
View metadata, citation and 
Available online at www.sciencedirect.com

The global technical potential of bio-energy in 2050 considering
sustainability constraints
Helmut Haberl1, Tim Beringer2, Sribas C Bhattacharya3, Karl-Heinz Erb1

and Monique Hoogwijk4
Bio-energy, that is, energy produced from organic non-fossil

material of biological origin, is promoted as a substitute for non-

renewable (e.g., fossil) energy to reduce greenhouse gas (GHG)

emissions and dependency on energy imports. At present,

global bio-energy use amounts to approximately 50 EJ/yr,

about 10% of humanity’s primary energy supply. We here

review recent literature on the amount of bio-energy that could

be supplied globally in 2050, given current expectations on

technology, food demand and environmental targets

(‘technical potential’). Recent studies span a large range of

global bio-energy potentials from�30 to over 1000 EJ/yr. In our

opinion, the high end of the range is implausible because of (1)

overestimation of the area available for bio-energy crops due to

insufficient consideration of constraints (e.g., area for food,

feed or nature conservation) and (2) too high yield expectations

resulting from extrapolation of plot-based studies to large, less

productive areas. According to this review, the global technical

primary bio-energy potential in 2050 is in the range of 160–

270 EJ/yr if sustainability criteria are considered. The potential

of bio-energy crops is at the lower end of previously published

ranges, while residues from food production and forestry could

provide significant amounts of energy based on an integrated

optimization (‘cascade utilization’) of biomass flows.
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Introduction
Biomass is energy derived from living or recently living

organisms. Biogenic materials derived from agricultural
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crops, residues, forest products, aquatic plants, manures

and wastes can be combusted either directly or after

conversion processes (liquefaction, gasification, etc.) to

produce heat, mechanical energy or electricity (bio-

energy). Increased use of bio-energy is promoted in many

countries as a means to reduce import dependency, use of

non-renewable energy (fossil fuels) and greenhouse gas

(GHG) emissions.

The primary process through which biomass becomes

available on earth is photosynthesis: plants use solar energy

to produce energy-rich organic matter from inorganic

inputs (CO2, water and nutrients). The amount of biomass

produced by plant growth (i.e. net of plant respiration) is

denoted as Net Primary Production (NPP). At present, the

total NPP on the earth’s continents is approximately

2200 EJ/yr, of which some 1240 EJ/yr are allocated to

aboveground components of plants [1��]. Humans cur-

rently harvest, burn or destroy during harvest approxi-

mately 370 EJ/yr [2,3]. A large fraction of this biomass is

used in the food system. Data on current global bio-energy

use are uncertain. Most researchers agree on a range of 40–
60 EJ/yr, the vast majority thereof being firewood, dung or

charcoal burned in simple cooking or heating stoves, often

creating heavy indoor pollution [4,5��,6].

Published estimates of global technical bio-energy poten-

tials in 2050 — the year to which most mid-range projec-

tions or scenarios refer — differ by a factor of almost 50.

Calculations of the potential to grow bio-energy crops on

abandoned farmland yielded a range from 27 to 41 EJ/yr

[7,8], while recent studies suggest total global bio-energy

potentials of up to 500 EJ/yr [9,10�], some even reporting

potentials exceeding 1000 EJ/yr [11]. These discrepan-

cies primarily result from different assumptions on future

yields of food and energy crops, feed conversion efficien-

cies in the livestock system as well as the suitability and

availability of land for bio-energy production. We here

aim to identify a range of future technical bio-energy

potentials that take sustainability criteria such as nature

conservation and food production into account. We

review recent studies that considered constraints and

opportunities for bio-energy production and perform

own calculations in order to be able to present all data

in a global breakdown to 11 regions (Table S1, Supporting
Online Material, SOM).

We discuss three major components of the global bio-

energy potential (Figure 1): (1) dedicated bio-energy

brought to you by CORE

provided by Elsevier - Publisher Connector 
www.sciencedirect.com

https://core.ac.uk/display/81152573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:helmut.haberl@uni-klu.ac.at
http://dx.doi.org/10.1016/j.cosust.2010.10.007
http://creativecommons.org/licenses/by-nc-nd/3.0/


The global technical potential of bio-energy in 2050 Haberl et al. 395
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Land and biomass resources considered in this review.

