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Abstract--lt is shown, on examples, how to compute the balance set and the balance number 
in Vector Optimization Problems (VOPs) of different nature. New developments are presented con- 
cerning possible interrelation between the balance set and the balance number, a new notion of the 
projection of the balance set onto the parameter space, new approaches for solving VOPs with un- 
bounded objective functions, and some approximation techniques in determining the balance set. 
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1. I N T R O D U C T I O N  

There is extensive li terature on multiobjective optimization [1-38]. In a case of conflicting objec- 

tives, all known methods t ry  to subst i tute several objective functions by a single one either for 
the whole problem (outright scalarization) or for subproblems solved in succession. Whatever  the 
method,  it presents a certain solution of some other problem, not the original one, which solution 
is then offered as a subst i tute tha t  might be more or less good for the original problem. Once a 

solution is on hand, the margins ~/i = c - c~ can be calculated where c~ is the minimum for each 
partial  scalar problem min f i ( x ) ,  x • X C R n, if computed beforehand, and c is the value of the 
objective function delivered by t h e  solution of a scalarized version of the original problem. If  the 
values ~h are unacceptable,  then another scalarized problem should be constructed and solved to 
present other possible margins ~/~1 = Cl - ci for approval, etc. 

I t  would be clearly advantageous, if decision makers could have an equation, say, 

= = 0, (1.1) 

from which they  could choose the best possible values of r}~ in advance. Such an equation deter- 
mines a set in ~-space called the balance set  [39,40]. 

In this paper  we consider vector optimization problems (VOPs) 

minimize { f l ( x ) , . . . ,  fro(x)}, subject to x • X, (1.2) 

where X is a compact  set in R n and f~ is a real-valued function over X,  i = 1 , . . . ,  m. 
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In order to simplify the presentation, we briefly review some important  concepts and definitions. 
For more detail, the reader is referred to [39,40]. 

Let ci = min{fi(x),  x • X}, then X~ = {x • X : f i (x)  = c~}, i = 1 , . . . ,  m, are referred to as 
the sets of exact partial global solutions of the VOP. We define the sets of 7]-precise partial global 
solutions as X ,  Ti = { x  • X : f~ (x )  - c~ <_ 7]}; if cni = { m a x  f i ( x ) ,  x • X~i}, then cv~ - ci <_ 7]. 

The VOP is said to be balanced if the set X ° m X = n i= l  ~ ~ 0, otherwise it is called unbalanced. 
Given 7] > 0, the VOP is said to be 7]-balanced if the set 

m 

x o  = N x , , ,  o, (1 .3)  
i----1 

otherwise it is called 7]-unbalanced. Here 7] is common for all solution sets X~.  
The quanti ty 7]0 = min{7], Xn ° ~ 0} _> 0 is called the balance number of the VOP. 
The precision can be different for every objective function reflecting its relative importance. 

An m-tuple 7]' = {W1,..., 7]rn}, 7]i _> 0, is called a balance point if the intersection 

m 

x°, = n x, ,  ¢ o, (1.4) 
i = 1  

and every such intersection with one 7]i replaced by a smaller positive number is empty. A set 

of all balance points is called the balance set. In many cases this set is defined by an equation, 

such as (1.1). 
The examples collected in this paper show how to retrieve the balance set in different problems 

and what use can be made of it in the natural nonscalarized solution of VOPs. All examples are 
taken from the literature and present different situations. In this experimental study, we shall 
also see some new aspects of the balance set approach to multicriteria optimization. 

2. T W O  C R I T E R I A  IN O N E  V A R I A B L E  

We start  with a simple bi-objective problem developed by TenHuisen and Wiecek [30] in order 
to illustrate a scalarization method based on generalized Lagrangian duality 

minimize { ~ +  1, 1 - x} ,  subject to x • X = [0, 7]. (2.1) 

Here, exact partial solutions are cl = 1, X l  = {0}, and c2 = -6 ,  X2 = {7}. The problem is 
unbalanced. The y-precise solutions are 

Xn l  = { x  • [0, 7], ~/'x'-"+" 1 - 1 < 7]} = {0 < x 5 (1 +7])3 _ 1} n [0,71, 

Xn2 = {x • [0, 7], 1 - x + 6  < 7]} = { 7 - 7 ]  _< x < 7, x >_ 0}. 

