mRNA expression, DA-induced neurotoxicity, and quinoprotein formation in CATH.a cells. Semiquantitative
analysis of MT-1 mRNA expression by RT-PCR (A). CATH.a cells were pretreated with 25–50 lM ZnCl2 for 16–24 h. Each value is expressed as the
means ± S.E.M. of the band-intensity ratios corresponding to MT-1 mRNA and b-actin mRNA (n = 4). *P < 0.05, **P < 0.001 vs. untreated control
group. Neuroprotective effects of ZnCl2 pretreatment against DA-induced neurotoxicity (B). CATH.a cells were pretreated with 30 lM ZnCl2 for
24 h and subsequently treated with 100–200 lM DA for 24 h. The cell viability was measured by WST-1 assay. Each value is expressed as the
means ± S.E.M. (n = 6) expressed as a percentage of each control. *P < 0.001 vs. each control group without DA treatment, #P < 0.01, ##P < 0.001
vs. DA dose-matched controls without ZnCl2. Effects of ZnCl2 on DA-induced quinoprotein formation (C). CATH.a cells were pretreated with
30 lM ZnCl2 for 24 h and subsequently treated with 100–150 lM DA for 24 h. Each value is expressed as the mean ± S.E.M. of OD 530/mg protein
(n = 6). *P < 0.01, **P < 0.001 vs. control group without DA treatment, #P < 0.001 vs. DA dose-matched controls without ZnCl2.

Fig. 3. Effects of repeated administration of L-DOPA/carbidopa (50/
5 mg/kg/day) for 7 days on the levels of quinoprotein formation on the
non-lesioned control side (contra) and 6-OHDA-lesioned parkinsonian
side (ipsi) of the striatum in hemi-parkinsonian WT and MT-1, -2-KO
mice. Each value is the mean ± S.E.M. of 4–6 animals. **P < 0.001 vs.
control side (contra) of each group. +P < 0.01 vs. the same side of the
vehicle-treated group. #P < 0.01 vs. each treated WT mice.
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quinoprotein levels in the striatum of WT mice with/without

L-DOPA administration were unchanged (Fig. 3). These
results indicate that MT proteins protect against excess DA-

induced quinone formation in the lesioned striatum. The

abundant cysteines in MTs [17] possibly compete with quino-

protein formation by binding to the DA quinones. Cysteine-

rich protein parkin is also susceptible to DA-induced solubility

alterations [29]. Therefore, the protective effects of MTs

against DA quinone-induced toxicity in vitro and in vivo could

reflect the ability to bind and scavenge DA semiquinones via

their cysteine residues.

The quinoprotein formation was markedly elevated specifi-

cally in the parkinsonian striatum after repeated L-DOPA

administrations in our previous study [25]. However, the

quinoprotein levels were unchanged in the striatum of WT

129/Sv mice with/without L-DOPA administration in the pres-

ent study. This discrepancy may be due to differences in mouse

strains between the tyrosinase-null albino ICR mice used in

our previous work and the tyrosinase-expressing 129/Sv used

here, since tyrosinase is also protective against DA-quinone

toxicity [30].
3.4. Aggravation of 6-OHDA-induced dopaminergic

neurotoxicity in MT-1, -2-KO mice brain

Based on the L-DOPA-induced increase in quinoprotein lev-

els in the 6-OHDA-injected striatum of MT KO mice, we
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examined dopaminergic neurotoxicity in hemiparkinsonian

MT KO and WT mice that were repeatedly injected with L-

DOPA. WT mice showed a significant decrease in the relative

density of striatal TH-immunoreactivity on the 6-OHDA-in-

jected ipsilateral side, and L-DOPA administration had no

additional effect. In contrast, the TH-immunopositive signal

was markedly reduced on the lesioned side in the striatum of

MT KO mice following repeated L-DOPA administrations

(Fig. 4A,B), corresponding to quinoprotein formation

(Fig. 3). We also evaluated changes in DAT in the striatum

and dopaminergic neuronal loss in the SNpc of both WT

and MT KO mice. The relative density of striatal DAT immu-

noreactivity was significantly decreased on the 6-OHDA-in-

jected side in all mice (Fig. 4C,D), as was the case for nigral

TH-immunopositive dopaminergic neurons on the lesioned

side (Fig. 4E,F).

In our previous study, 6-OHDA-induced toxicity to DA

neurons was more severe in the same MT KO mice compared

with WT mice [31]. Several reports have suggested a neuropro-

tective action for MTs against treatment with various dopami-
Fig. 4. Dopaminergic neurotoxicity in hemiparkinsonian WT and MT-1, -2-K
day) for 7 days. Representative TH- (A) and DAT-immunostaining (C) in stri
WT (129/Sv) and MT-1, -2-KO mice. Quantification of the relative density o
the striatum, and the number of TH-immunopositive cells in the SNpc (
mean ± S.E.M. of optical density or the number of TH-positive cells of 5 an
each group. +P < 0.01 vs. the same side of the vehicle-treated group. #P < 0
nergic neurotoxins [28,32]. In addition, Xie et al. [22] showed

expression of the MT-1 and -2 genes following MDMA treat-

ment and that overexpression of MT protein could protect

against MDMA-induced toxicity to DA neurons in mice. To-

gether with previous reports, our present data indicate that

endogenous MT proteins provide protection against the

long-term L-DOPA treatment-induced DA quinone neurotox-

icity in parkinsonian models by quenching the DA quinones.

Dopaminergic neurotoxicity by 6-OHDA injection was ob-

served on the lesioned side of both WT mice and MT KO mice,

although quinoprotein formation was markedly elevated spe-

cifically on the parkinsonian side of only the L-DOPA-treated

MT KO mice. This discrepancy may indicate that 6-OHDA

produces dopaminergic neurotoxicity not only through the

production of DA quinones, but also by generating ROS such

as superoxide anions from the toxin. Interestingly, even on the

control side of the MT KO mice, repeated L-DOPA adminis-

trations significantly reduced the striatal TH- and DAT-immu-

nopositive signals and the nigral TH-immunopositive neurons

(Fig. 4). These results suggested that deficiencies in MT-1 and
O mice after repeated L-DOPA/carbidopa administration (50/5 mg/kg/
atal sections, as well as TH-immunoreactive neurons in the SNpc (E) of
f TH-immunopositive signals (B), DAT-immunopositive signals (D) in
F) of WT and MT-1, -2-KO mice. Each value is expressed as the
imals per group. *P < 0.05 and **P < 0.001 vs. control side (contra) of
.01 vs. each treated WT mice.
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-2 render dopaminergic neurons more vulnerable to L-DOPA

toxicity.

In conclusion, this study implicates DA-quinone neurotox-

icity caused by MT dysfunction in the pathogenesis and/or

progression of Parkinson’s disease and other dopaminergic

neurodegenerative conditions.
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