Source: modified after [4,59].
crops, (2) agricultural residues, animal manures, and

municipal solid waste (MSW) and (3) biomass (residues)

from forestry. This paper only estimates the energy value

of the biomass that could be available in 2050 as primary

energy, that is, we do not take into account conversion

losses (e.g., during liquefaction). Except where explicitly

stated differently, we report biomass flows as dry matter

(= bone dry biomass = oven dry = zero moisture content),

assuming that 1 kg dry matter biomass is equivalent to

0.5 kg of carbon and has a gross calorific value of 18.5 MJ/

kg. The potential to produce bio-energy from algae is not

covered (e.g., see [12,13]).

Dedicated bio-energy crops
Most recent studies on global technical bio-energy poten-

tials suggest that plants specifically cultivated to provide

bio-energy represent the largest component of future

‘modern’ bio-energy production. A variety of plants can

be grown for this purpose, including woody lignocellu-

losic crops (e.g., poplar, willow, and Eucalyptus), herbac-

eous lignocellulosic crops (e.g., switchgrass, Miscanthus),
oil crops (e.g., rape seed, sunflower, and Jatropha), sugar

crops (e.g., sugar cane, sugar beet), cereals (e.g., wheat,

rye, and corn) and other starch crops (e.g., potato)

[5��,6,14,15]. Calculations of the energy potentials of

dedicated bio-energy crops generally multiply the area

assumed to be available for bio-energy crops by the

expected yield per unit area and year:

Bio-energy potential ½J=yr� ¼ area ½m2� � yield ½J=m
2=yr�
www.sciencedirect.com
Discrepancies between bio-energy potentials reported in

the literature result from differences in both, area and

yield assumptions [11,16]. The main issue is therefore to

understand the factors that constrain area and yields, for

example, area needed for food, water availability, tech-

nology, and nature conservation. We therefore focused on

recent studies that explicitly report area and yield data

underlying their bio-energy crop potential estimates.

Area available for bio-energy crops

Large discrepancies exist in the literature on the area

available globally for cultivation of bio-energy crops:

projected areas for bio-energy crops range from 0.6 to

37 million km2, that is, 0.4–28% of the earth’s lands

except Greenland and Antarctica (Table 1). The largest

area of bio-energy plantations in 2050 in the recent

literature is 2.4 times larger than the area currently used

for cropland or almost equal to the current area of human-

used forests (see Table 1a) [17]. The discrepancies be-

tween studies result from different assumptions on con-

straints such as area requirements for food and fibre

production, urban and infrastructure areas, areas with

poor soils, low temperatures, limited water availability,

protection of high-biodiversity areas and from the diffi-

culties involved in judging the availability and suitability

of land for energy crops on the basis of available land-use

and land-cover data.

Most studies calculate available areas using a ‘land bal-

ance’ approach, that is, cultivable areas are identified
Current Opinion in Environmental Sustainability 2010, 2:394–403
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Table 1

Global area and its net primary productivity (NPP) in 2000 and results from studies of future area availability for bio-energy crops and

energy potentials from dedicated bio-energy plantations

Land-use category Area [mio. km2] Aboveground

productivity [MJ/m2/yr]

Global above-ground

NPP [EJ/yr]

(a) Global area and productivity of terrestrial systems in the year 2000 [1��,17]

Urban areas 1.4 4.6 6

Cropland 15.2 12.8 195

Grazing land 46.9 8.1 379

Human-used forests (forestry) 35.0 14.9 520

Unused productive land 15.8 8.7 137

Unproductive land 16.2 0.1 2

Global total land mass except Greenland, Antarctica 130.4 9.5 1239

Study Area [mio. km2] Yield [MJ/m2/yr] Global bio-energy

potential [EJ/yr]

(b) Global total estimates of bio-energy potentials from dedicated bio-energy plantations, various recent studies

(1) Studies referring to the current situation or points in time before 2050

Field et al. [8], current abandoned farmland 3.9 6.9 27

Campbell et al. [7], current abandoned farmland 3.9–4.7 8.2–8.7 32–41

Sims et al. [15], potential for 2025 0.6–1.4 7.9–24 5–34

(2) Original studies referring to 2050

Erb et al. [22��], biomass-balance food/feed/bio-energy 2.3–9.9 12–13 28–128

WBGU [5��], vegetation modelling with LPJmL 2.5–5.2 14–23 34–120

van Vuuren et al. [23��], abandoned farmland, grassland <6 19–60 65–300

Hoogwijk et al. [59], abandoned farmland, ‘rest’ land 29–37 10–18 300–650

Smeets et al. [11], surplus pasture and farmland 7.3–35.9 29–39 215–1272

(3) Reviews referring to 2050

MNP [9]/Dornburg et al. [10�], surplus land, improved technology n.a. n.a. 120–330