To determine the balance number 7]0, consider the set 

x ° = x , ,  n x , ,2  = [0, (1 + 7])3 _ 1] n [7 - 7], 7 ] ,  

which is nonempty if and only if 

(I + 7])3 _ 1 > 7 - 7] or (I + 7])3 .{_ 7] > 8. 

This yields 7] _> 0.92 and 7]0 = 0 .92 .  

Let (711,712) be a balance point. The set X °, is a singleton if and only if 

7--U2 = ( I + ~ 1 ) 3 - - I ,  
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that  is, 
(1 + 7z) 3 + 72 = 8, (2.2) 

which defines the balance set of this VOP. Using equations (2.2), one can assign appropriate 
feasible margins 71, ~ and see all the possibilities (Figure 1). 

If (1 + 71) 3 + 72 < 8, no solutions (shaded area). 
If (1 + 71) 3 + 72 = 8, one single (71,72)-precise solution. 
If (1 + 71) 3 + 72 > 8, a continuum of solutions permitting the introduction of a third objective 

function onto a set of acceptable values of the first two objective functions. Setting 71 = 72 = 70, 
we obtain the balance number 70 = 0.92, which in this case belongs to the balance curve, see 
Figure 1. 

r~ 

3 

2 

1 

0 1 2 3 

Figure 1. 

3.  T H R E E  C R I T E R I A  I N  T W O  V A R I A B L E S  

The next example comes from Chankong and Haimes [3, pp. 167, 227, 276] where it was 
analyzed in detail and used for the explanation of the weighting and ~-constraint scalarizations. 
Consider the VOP 

minimize {(Xl - 3) 2 + (x2 - 2)2,xi + X2,Xl "~ 2X2}, (3.1) 

subject to xEX={xER 2:xi_>0,x2>_0}. 

Minimizing each objective function separately over the feasible set X, we get Cl = c2 = cs -- 0, 

and XI = {(3, 2)}, X2 = X3 = {(0,0)}. The sets X m of 7~-precise partial global solutions are as 

follows: 
X , 1  --~ {X • X :  (Xl --  3) 2 + (X2 --  2) 2 <~ 7 1 } ,  

X,= = {x  • X : Xl + x2 _~ 72}, (3.2) 

X,s = {x • X : xl  + 2x2 < 73} .  

Now, we consider the following system of equations: 

(Xl  --  3)  2 Jr (X2 --  2)  2 = 71, Xl + X2 ---~ 72, Xl  + 2X2 = 73, (3.3) 

which yields the balance set equation h~ 7-space after elimination of state variables xz, x2: 

(272 --  73 --  3) 2 + (73 --  72 --  2) 2 = 71. (3.4) 

Indeed, for every fixed (Xl,X2) • X the values of f l , f2 ,  f3 are equal to 71,72,73 which are, 
thus, related by (3.4) yielding a surface in the three-dimensional 7-space on one side of which 
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Figure 2. Figure 3. 

there is no solution for (Xl, x2) E X satisfying (3.2) with some assigned desirable 71,72,773 and 
on the other side there is a continuum of equally good solutions for some augmented 71,72, 7a. 
Which side is void is easy to determine. For example, let f2, fa be more important  than f l  and 
take 72 _< 1, 7a -< 1. Then, by (3.4) we have 71 _> 8, so the side with ~ = 73 = 1, 71 < 8 is void 
and the side with 71 > 8 has plenty of solutions for inequalities (3.2), see Figure 2. 

Returning to equation (3.4), we can get a better  insight into the balance set by changing the 
system of coordinates from (71,72, 73) to (71, ~1, ~2). Let 

~I = 2 7 2 - 7 a ,  ~2 = 7 3 - 7 2 ,  

then 

and equation (3.4) in the new coordina tesbecomesthe  paraboloidequation 

71 : ( ~ 1  - - 3 ) 2 " ~ ( ~ 2 - - 2 )  2. (3.5) 

In fact, we can observe that  this paraboloid is identical with f l  = (Xl - 3) 2 + (x2 - 2) 2, which 
means that  in this case the balance set, up to an affine change of coordinates, represents a surface 
given by one of the objective functions. 

