
Discrete Mathematics 312 (2012) 1849–1856

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Distance spectral radius of digraphs with given connectivity✩

Huiqiu Lin a, Weihua Yang b, Hailiang Zhang a,c, Jinlong Shu a,∗

a Department of Mathematics, East China Normal University, Shanghai 200062, China
b Laboratoire de Recherche en Informatique, UMR 8623, C.N.R.S.-Université de Paris-sud, 91405-Orsay cedex, France
c Department of Mathematics, Taizhzou University, Linhai Zhejiang 317000, China

a r t i c l e i n f o

Article history:
Received 5 August 2011
Received in revised form 30 November
2011
Accepted 20 February 2012
Available online 17 March 2012

Keywords:
Vertex connectivity
Edge connectivity
Distance spectral radius

a b s t r a c t

Let D(
−→
G ) denote the distance matrix of a strongly connected digraph

−→
G . The largest

eigenvalue ofD(
−→
G ) is called the distance spectral radius of a digraph

−→
G , denoted byϱ(

−→
G ).

Recently, many studies proposed the use of ϱ(
−→
G ) as a molecular structure description

of alkanes. In this paper, we characterize the extremal digraphs with minimum distance
spectral radius among all digraphs with given vertex connectivity and the extremal graphs
with minimum distance spectral radius among all graphs with given edge connectivity.
Moreover,we give the exact value of the distance spectral radius of those extremal digraphs
and graphs. We also characterize the graphs with the maximum distance spectral radius
among all graphs of fixed order with given vertex connectivity 1 and 2.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Unless stated otherwise, we follow [3] for terminology and notations, and we consider finite connected (and strongly
connected) simple graphs (digraphs). In particular, denote V (

−→
G ) = {v1, . . . , vn} the vertex set of

−→
G , E(

−→
G ) the arc set

of
−→
G . Clearly, if G is an undirected graph, and

−→
G is the digraph obtained from G by replacing each edge with the pair of

oppositely arcs joining the same pair of vertices. For a digraph
−→
G = (V , E), two vertices are called adjacent if they are

connected by an arc. If there is an arc from vertex u to vertex v, we indicate this by writing uv, call v and u the head and the
tail of uv, respectively. The digraph

−→
G is called strongly connected if for every pair of vertices x, y ∈ V (

−→
G ) there exists a

directed path from x to y and a directed path from y to x. Recall that the vertex connectivity (edge connectivity) of a graph G,
denoted by κ(G) (η(G)), is theminimumnumber of vertices (edges) whose deletion yields the resulting graph disconnected.
Similar to the definition of vertex connectivity of undirected graph, the vertex connectivity (arc connectivity) of a digraph,
denoted by κ(

−→
G ) (η(

−→
G )), is the minimum number of vertices (arcs) whose deletion yields the resulting digraph non-

strongly connected. The above two parameters are very important in characterizing digraph connectivity. The complete
digraph of order n is the digraph

−→
Kn in which every pair of vertices is an arc. Let D(

−→
G ) = (dij) be the distance matrix of a

digraph
−→
G , where dij = d−→

G (vi, vj). Di =
n

j=1 dij (i = 1, 2, . . . , n) is called the distance degree of vertex vi. Clearly, we

can assign the subscripts of vertices of V (
−→
G ) such that D1 ≤ D2 ≤ · · · ≤ Dn, so we may let {v1, v2, . . . , vn} be such vertex

ordering until stated otherwise. We call
−→
G distance regular if D1 = D2 = · · · = Dn. The matrix D(

−→
G ) is nonnegative and
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irreducible when
−→
G is strongly connected. The largest eigenvalue of D(

−→
G ) is called the distance spectral radius of a digraph

−→
G , denoted by ϱ(D(

−→
G )). The positive unit eigenvector corresponding to ϱ(D(

−→
G )) is called the Perron vector of D(

−→
G ).

Theorem 1.1 (Perron–Frobenius [13]). Let A be a nonnegative irreducible square matrix with order n. Suppose λ1, λ2, . . . , λn
are the eigenvalues of A. Then
(i) ρ(A) is a simple eigenvalue of A and |λi| ≤ ρ(A) for any eigenvalue λi (1 ≤ i ≤ n);
(ii) there exists a positive unit eigenvector corresponding to ρ(A), which is called the Perron vector of A;
(iii) if there are exactly h eigenvalues of A whose moduli are equal to ϱ(A), say, λ1, λ2, . . . , λh, then λ1, λ2, . . . , λh are the roots

of λh
= ϱ(A)h.