IEA [6], ‘sustainable’ energy-crops n.a. n.a. 190–330

IEA [6], surplus and marginal land n.a. n.a. 60–810

Data given in different units in the original studies were converted to Joules assuming 1 kg dry matter biomass = 0.5 kg carbon = 18.5 MJ/kg. If yields

were not reported, we calculated average yields by dividing total bio-energy potentials by areas as reported in the respective study. Note that these

are primary energy potentials that do not consider losses in conversion (e.g., liquefaction, gasification).
depending on soil, climate and terrain characteristics,

often based on the global agro-ecological zones method-

ology [18] or similar approaches [19], from which the area

already cultivated or required in the future is subtracted.

This approach has, however, been criticized because (1)

cultivable land may be overestimated if uncultivable

enclosures such as hills, rock, outcrops, and minor water

bodies are neglected or underestimated, (2) already cul-

tivated land is often underestimated and (3) land demand

for purposes other than cropping, in particular grazing and

settlements, is insufficiently taken into account [20�].

Livestock grazing poses particular methodological diffi-

culties because reliable statistical data are lacking. There

is strong evidence that mowing and grazing of livestock

are not confined to areas classified as ‘pastures’ in FAO

statistics, and it has recently been argued that most

ecosystems dominated by herbaceous plants and shrubs,

and even some forests, are grazed, although sometimes

with low intensity [17,21]. One problem is that livestock

grazing can hardly be detected by remote sensing;

another is that a large fraction of grazing animals are kept

by subsistence farmers not accurately represented in

statistics [2,17,21]. Some studies calculated bio-energy
Current Opinion in Environmental Sustainability 2010, 2:394–403
potentials only on ‘abandoned farmland’ [7,8], an

approach that yields low estimates because it neglects

the possibility that other land could become available

through intensification or land conversion.

In our judgement, methods are therefore needed to

estimate area and productivity potentials of land available

for bio-energy plantations that consider critical social

(e.g., food production) and environmental (e.g., biodiver-

sity conservation) goals. Three studies have recently

reported spatially explicit data on areas available for

bio-energy crops in 2050 that considered sustainability-

related constraints. Erb et al. [22��] calculated the balance

between the NPP of areas potentially available for rough-

age supply [1��] and roughage demand of livestock [2].

This allowed deriving estimates of area availability for

bio-energy crops for different scenarios regarding diets,

cropland yields and feeding efficiency of livestock based

on the assumption that grazing intensity could be

increased in those regions where it was lower than else-

where. The WBGU [5��] derived estimates of the future

availability of area for bio-energy crops by excluding

biodiversity hotspots, nature conservation areas, wetlands

and areas with long carbon payback times. Their study
www.sciencedirect.com
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assumed two variants on cropland expansion (constant,

plus 1.2 million km2). van Vuuren et al. [23��] calculated

bio-energy crop potentials on abandoned farmland and

natural grasslands, assuming accessibility factors of 75%

for abandoned farmland and 50% for natural grasslands.

Food demand, water scarcity, biodiversity protection and

land degradation were also considered. Information on

the methods applied in these studies, including an

analysis of their strengths and limitations, is given in

the SOM.

Yields

The survey summarized in Table 1b shows that yield

expectations of bio-energy plantations also differ widely,

from 6.9 to 60 MJ/m2/yr (approximately 0.4–3.3 kg/m2/

yr), that is, by a factor of almost 9. Differences in yields of

bio-energy plantations largely result from assumptions on

land suitability, choice of bio-energy crop (yields of

lignocellulosic crops and perennial grasses are higher than

those of food crops) and management (e.g., fertilizer

input) [5��,23��,10�]. Some studies summarized in Table

1 assumed yields that exceed the globally average NPP of

the most productive land-use category (forestry) by a

factor of 4. A recent study used large agricultural data-

bases to analyze yield assumptions in various bio-energy

studies and concluded that yields had often been over-

estimated by more than 100% [24��]. Moreover, limita-

tions in the availability of critical resources such as water

[25] are likely to constrain yield increases in many

regions. Further research on how to extrapolate yields

from field trials to larger areas is therefore needed.