To find a balance number, one may set 771 = 72 = 73 = 7, then equation (3.4) becomes 

( 7 - - 3 ) 2 - - 7 q - 4 = 0 .  ( 3 . o )  

There is no real 7 satisfying equation (3.6), so the balance number does not correspond to a 
point on the balance set. Indeed, the ray 71 = ~ = 73 _> 0 in the new coordinates corresponds 
to the ray ~1 = 71, ~2 = 0, and does not intersect the circular paraboloid (3.5); see Figure 3. 

It  has to be emphasized that  the balance number always exists although cannot be always found 
from the balance set, as this example shows. Let us find it directly from the definition. As shown 
in Figure 2, in the plane XlOX2 the point (1,0) corresponds to 72 = ~ = 1, 71 = 8 which is on the 
balance set (3.4). However, we are interested in some minimal common value 71 = 72 = 73 = 70, 
for which (1.3) holds for the sets in (3.2). For 711 = 72 = 73 = 1, the sets X n  and X12 N X13 are 
shown in Figure 2 (shaded areas). To close the gap, we have to augment 71 ,~ ,73  by moving f l  
down and f2, ./'3 up. Since we are looking for equal ~ = 73 = 70 and since 72, r~ are given by 
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xl- intercepts  of f2, f3, the lines f2, f3 should be moved up in parallel and always intersecting on 

the xl-axis  until the first touch of f3 and f l  in order to have X ° = X~I N X,2 N X,3 = {x °} 
nonempty, as shown in Figure 2 for fo,  0 0 f~, f~. As the lines f l  °, fg are tangent,  we have 

(xl  - 3)dXl + (x2 - 2) dx2 = O, 

dXl + 2 dx2 = O, 

dx2 3 - x l  dx2 f3 1 f,= 
This yields the system 

(Xl - 3) 2 + (x2 - 2) 2 = r/, Xl + 2x2 = r/, 2(Xl - 3) = x2 - 2. (3.7) 

Eliminating x l ,  x2 from system (3.7), we get the equation for the balance number  

r/2 _ 19r/+ 49 = 0, (3.8) 

of which the smaller positive root yields the balance number r/o = 3.1. The corresponding point x ° 
in the s tate  space, calculated from (3.7), is x ° = 2.22, x ° -- 0.44 as shown on Figure 2. At this 

point we have 7/1 = ?73 = r / 0  = 3.1, and the margin on f2 is even better: r/2 = x ° + x  ° = 2.66 < r/0. 
This example illustrates a general situation which conforms to the definition of the balance 

number rio = minr/ such tha t  condition (1.3) holds with X m defined by inequalities. I t  also 

explains the possibility of the balance ray r/i = r/2 = r/3 _> 0 not intersecting the balance set. 

4. P R O J E C T I O N  OF T H E  B A L A N C E  SET O N T O  T H E  
P A R A M E T E R  S P A C E  A N D  ITS U S E  

The VOP studied in this section was considered by Hwang et al. [12] using the e-constraint 
scalarization: 

minimize {-XlX2, ( X l - 4 )  2 + x22}, 

subject to x E X = { x E R 2 : X l > 0 , x 2 > 0 , x l + x 2  < 2 5 } .  (4.1) 

In this problem, partial  global solutions are Cl = -156.25, X1 = {(12.5, 12.5)} and c2 = 0, 

X2 = {(4, 0)}, respectively. The  sets X m of r/i-precise global solutions are as follows: 

Xvl = {x E X : -XlX2 - cl _< r/l}, (4.2) 

x,2 = { z  • x :  (Xl - 4) 5 + < r/2}.  (4.3)  

Sets corresponding to r/1 = r/2 = 25, 64, 100 are presented in Figure 4 (shaded for r/1 = r/2 = 25, 
64). 