The distance matrix is very useful in different fields including the design of communication network, graph embedding
theory as well as molecular stability. In [1] Balaban et al. proposed the use of distance spectral radius as a molecular
descriptor. And in [5], it was successfully used to infer the extent of branching andmodel boiling points of alkanes. Recently
in [18,19], Zhou and Trinajstić provided upper and lower bounds for ϱ(G) in terms of the number of vertices, Wiener
index and Zagreb index. Subhi and Powers in [16] proved that for n ≥ 3 the path Pn has the maximum distance spectral
radius among trees on n vertices. Stevanović and Ilić in [15] generalized this result, and proved that among trees with fixed
maximum degree ∆, the broom has the maximal distance spectral radius. Furthermore, they proved that the star Sn is the
unique graph with minimal distance spectral radius among trees on n vertices. In [6], Ilić characterized n-vertex trees with
given matching number m which minimize the distance spectral radius. Recently, Bose et al. [4] determined the unique
graph with minimal distance spectral radius with given pendent vertices. Yu et al. [17] proved that the graph S ′

n (obtained
from the star Sn on n (n ≠ 4, 5) vertices by adding an edge connecting two pendent vertices) has minimal distance spectral
radius among unicyclic graphs on n vertices, and the graph P ′

n (obtained from a triangle K3 by attaching pendent path Pn−3
to one of its vertices) has maximal distance spectral radius among unicyclic graphs. For other studies of distance spectral
radius we suggest readers to refer to [2,7,8,10,11,14,20]. So far, there are fewer articles concern the distance spectral radius
of digraphs.

The rest of the paper is organized as follows: In Section 2, we give two useful lemmas. In Section 3, we characterize the
extremal digraphs and graphs with the minimum distance spectral radius among all digraphs and graphs of fixed order
with given vertex connectivity and edge connectivity. In addition, we compute the distance spectral radius of the extremal
digraphs and graphs. In Section 4, we characterize the graphs with the maximum distance spectral radius among all graphs
of fixed order with vertex connectivity 1 and 2.

2. Preliminaries

A reformulation of inequalities from the theory of nonnegative matrices [12, Chapter 2] yields the following lemma as
follows.

Lemma 2.1. If A is a nonnegative irreducible n × n matrix with the largest eigenvalue ϱ(A) and row sums s1, s2, . . . , sn,
then

min
1≤i≤n

si ≤ ϱ(A) ≤ max
1≤i≤n

si.

Moreover, one of the equalities holds if and only if the row sums of A are all equal.

For a simple connected graph, we have the similar lemma.

Lemma 2.2. Let G be a simple connected graph with n vertices. Then

D1 ≤ ϱ(D(G)) ≤ Dn.

Moreover, one of the equalities holds if and only if G is a distance regular graph.

The following lemma is an immediate consequence of the Perron–Frobenius Theorem.

Lemma 2.3. Let
−→
G be a strongly connected digraph with u, v ∈ V (

−→
G ) and uv ∉ E(

−→
G ). Then ϱ(

−→
G ) > ϱ(

−→
G + uv).

3. Minimum distance spectral radius of digraphs and graphs with given connectivity

Let Dn,k be the set of strongly connected digraphs with order n and vertex connectivity κ(
−→
G ) = k. Let

−→
G 1 ▽

−→
G 2

denote the digraph obtained from two disjoint digraphs
−→
G 1,

−→
G 2 with vertex set V (

−→
G 1) ∪ V (

−→
G 2) and arc set E =

E(
−→
G 1) ∪ E(

−→
G 2) ∪ {uv, vu|u ∈ V (

−→
G 1), v ∈ V (

−→
G 2)}. Let

−→
K

k,s
n−s denote the set of digraphs

−→
Kk ▽ (

−→
Ks ∪

−→
K n−s−k) ∪ E

where E is an arc set and E = {uv|u ∈ V (
−→
K s), v ∈ V (

−→
K n−s−k)}. A digraph

−→
G is a minimizing digraph of Dn,k if

−→
G ∈ Dn,k

and ϱ(
−→
G ) = min{ϱ(

−→
G )|

−→
G ∈ Dn,k}.