While high biomass yields have been reported in field

trials under controlled conditions, it seems questionable

whether these yields can be extrapolated to large areas.

Some authors have argued that the NPP of potential

vegetation, that is, the vegetation that would be expected

in the absence of land use, were a good approximation of

the upper limit of yields over large areas and accordingly

used NPP as proxy for yields of bio-energy plantations

[7,8,22��]. This approach might underestimate achievable

yields under intensive management, despite the fact that

the globally average NPP of croplands is currently 35%

lower than their potential NPP [1��]. One reason for this is

that the growth period of many crops is lower than that of

natural vegetation. The WBGU has recently used

LPJmL, a dynamic global vegetation model, to simulate

yields of bio-energy crops with and without irrigation and

found yield potentials of up to 23 MJ/m2/yr [5��], a bit

more than twice current average global aboveground

NPP.

Global potential of bio-energy crops in 2050

Table 1a suggests that only one quarter of the earth’s land

is devoid of human use, and as little as 11% of current

aboveground NPP takes place there. Urban and infra-

structure areas occupy about 1% of the earth’s surface and
www.sciencedirect.com
can be expected to grow considerably until 2050. The

aboveground NPP of urban areas, cropland and grazing

land amounts to 580 EJ/yr, of which humans currently

harvest 217 EJ/yr for food, feed, fibre and bio-energy

(including 28 EJ/yr of unused cropland residues

[1��,2]). A notable proportion — perhaps up to 70 EJ/

yr — of the difference (363 EJ/yr) is biomass burned in

human-induced fires [3].

According to FAO projections, cropland areas are

expected to grow until 2050 by 9% and average yields

on cropland by 54% compared to the year 2000, thus

indicating that most of the expected increase in food

production can be met through yield increases [26]. Based

on extrapolations of regionally specific biomass input-

output ratios of livestock and four different assumptions

on diet changes, the study by Erb et al. [22��] concluded

that 2.3–9.9 million km2 could be available in 2050 for bio-

energy crop plantations if the most suitable grazing areas

were intensified as far as possible. The WBGU [5��]
combined various assumptions on constraints for available

areas (no deforestation, growth in cropland areas, exclu-

sion of high-biodiversity areas, etc.) with assumptions on

irrigation and used a dynamic global vegetation model to

estimate bio-energy yields. Despite their completely

different methodologies, both studies found an almost

identical range of global bio-energy crop potentials of

�30–120 EJ/yr. A third recent study by van Vuuren et al.
[23��] used the IMAGE model to calculate global bio-

energy crop potentials, thereby considering constraints

such as soil degradation and water scarcity. The con-

strained scenarios in this study span a similar but some-

what higher range (65–148 EJ/yr).

Table 2 reports estimates global bio-energy crop poten-

tials derived as arithmetic mean of minimum, maximum

and intermediate estimates of these three studies. We are

aware that each of these studies has its limitations (see

SOM). Nevertheless, we believe that these ranges give a

useful indication of possible orders of magnitude because

they are based on completely different, complementary

methods and yet still arrived at largely similar results that

are plausible when compared to the above-quoted esti-

mates of the productivity of the areas on which such bio-

energy plantations could be potentially located.

Crop residues, animal manures and municipal
solid wastes
Organic residues and wastes, including crop residues,

animal manures and municipal solid wastes (MSWs),

represent a sizeable global bio-energy resource. Rational

utilization of wastes and residues can often produce energy

cost-effectively and minimize environmental impacts from

alternative management or disposal methods.

Two types of residues are associated with crop production:

field (primary) and processing (secondary) residues
Current Opinion in Environmental Sustainability 2010, 2:394–403
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Table 2

Arithmetic mean of minimum, maximum and intermediate estimates of the global potential to grow dedicated bio-energy crops according

to three recent studies [5��,22��,23��]

Mean of minimum

estimates [EJ/yr]

Mean of maximum

estimates [EJ/yr]

Mean of intermediate

estimates [EJ/yr]

North America 6 21 13

Western Europe 2 8 5

Pacific OECD 3 8 5

Central and Eastern Europe 1 3 2

Former Soviet Union 3 9 6

Centrally planned Asia, China 5 15 8

South Asia 1 3 2

Other Pacific Asia 2 7 4

Middle East and North Africa 1 3 1

Latin America and the Caribbean 11 34 21

Sub-Saharan Africa 10 23 16

Global total 44 133 81
(Figure 1). Recoverable energy potentials of both types of

residues can be estimated from annual crop production

using a number of factors such as the recoverable fraction of

residue production, residue to product (or crop) ratio and

gross heating value.