I t  is evident tha t  increasing r/ will close the gap. Since for r/1 = 772 = 64 the intersection 
Xvl N X~2 is empty  and for r/1 -- r/2 = 100 nonempty (shaded circular diangle in the center), 
so the balance number  r/o should be greater than 64 but less than  100. I t  is also clear tha t  the 
balance set corresponds to the line of tangent  points produced by circles and hyperbolas, which 
line we call the projection of the balance set onto the parameter  space. 

DEFINITION. A set of  points in the parameter space X corresponding to balance points in the 
r/-space, i.e., to particular choices ofr/~ on the balance set, is called the projection of the balance 

set (in r/-space) onto the parameter (or state)  space X ,  simply the projection set. 

The projection set yields a set of solutions which, in some sense, are the best with respect to 
all given objectives, each solution corresponding to a balance point chosen on the balance set. As 
was shown in Section 3, the balance number may have no corresponding balance point (for the 
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z!  

F i g u re  4. 

ray y~ = const not intersecting the balance set) which provides another notion of best solutions 
corresponding to equal margins ~ = const. 

It  is worth noting that,  in general, dimensions of the q-space and x-space are unrelated, dim ~ 
dim x, so the projection set should not be confused with usual projections of points or sets in 
X C_ R n onto some subsets within the same state space R n. 

It is easy to compute the balance set and its projection onto the state space. Differentiating 
the equalities (4.2) and (4.3), we get 

- - X  1 d x  2 - x 2 d x  1 - -  0,  (Xl -- 4) d x  1 "}- x 2 d x  2 = O. (4.4) 

Equating derivatives 

dxldX2 fl = -x--~2xl : dxldX2 I ~ -  4-x2 x l  ' (4.5) 

yields the projection curve of the balance set 

x~ -- x 2 - 4Xl. (4.6) 

To compute the balance set itself, we substitute x 2 from (4.6) into the equality of (4.3) to obtain 

( X l  - -  4)(2Xl - 4) = ~/2, 
772 ~ 1/2 

Xl  ----- 3 -}- (1 + -~-1 . (4.7) 

With this Xl, we get from (4.6) 

(4.s) 

yielding, after the substitution into the equality of (4.2), the equation of the balance set 

(~ t+Cl )  2 =  ( 3 + ( 1 + - ~ ) t / 2 ) 3 ( ( 1 + ~ ) 1 / 2 ) - 1 ,  ct = -156.25. (4.9) 
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In this problem, one can find the balance number from the equation of the balance set (4.9) 

by equating 71 = 72 = 7 and solving for 7. However, it is simpler to use the projection (4.6) of 
the balance set. Indeed, taking equalities in (4.2), (4.3) with 71 = 72 = 7/, we get the system 

- x l x 2  - c l  = 7, (4.10) 

(Xl - -  4) 5 q- X 2 ~- 7, (4.11) 

~ = ~ - 4~1.  

Eliminating 7, x2 we obtain the equation 

(xl - 4)(2Xl - 4) + x l ( x l ( X l  - 4)) 1/5 = - c l  = 156.25, (4.12) 

of which the first term represents the balance number 70 = 71 = 72, due to (4.7). Solving (4.12), 
we obtain at the same time the point x ° ~-, 9.6, x ° ~ 7.3, and an approximate balance number 

7 o = ( x l  ° - 4 ) ( 2 x  ° - 4 )  ~ 8 5 .  

One can approximate the balance set, taking a linear approximation of (4.6) given by the line 

z2  = i 7  (x~ - 4) ,  (4 .13)  

passing through the points (4,0) and (12.5, 12.5). Consider again equations (4.2),(4.3), as well 
as (4.13), which yield an approximate balance set equation, el. (4.9) 

rh = -0.4649r/2 -3.3076(7~) 1/2 + 156.25. (4.14) 

Equation (4.14) solved for rh = rl2 = 7 produces the balance number 7o = 85.754. 

5.  T W O  O B J E C T I V E  F U N C T I O N S  I N  T W O  V A R I A B L E S  W I T H  

O N E  O B J E C T I V E  F U N C T I O N  U N B O U N D E D  

In this section we analyze again the previous example but drop the feasibility constraint xl + 
x2 _< 25, so tha t  the problem is 

minimize { - x l x 2 , ( x l - 4 )  2 + x22}, 

subject to x E X =  { x E R  2 : x l _ > 0 , x 2 _ > 0 } .  (5.1) 

Due to this modification, this new problem is unbounded since cl = - o o  and X1 = {Pc, x2 > 
0} U {Xl > 0, oo}, while c2 and X2 do not change. There are two approaches to define the balance 
set for such problems. 