Let Ja×b be the a × b matrix whose entries are all equal to 1, In be the n × n unit matrix, 0a×b (2a×b) be the a × b matrix
of entries are all equal to 0 (2).
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Fig. 1. The digraphs
−→
K

k,1
n−1 and

−→
K

k,n−k−1
k+1 .

The following result can be found in [3], we cite it as our lemma.

Lemma 3.1. Let
−→
G be an arbitrary strongly connected digraph with vertex connectivity k. Suppose that S is a k-vertex cut of

−→
G

and
−→
G 1, . . . ,

−→
G s are the strongly connected components of

−→
G − S. Then there exists an ordering of

−→
G 1, . . . ,

−→
G s such that, for

1 ≤ i ≤ s and v ∈ V (
−→
G i), every tail of v in

−→
G 1, . . . ,

−→
G i.

Remark 3.2. By Lemma 3.1, we know that there exists a strongly connected component of
−→
G − S, say

−→
G 1, such that no

vertex of V (
−→
G 1) has in-neighbors in

−→
G − S −

−→
G 1. Let

−→
G

′

1 =
−→
G − S −

−→
G 1. Since

−→
G is strongly connected digraph

with vertex connectivity κ(
−→
G ) = k, we add arcs to

−→
G [V (

−→
G 1)],

−→
G [V (

−→
G

′

1)] and the arcs from
−→
G [V (

−→
G 1)] to

−→
G [V (

−→
G

′

1)]

unless no more arcs can be added to
−→
G , the new digraph denoted by

−→
G

′

. Clearly,
−→
G

′

is also k-connected and
−→
G

′

∈
−→
K

k,s
n−s.

Therefore, by Lemma 3.1, we have the digraphs which achieve the minimum distance spectral radius among all digraphs in

Dn,k must be in
−→
K

k,s
n−s.

The following lemma shows that ρ(
−→
K

k,1
n−1) = ρ(

−→
K

k,n−k−1
k+1 ), where

−→
K

k,1
n−1 and

−→
K

k,n−k−1
k+1 are shown in Fig. 1.

Lemma 3.3. Let D be the distance matrix of
−→
K

k,1
n−1 and D′ be the distance matrix of

−→
K

k,n−k−1
k+1 . Then PD(λ) = PD′(λ).

Proof. It is easy to see that D′
= Dt . Therefore, we have PD(λ) = PD′(λ). �

Lemma 3.4. Let f (x) = −4x2 + 4(n − k)x + 4n − 4, 1 ≤ x ≤ n − k − 1. Then min{f (x)|1 ≤ x ≤ n − k − 1} = f (1) =

f (n − k − 1) = 8n − 4k − 8.

In the following, we will consider which digraphs minimize the spectral radius in
−→
K

k,s
n−s.

Theorem 3.5. The digraphs
−→
K

k,1
n−1 and

−→
K

k,n−k−1
k+1 are the minimizing digraphs among all digraphs in

−→
K

k,s
n−s. Furthermore, if

−→
G ∈ Dn,k then ϱ(

−→
G ) ≥

n−2+
√

(n+2)2−4k−8
2 with equality holding if and only if either

−→
G ∼=

−→
K

k,1
n−1 or

−→
G ∼=

−→
K

k,n−k+1
k+1 .

Proof. Let
−→
G be an arbitrary digraph in

−→
K

k,s
n−s and S be a k-vertex cut of

−→
G . Suppose that

−→
G 1 and

−→
G 2 (with |V (

−→
G 1)| = n1

and |V (
−→
G 2)| = n2 = n − k − n1, respectively) are two strongly connected components of

−→
G − S and with arcs

E = {u1u2 ∈ E|u1 ∈ V (
−→
G 1), u2 ∈ V (

−→
G 2)}. It is easy to see that 1 ≤ n1 ≤ n − k − 1. Let D be the distance matrix of

−→
G . Then

D =

Jn1×n1 − In1×n1 Jn1×k Jn1×n2
Jk×n1 Jk×k − Ik×k Jk×n2
2n2×n1 Jn2×k Jn2×n2 − In2×n2


and

PD(λ) = |λI − D|

=

(λ + 1)In1×n1 − Jn1×n1 −Jn1×k −Jn1×n2
−Jk×n1 (λ + 1)Ik×k − Jk×k −Jk×n2
−2n2×n1 −Jn2×k (λ + 1)In2×n2 − Jn2×n2


= (λ + 1)n−3

λ − n1 + 1 −k −n2
−n1 λ − k + 1 −n2
−2n2 −k λ − n2 + 1


= (λ + 1)n−2

λ − n1 − k + 1 −n2
−2n1 − k λ − n2 + 1


= (λ + 1)n−2

[λ2
− (n − 2)λ − n1n2 − n + 1] = (λ + 1)n−2

[λ2
− (n − 2)λ − n1(n − k − n1) − n + 1].
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Thus we have ϱ(
−→
G ) as the largest root of the equation

x2 − (n − 2)x − n1(n − k − n1) − n + 1 = 0.