Assuming recoverable fraction values for different crops

of 0.5–0.75, Hakala et al. [27] estimated the global

technical potential of field residues in 2050 at 38–41 EJ/

yr. Adding the process residue potential of 16 EJ/yr

[11], the total technical potential of crops residues

would be 54–57 EJ/yr. Other authors suggested global

technical bio-energy potentials from crop residues of

10–32 EJ/yr [28] and 46–66 EJ [11]. Based on region-

specific and crop-specific factors and FAO crop pro-

duction forecasts [26], one of the authors (SCB) has

recently estimated the annual technical global crop

residue energy potential in 2050 to be 49 EJ/yr

(Table 3). Differences between the results of these

studies are mainly due to different assumptions on
Table 3

Technical primary energy potential of crop residues, MSW and anima

Crop residues [EJ/yr]

North America 4

Western Europe 3

Pacific OECD 1

Central and Eastern Europe 1

Former Soviet Union 2

Centrally planned Asia, China 9

South Asia 9

Other Pacific Asia 5

Middle East and North Africa 2

Latin America and the Caribbean 11

Sub-Saharan Africa 5

Global total 49

* Energy equivalent of recoverable manures. The energy equivalent of th

approximately one quarter of the figures given here.

Current Opinion in Environmental Sustainability 2010, 2:394–403
future crop production and on the recoverable fraction

and other factors.

Additional bio-energy can be derived from animal man-

ures (secondary residues) and municipal solid wastes

(MSW, i.e. tertiary residues). The global potential of

recoverable MSW in 2050 has been reported to be

17 EJ/yr [11] and 1–3 EJ/yr [28]. These values can be

compared with the value of 11 EJ/yr recently estimated

by one of the authors (SCB, Table 3). The energy

equivalent of recoverable manures (the biogas potential

is approximately three quarters lower) in 2050 has been

reported to be 9–25 EJ/yr [28] and 25 EJ/yr [29]. One of

the authors (SCB) recently estimated the potential to be

39 EJ/yr (Table 3). Differences in the above-quoted

energy potentials are mainly due to differences in pro-

jected waste or residue generation values and recoverable

fractions. The global total energy potential of crop resi-

dues, MSW and animal manures is approximately 100 EJ/

yr (Table 3) which is in line with other studies [10�].
l manures in 2050 (Bhattacharya, unpublished)

MSW [EJ/yr] Animal manures* [EJ/yr] Total [EJ/yr]

1 4 9

1 3 7

0 2 3

0 1 1

0 2 4

2 5 16

1 8 17

1 1 7

1 2 5

2 8 21

1 4 10

11 39 100

e amount of biogas that could be produced from these manures is

www.sciencedirect.com
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Table 4

Estimate of the technical bio-energy potential from forestry residues in 2050. Sources: calculated based on Ref. [32]

Low estimate [EJ/yr] High estimate [EJ/yr] Arithmetic mean [EJ/yr]

North America 6 12 9

Western Europe 4 7 6

Pacific OECD 1 2 2

Central and Eastern Europe 1 2 2

Former Soviet Union 2 4 3

Centrally planned Asia, China 2 3 3

South Asia 0 0 0

Other Pacific Asia 0 1 1

Middle East and North Africa 0 0 0

Latin America and the Caribbean 2 4 3

Sub-Saharan Africa 0 1 1

Global total 19 35 27
Forestry residues
The technical potential of forest residues for energy

production is defined as the total amount of surplus forest

residues that can be collected without affecting com-

mercial wood production. Three categories of forestry

residues can be discerned (Figure 1): primary (from fell-

ings, e.g., fuel wood, or as residues from thinning), sec-

ondary (processing wastes, e.g., sawdust) and tertiary

(available after final use, e.g., waste wood). The global

potential of forestry residues has been assessed by various

studies [4,30,31,32]. Anttila et al. [32] present a recent

estimate of the current primary forestry residue potential.