APPROACH 1. For convenience, one can consider an equivalent problem 

maximize t = x l x 2 ,  (5.2) 

subject to xl  _> 0, x2 >_ 0, (5.3) 

( x l  - 4) 5 + x~ < 72, (5.4)  

with 72 having the same sense as in (4.3). 
Geometry of this problem is the same as depicted in Figure 4 with level curves given by the 

same circular arcs and hyperbolas. Thus, the solution is located on a circular arc corresponding 
to some given 72 > 0, and computations are obvious: 

max t  2 = x  2 1 7 2 - ( x l - 4 ) 2 ] ,  Xl > 0 ,  x 2 > 0 ,  (5.5) 

dt 2 
= 2 x l  [75 - (x l  - 4) 5] - 2 ~ ( ~ 1  - 4) = o, (5.6)  

d x l  

72 = (Xl - 4)(2Xl - 4) -- 2(Xl - 3) 2 - 2. (5.7) 
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Now, given Z/2 > 0, one can calculate x t  = 3 + (1 + Z/2/2) x/2 f r o m  (5.7), t hen  x2 f rom the  
equal i ty  in (5.4), and  finally tmax from (5.2). Alternat ively,  given Xl > 4, one can calculate  772 
f rom (5.7), t hen  x2 and  tmax as before. 

If  one applies  the  t angen t  point  a rgumen t  to  curves in Figure  4, then  the  same  solution is 

obta ined.  Indeed,  fixing t, Z/2, we have 

d x 2  A t dx2 ~ X 1 --.__.~4 (5.8) 
d x l  = -x--~l = ~ = x 2  ' 

yielding 
2 

:2 -- 7(:i  ,)--  I:1-41 I ,l 
,72 = (=1 - 4) 2 + =~ = (z i  - 4)(2=1 - 4), 

the  same  as in (5.7). 

Since there  is no point  in in t roducing the  marg in  Z/I as a difference between tmax = oo in (5.2), 
(5.3), cf. (5.1), and some ac tua l  finite value of t in (5.2)-(5.4),  it is sensible to  identify Z/1 = - tmax  
corresponding to  m i n ( - x l x 2  ) in (5.1). Then,  we can ob ta in  an analog to  the  balance set by 
e l iminat ing Xl f rom (5.5),(5.7), yielding 

= ('722) 
4 

2 ] 

+ 2vf2(2 + Z/2) 3/2 + 10Z/2 - 8. 

(5.10) 

T h e  not ion of the  balance  number  is also appl icable to  this p rob lem if we consider Z/2 = - tmax  -- 

Z/I = Z/- T h e n  equa t ion  (5.10) becomes 

and yields the  balance  n u m b e r  7/0 = 38.224. 

APPROACH 2. Since ct = - o ¢ ,  one can assume a preferred finite value of the  object ive f l ,  
say - M ,  where  M > 0. T h e n  

- t  - ( - M )  = Zll, 

2 hence t = M - Z/l, and  the  balance  set equat ion (in the  usual sense) is given by (5.10) wi th  t m ~  

subs t i tu ted  by ( M  - 7/1) 2. 

Let  M = 100, then  the  balance  set  equat ion is 

Z/22-4-2.v/2(2+Z/2)3/2+IOZ/2-8 -- (lO0-nl) 2. 
4 

(5 .11)  

For Z/1 = Z/2 = Z/, equa t ion  (5.11) becomes 

3 2 
-~Z /  + 2V~(2 + Z/)3/2 + 210Z/-  10008 = 0, 

and yields the  balance  number  z/0 = 51.961. I f  we take  M = 156.25, as - c t  in the  previous 
section, we ob ta in  the  same  balance number  z/0 = 85.7 as before. T h e  reader  can check tha t  the  
r ight -hand sides of  equat ions  (4.9) and (5.10) are identical. 
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6. T H R E E  S P H E R I C A L  COST F U N C T I O N S  IN T W O  VARIABLES 