Then we have

ϱ(
−→
G ) =

n − 2 +


(n − 2)2 − 4[n2

1 − (n − k)n1 − n + 1]

2

≥
n − 2 +


(n − 2)2 + 8n − 4k − 8

2
by Lemma 3.4

=
n − 2 +


(n + 2)2 − 4k − 8

2
.

If the above equality holds, then by Lemma 3.4, we have n1 = 1 or n1 = n − k − 1. If n1 = 1, then
−→
G ∼=

−→
K

k,1
n−1, and if

n1 = n − k + 1, then
−→
G ∼=

−→
K

k,n−k+1
k .

For the converse, if
−→
G ∼=

−→
K

k,1
n−1 or

−→
G ∼=

−→
K

k,n−k+1
k , then it is routine to show that ϱ(

−→
G ) =

n−2+
√

(n+2)2−4k−8
2 , thus we

complete the proof. �

Let Dn,k be the set of strongly connected digraphs with order n and arc connectivity η(
−→
G ) = k. In the following, we will

consider the minimizing digraph when arc connectivity is equal to vertex connectivity, i.e. η(
−→
G ) = κ(

−→
G ) = k, we state it

without proof.

Theorem 3.6. For every k ≥ 1, if η(
−→
G ) = κ(

−→
G ) = k, then the digraphs

−→
K

k,1
n−1 and

−→
K

k,n−k−1
k+1 are the minimizing digraphs

in Dn,k.

Let δ0(
−→
G ) = min{δ−(

−→
G ), δ+(

−→
G )}. The following result shows the minimizing digraphs when η(

−→
G ) = δ0(

−→
G ) = k.

Theorem 3.7. For every k ≥ 1, if η(
−→
G ) = δ0(

−→
G ) = k, then the digraphs

−→
K

k,1
n−1 and

−→
K

k,n−k−1
k+1 are the minimizing digraphs

in Dn,k.

Proof. If δ0(
−→
G ) = δ+(

−→
G ), let u be a vertex of V (

−→
G ) with outdegree k. Then the arcs with the tail u form an arc cut, and

G − u is a complete digraph. By Lemma 2.3, we have the digraph
−→
K

k,1
n−1 as the minimum digraph in Dn,k. Similarly, we can

show that if δ0(
−→
G ) = δ−(

−→
G ), then the digraph

−→
K

k,n−k−1
k+1 is the minimizing digraph in Dn,k. Therefore, we complete the

proof. �

However, the minimizing digraphs are not determined when δ0(
−→
G ) > η(

−→
G ) > κ(

−→
G ). According to the above

results, we believe that the digraphs
−→
K

k,1
n−1 and

−→
K

k,n−k−1
k+1 are the minimizing digraphs in Dn,k. Thus we give the following

conjecture.

Conjecture 3.8. For every k ≥ 1, the digraphs
−→
K

k,1
n−1 and

−→
K

k,n−k−1
k+1 are the minimizing digraphs in Dn,k.

Denote by Gk
n (respectively, Ḡ

k
n) the set of all graphs of order nwith vertex connectivity k (respectively, edge connectivity

k). A graph G is a minimizing graph of Gk
n(or Ḡk

n) if G ∈ Gk
n(or Ḡk

n) and ϱ(G) = min{ϱ(G)|G ∈ Gk
n(or Ḡk

n)}. Let G1 ▽ G2
denote the graph obtained from two disjoint graphs G1,G2 by joining each vertex of G1 to each vertex of G2. Denote
by K k,s

n−s the graph of Kk ▽ (Ks ∪ Kn−s−k). In [9], Liu characterized that K k,1
n−1 is the unique minimizing graph in the class

Gk
n, k ≥ 1.

Theorem 3.9 ([9]). The graph K k,1
n−1 is the unique minimizing graph in the class Gk

n, k ≥ 1.