Their estimate of a global bio-energy potential of 5–9 EJ/

yr includes logging residues from current fellings as well

as stem wood and logging residues from additional fell-

ings. These are the only data that are available for the 11

regions used in this paper. The global results are low

compared to estimates for the year 2050 [4,30,31] that

found bio-energy potentials of 12–74 EJ/yr from forestry.

The difference largely results from the fact that Anttila et
al. did not include secondary and tertiary residues and

focused on the present situation. Apart from that, the

results of Anttila et al. are similar to those of Smeets et al.
[31], except for Asia. This is partly due to the differences

in regions consuming large amounts of forestry products

because the potentials for secondary residues are higher

there. According to [31], secondary and tertiary residues

from the wood processing industry and waste manage-

ment could deliver 3–5 times more energy than primary

residues. We therefore used a factor of 4 to extrapolate

total forestry residue potentials for the 11 regions used

here from [32] to derive the values reported in Table 4.

Discussion and conclusions
Figure 2 summarizes the three components of the tech-

nical bio-energy potential in 2050 based on the values

reported in Tables 2–4. We find a technical global bio-

energy potential in 2050 of approximately 210 (160–
270) EJ/yr. Dedicated bio-energy crops contribute 81

(44–133) EJ/yr which is at the lower end of the potentials
www.sciencedirect.com
found in previous assessments (Table 1), but higher than

the potentials identified on ‘abandoned farmland’ alone

[7,8]. The result seems reasonable when compared with

global terrestrial aboveground NPP (Table 1). A large

fraction of the bio-energy potential is found to be related

to the use of currently unused residues, that is, efficiency

gains in socioeconomic biomass utilization and flow chains.

This finding underlines earlier work on the importance of a

‘cascade utilization’ of biomass, that is, the integrated

optimization of food, fibre and energy supply from biomass

[5��,33,34]. Comparisons of livestock energy balances

across time and between regions suggest that there might

be a potential to increase feeding efficiencies that could

allow for increased bio-energy production [22��,35]. How-

ever, using this potential might have significant social

impacts, in particular on subsistence farming systems, if

policies are not appropriately designed [34].

Our findings underline the importance of future diets for

global bio-energy potentials [22��,10�,34,35]. Two mech-

anisms are relevant here: (1) land requirements for food and

feed production constrain the area available for dedicated

bio-energy crops, in particular when livestock is taken into

account [22��,35,36]. (2) The ‘food-chain residue’ potential

(crop residues, manures, and MSW) also depends on

agricultural production chains and food demand.

Adequately feeding a world with approximately 9 billion

people in 2050 will require substantial yield increases,

larger agricultural areas, or both. Diets are bound to

change as a result of growing incomes and GDP growth

additionally drives up the demand for other biomass-

based resources. A combination of adequate food supply

with substantial levels of energy crop production will

require a growth in the yields of food and feed crops

along past trajectories. Recent studies demonstrate that

there are strong links between bio-energy potentials and

agricultural technology, in particular yields of food and

energy crops and feeding efficiencies [22��,10�,36,37].

Whether yield increases as forecast by the FAO [26]
Current Opinion in Environmental Sustainability 2010, 2:394–403
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Figure 2

Technical bio-energy potentials in 2050, breakdown to 11 regions. ‘Food-chain residues’ are crop residues, animal manures and MSW. Whiskers

identify uncertainties as reported in Tables 2–4.

Source: Tables 2–4.
can be sustained, for example, based on high-yielding

varieties, large-scale optimum management and precision

farming, has been questioned. Much of the best-suited

cropland is already used and rates of yield increases are

falling in some regions as they approach limits set by soil

and climate [38]. Soil degradation and depletion of nutri-

ent stocks in soils are additional challenges [39]. Sub-

stantial investments will be indispensable for maintaining

growth in crop yields [40], and economic constraints

might prevent the realization of yield potentials [41].

However, if yields of food and energy crops should grow

significantly faster than assumed here, the energy crop

potential would also be substantially larger [11,10,SOM].

Few assessments of global bio-energy potentials have

considered the possible effect of future climate change,

consequently this connection is poorly understood [6].