In this section we present an example that  leads to some interesting general results on the 
balance number for specially structured VOPs. Consider the VOP 

minimize ((Xl - 1) 2 + (x2 - 1) 2, (xl - 2) 2 + (x2 - 3) 2, (xl - 4) 2 + (x2 - 2)2}, 

subject to x E X = { x E R  2 : x l + 2 x 2 _ < 1 0 , x 2 _ < 4 , x l > _ 0 , x 2 _ > 0 } ,  
(6.1) 

which was analyzed in [3, p. 225] by means of the weighting scalarization. 
Since the set of exact partial global solutions of this problem is obvious, we proceed to the 

balance set. From 
(xl - 1 )  2 -t- ( x 2  - 1 )  2 = 71, 

(Xl - 2) 2 + (x2 - 3) 2 = 72, (6.2) 

(zl  - 4 )  2 + ( z 2 -  2 )  2 = 73, 

we get 

xl  = 1 ( ~ 1 + 7 2 - -  

x2 = 1 ( 2 7 1  -- 372 

which yields three equivalent equations 

273+25) ,  

-b73q-15),  
(6.3) 

( 7 1 + 7 2 - 2 7 3 + 1 5 ) 2 + ( 2 7 1 - 3 7 2 + 7 3 + 5 ) 2 = 1 0 0 7 1 ,  

( 7 1 + 7 2 - -  2 7 3 + 5 ) 2 + ( 2 7 1  -- 372+73  - 15)2=10072,  

( 7 1 + 7 2 -  2 7 3 -  15)2+(271 - 3~2+~3 - 5)2=10073,  

(6.4) 
(6.5) 
(6.6) 

each of which reduces to the unique equation of the balance set 

(71 - 72)2+(W2 - 73) 2 -  1 0 ( 7 1 + 7 3 ) + 5 0 = 0 .  (6.7) 

Setting 71 = ~2 = ~3 = 7, equation (6.7) produces the balance number 70 = 2.5. 
Using this number in (6.3), we get the global 2.5-minimizer x ° = 2.5, x ° = 1.5 equally good for 

every objective function in (6.1). Not surprisingly, it is located in the center of the circumference 
passing through the centers of all three objective functions. If objective functions in (6.1) are 
valued differently, say, according to 71 = 2, 772 = 3, 73 = 5, then one has first to check whether 
they satisfy the balance set equation (6.7). If they do, then plugging them in (6.3) yields the 
corresponding global minimizer which in this case is unique. If they do not satisfy (6.7) as in 
the case with the values 2, 3, 5 above, that  yield - 1 5  < 0 in (6.7), then one has to decide which 
objectives are more important,  fix them, say, 71 = 2, 72 = 3, and consider (6.7) as an equation 
for the remaining 73. If tha t  equation does not have positive real solutions, it means that  already 
71 = 2, 72 = 3 are not realizable. If the equation has positive real solutions, take the smallest one 
7~ and compare it with the given 73. If 7~ > 73, then realizable margins are (71,72, ~ )  unless 
one is ready to change all three margins and t ry  again. If, as in our case, y~ = 3.1 < 5 = 73, 
there is continuum of solutions given by (6.3) for appropriate 71,72, 7~, 7~ -< 7~ -< 73. In such a 
case, one can also improve all three margins provided they are on the surface (6.7) or within the 
feasible side of it. 

One can see that  the balance set solution is different from the solution presented in [3, pp. 225- 
227]. It admits an obvious generalization as follows. 

THEOREM. • a11 spherical objective functions are such that the/r centers are feasible and lie on 
a single sphere whose center is in the feasible region, then the balance number 70 is equal to the 
square of the radius of the common sphere and the unique global 7o-minimizer is the center of 
that  sphere. 
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7. T W O  S P H E R I C A L  O B J E C T I V E  F U N C T I O N S  
IN T H R E E  V A R I A B L E S  

In this example  we deal wi th  spherical  object ive functions again. T h e  p rob lem comes f rom [3, 
p. 297] where  it was used to  i l lustrate Geoffrion's  bicri terion m e t h o d  [9] based on the  weighting 

scalarizat ion,  

minimize  {(Xl - 1) 2 + x 2 + (x3 - 2) 2, (x l  - 2) 2 + (x2 - 1) 2 + x 2 } ,  
(7.1) 

sub jec t  to  x E X - -  { x  E R 3 : Xl  4- x2  -}" x3  _~ 6, x l  >_ 0, X2 _> 0, X 3 ~_ 0 } .  

By the t h e o r e m  in Section 6, the  balance number  7/0 = (1/4)[(2 - 1) 2 + 12 + ( - 2 )  2] = 1.5, 

(xl ,  x2, x °) = (1.5, 0.5, 1). T h e  points  of the  project ion of and the  corresponding 1.5-minimizer is 0 0 

the  balance set are such feasible points  of  this V O P  t h a t  are located on the  segment  joining two 

centers of the  spheres  in (7.1) wi th  pa ramet r i c  equat ions  

x l  - 1 x2 x3 - 2 
2 ~ -  1 - -----~ = t '  r e [ 0 , 1 ] .  (7.2) 

Since x E X ,  for t E [0, 1], so using 

(Xl  --  1) 2 -t- X 2 -{- (X2 -- 2)  2 ---~ ~1, (7.3) 

(Xl - 2 ) :  + (x,.  - 1)" + x l  = , , . ,  

we get the  ba lance  set  equat ion  in rl-space 

/]1 --  2(6Th) W2 + 6 = ~]2, (7.4) 

f rom which, se t t ing 7 h = ~2 = ~1, we ob ta in  again the  ba lance  n u m b e r  70 = 1.5. 

8. B A L A N C E  SET C O R R E S P O N D I N G  TO A P I E C E  OF T H E  
B O U N D A R Y  OF T H E  F E A S I B L E  R E G I O N  

This  V O P  comes f rom Yu [36, p. 64], where  he i l lustrated a scalar izat ion technique based on 

goal p rogramming .  Consider  the  following problem: 

minimize  { - X l  - x 2 , - 1 0 x l  + x 2 - 4x,. + x 2 } ,  (8.1) 

sub jec t  to  x E X = {x E R,. : 3xl  + x2 - 12 _< 0, 2Xl q- x,. - 9 < 0, 

x l  + 2x2 - 12 _< 0, x l  _> 0, x2 _> 0}.  (8.2) 

Solving two cons t ra ined minimiza t ion  subproblems,  we get cl = - 7  and c2 = - 2 6 . 5  wi th  
X I  = {(2, 5)} and  X,. = {(3.5, 1.5)}. T h e  first minimizer  X1 = (2, 5) is located  a t  the  intersection 
of the  second and th i rd  cons t ra in t  (point  A), and  the  second minimizer  X,. = (3.5, 1.5) is located 
at  the  first cons t ra in t  (point  C); see Figure  5. To improve  the  second object ive  a t  the  expense 
of the  first one wi thou t  leaving the  feasible region, one has to  move f rom A to  B and then  to  C 

along the  segments  AB and BC which, thus,  represent  the  projec t ion  of the  balance  set. 

Now, the  compu ta t ions  are clear and two branches  of  the  balance  set  cor responding to  AB and 
BC are found by  solving the  two nonlinear  sys tems  

- -X 1 - - X  2 -~- 7 = ~1,  

- 1 0 x l  + x 2 - 4x2 + x 2 + 26.5 = ~/2 ,  branch AB, (8.3) 

2Xl  + x2  = 9, 

and 
- X l  - x2 + 7 ~ ~1, 

- 1 0 x l  + x~ - 4x2 + x~ + 26.5 = ~ 2 ,  

3xl + x 2  = 12, 

branch  BC,  (8.4) 
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which result in two curves in the ~/-space: 

5W 2 - 18W1 + 15.5 = r/2, for the branch corresponding to AB, (8.5) 

10 2 
"~-~h - 10~h + 10 = W2, for the branch corresponding to BC, (8.6) 

which compose the entire balance set projected in the state space as ABC. Equation (8.6) with 
~}1 = ~/2 = 7/gives the balance number Wo = 1.28, with the corresponding minimizer (x °, x °) = 
(3.14, 2.58), determined from (8.4) with ~}1 = W2 = 1.28. 