Climate change may influence global bio-energy poten-

tials in two ways: (1) directly through its effects on yields

of bio-energy crops, and (2) indirectly through its impacts

on the food system. Plants following the C3 photosyn-

thetic pathway such as poplars and willows respond to

rising CO2 concentrations with increased productivity if

water and nutrients are not limiting [42]. The magnitude

and long-term development of this ‘CO2 fertilization

effect’ are still debated, but results from free-air CO2
Current Opinion in Environmental Sustainability 2010, 2:394–403
enrichment (FACE) experiments show sustained yield

increases of up to 20% in poplar short-rotation coppice

plantations [43]. On the other hand, there is evidence that

crops grown under elevated CO2 concentrations might be

more susceptible to insect pests [44]. Considering direct

and indirect effects, a recent study [36] found that global

bio-energy potentials may vary by a factor of two, depend-

ing on the strength of the CO2 fertilization effect.

Many plants also use water more efficiently under elev-

ated CO2 concentrations due to reduced stomatal con-

ductance and leaf transpiration [45]. Observations of

poplar short-rotation coppice revealed, however, that

whole-tree water use increased with CO2 as a result of

higher leaf area [46]. Perennial C4 grasses show little

response to higher ambient CO2, but generally require

large amounts of water during the growing season [47].

The responses of dense monocultures of perennial crops

to changes in climate are complex and difficult to predict

because experience in large-scale plantations under rea-

listic field conditions is missing. However, a massive

expansion of energy crops is likely to have significant

effects on regional water resources and fertilizer use.

The impacts of changes in temperature and rainfall on

crop yields are going to differ significantly among regions.
www.sciencedirect.com
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It is mostly assumed that negative effects on agriculture

will outweigh any benefits, above all in developing

countries, mostly due to increased water stress [48–50].

The area required to cultivate food crops might therefore

expand significantly in the coming decades to meet the

demand from a rising and more affluent world population

[51], which would reduce land availability for energy

crops. A recent study suggested that changes in the area

needed for food production resulting from climate change

might have a much larger effect on future bio-energy

potentials than the direct effect of climate change on the

yields of energy crops [36]. Increasing competition for

water resources, in particular due to rising food demand

and water pollution, might also limit the expansion of bio-

energy plantations [52]. Food crops, and thus first-gener-

ation energy crops, seem to be more vulnerable to higher

climate variability and more frequent extreme events

than perennial lignocellulosic species. Plant breeding

might further reduce the vulnerability of modern energy

crops to climate change, but breeding efforts have just

begun and their prospects are uncertain [53]. Avoiding

large-scale monocultures could help to increase the resili-

ence of bio-energy plantations to more frequent weather

extremes [54].

Environmental impacts of bio-energy policies [55] and

socioeconomic aspects of bio-energy production, for

example, costs or interactions with food prices, are beyond

the scope of this review. Both issues will be decisive for

future levels bio-energy production and use, in particular as

it seems likely that environmental impacts per unit of bio-

energy depend on the total volume of bio-energy produced

[56]. Recent studies suggest that lignocellulosic crops and

residues are preferable to first-generation biofuel crops in

terms of both costs and environmental impacts [14]. How-

ever, there are concerns that removing residues from the

field could have a negative impact on soil carbon and

fertility which might reduce the sustainable potential of

crop residues [5��,57,58�].

In conclusion, our review has led us to believe that no

scientific study is at present available that would satis-

factorily resolve the many scientific issues related to

future mid-term bio-energy potentials. The most pressing

uncertainties relate to the availability and suitability of

land for energy crops, the development and potential of

yield increases, future area demand for food, conservation

and other purposes, trade-offs with other environmental

goals (e.g., biodiversity), water availability and climate

impacts. Uncertainties remain, even beyond the obvious

fact that human behavioural patterns as intimately related

to cultural and other socioeconomic factors as diets are

almost impossible to predict. While each of the studies

upon which our results were mainly based did, in our

judgment, succeed in advancing our understanding of the

intricate feedbacks between changes in land use, food,

feed, fibre and bio-energy production with respect to
www.sciencedirect.com
some critical factors, none was devoid of shortcomings

(see SOM). While we believe that the synthesis of these

studies does contribute significant insights on our current

knowledge on future bio-energy potentials under various

sustainability-related constraints, we clearly see that

further work is required to better understand the inter-

linkages between food, fibre and bio-energy systems in

order to identify socially, economically and environmen-

tally sustainable options for future land-use and bio-

energy strategies.
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