9. A R E A L  LIFE E X A M P L E  

We conclude with a real life example developed by Reid and Vemuri [20] and adapted by 
Chankong and Haimes [3, pp. 332-334] to illustrate an interactive method based on the concept 
of trade-offs. A dam is to be constructed such that the cost of construction fl and the water loss f2 
(volume/year) axe minimized, and the total storage capacity f3 of the reservoir is maximized. 
The decision variables are chosen to be total man-hours devoted to building the dam, xt, and 
the mean radius of the lake impounded (in miles), x2. The resulting VOP is 

j'o0.01z1~.0.02,~2 /'i K~,2 ~0.005xi,~0.001~.2~ minimize k~ ~1 ~2, v'v'~2, -~ -~1 -v2S , 

subject to x E X = { x E R 2 : x l _ > 0 , x 2 > _ 0 } .  (9.1) 

Since cl --- c2 = 0 and c3 = -oo ,  our analysis is analogous to tha t  in Section 5. Following 
Approach 1 of tha t  section, this VOP leads to the following problem: 

~0.005xl ~0.001~2 maximize t = ~ "~1 "~2, 

subject to x E X = {x E R 2 : Xl _~ 0, X2 > 0 } ,  (9.2) 
e0.01zl ~,0.02,~2 

0"5X22 ~ •2" 

With ~h > 0 and ~2 > O, certainly xl  > 0 and x2 > O, so that  the balance set equation can be 
obtained from the following system: 

e ° ' ° ° s = ' x ° ' ° ° l x  2 = t ,  (9.3) 1 2 
eO.Olxl ~o.o2~2 (9.4) 

~1 ~2 = ~71, 

o.sx  = (9.5) 
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Eliminating x 2 from (9.3), (9.4) and then taking the root of degree 20 from both sides of (9.4), 
we obtain a parametric representation of the balance set in the (t, 71,72)-space in the form 

t 
= e° °°sx'z °°°1, (0.6) 

272 

2° ~/-~- e°'°°°SXlx 0"001 (9.7) 

It is not possible to obtain an explicit formula-like equation by eliminating Xl from (9.6), (9.7). 
However, the surface given by (9.6), (9.7) can be easily tabulated or used otherwise to solve the 
problem by obtaining a picture of the interplay for best possible values of t, ~1, ~2. In our case, 
noting that  the value of x °'°°l is close to 1 for very large Xl, we can drop this factor from (9.6), 
(9.7) to obtain an approximate balance set equation (by excluding Xl after taking logarithms) 

t2=27172.  (9.8) 

Since storage capacity f3 = t of a reservoir always has a natural finite limit, a certain preferred 
capacity M > 0 can be assigned in practical cases. It is therefore sensible to use the second 
approach of Section 5 in the analysis of this problem, substituting t by M - 773, which yields, 
instead of (9.8), an approximate balance set equation in the usual three-dimensional 7-space 

( M -  73)2--27172. (9.9) 

Setting 71 = 7/2 = 73 ----- 7 in (9.9), one can determine the usual balance number from the 
resulting equation 

7/2 + 2M7 - M 2 = 0, (9.10) 

which has the only positive root 70 = M ( V ~ -  1) ~ 0.4M. Obviously, one has to pay attention 
to the units involved. 

i0 .  C O N C L U S I O N S  

A collection of vector optimization problems (VOPs) is examined and the balance set is ana- 
lytically derived for each problem. Bounded as well as unbounded problems with two or three 
objective functions are solved. All the problems have been previously studied in the literature 
in support  of various scalarization techniques developed for VOPs. In this paper, these same 
examples serve to illustrate the concept of the balance set, whose equation can be an important 
tool for multiple criteria decision making. 

New developments are presented concerning possible interrelation between the balance set and 
the balance number, a new notion of the projection of the balance set onto the parameter space, 
new approaches for solving VOPs with unbounded objective functions, and some approximation 
techniques in determining the balance set. 
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