The following remark compute the smallest distance spectral radius among Gk
n.

Remark 3.10. It is easy to see that

D(K k,1
n−1) =

 0 J1×k 21×(n−k+1)
Jk×1 Jk×k − Ik×k Jk×(n−k−1)

2(n−k−1)×1 J(n−k−1)×k J(n−k−1)×(n−k−1) − I(n−k−1)×(n−k−1)


.
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Fig. 2. A transformation from K k,1
n−1 to G.

Therefore, we have

PD(λ) =

 λ −J1×k −21×(n−k+1)
−Jk×1 (λ + 1)Ik×k − Jk×k −Jk×(n−k−1)

−2(n−k−1)×1 −J(n−k−1)×k (λ + 1)I(n−k−1)×(n−k−1) − J(n−k−1)×(n−k−1)


= (λ + 1)n−3

 λ −k −2(n − k − 1)
−1 λ − k + 1 −(n − k − 1)
−2 −k λ − (n − k − 2)


= (λ + 1)n−3

[λ3
− (n − 3)λ2

− (5n − 3k − 6)λ + kn − k2 + 2k − 4n + 4].

That is, ϱ(K k,1
n−1) is the largest root of the equation x3 − (n − 3)x2 − (5n − 3k − 6)x + kn − k2 + 2k − 4n + 4 = 0.

In the following, we will consider which graphminimizes the distance spectral radius among all connected graphs in G
k
n.

If k = n − 1, then G is the complete graph of order n. Thus, we may suppose 1 ≤ k ≤ n − 2.

Theorem 3.11. For every 1 ≤ k ≤ n − 2, the graph K k,1
n−1 is the unique minimizing graph in the class Ḡk

n.

Proof. Let K k,1
n−1 with |V1| = k and |V2| = n − k − 1 be the graph as shown in Fig. 2, and let x be the Perron vector of K k,1

n−1.
By symmetry, all the coordinates of V1 are equal, say x1, and all the coordinates of V2 are equal, say x2, and let xu = x0.
Therefore, we have

ϱx0 = kx1 + 2(n − k − 1)x2,
ϱx1 = x0 + (k − 1)x1 + (n − k − 1)x2,
ϱx2 = 2x0 + kx1 + (n − k − 2)x2,

and then x0 > x2 > x1. Since ϱ > n − 1, we havex0 = x1 +
n − k − 1

ϱ + 1
x2 < x1 + x2,

x1 = −x0/(ϱ + 1) + x2,
(1)

and thus, we have

x1 =
(ϱ + 1)2 − (n − k − 1)

(ϱ + 1)(ϱ + 2)
x2. (2)

Since ϱ > n − 1, (2) implies 2x1 > x2.
Let G be a graph that attains the minimum distance spectral radius in Ḡk

n and G � K k,1
n−1. Note that the assertion is easy

to obtain when n ≤ 5. Then we assume n ≥ 6 and G ≁= Kn since k ≤ n − 2. Note that each vertex of G has degree not
less than k otherwise G ∈ Ḡk

n. If there exists a vertex u of G with degree k, then the edges incident to u form an edge cut,
and G − u is complete. The result follows in this case. So we may assume that all vertices of G have degrees greater than k.
Let S be an edge cut of G containing k edges. Since G is k-edge connected, G − S consists of exactly two components, G1,G2
of order n1, n2, respectively. Without loss of generality, we may assume that n2 ≥ n1 ≥ 2 since δ(G) ≥ k + 1, and then
n2 ≥

n
2 ≥ 3.

Let u be a vertex of V (G1) which is incident to most of the edges in S. Assume that u joins t vertices of G2. Surely
t ≤ min{k, n2}. If t = k, there exists no edges joining G1 − u and G2. Let F be a vertex set of V2 with |F | = n1 − 1.
Then G can be obtained from K k,1

n−1 by deleting the edges between F and V (K k,1
n−1) − F − {u} and adding the edges between u

and F as shown in Fig. 2. Therefore, we have

xt [D(G) − D(K k,1
n−1)]x = 2(n1 − 1)x2[kx1 + (n − n1 − k)x2] − 2(n1 − 1)x2x0

= 2(n1 − 1)x2(kx1 + (n2 − k)x2 − x0). (3)
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Fig. 3. A transformation from K k,1
n−1 to G.

Now, we will consider the following two cases.
Case 1: n2 ≥ k + 1.
Then we have kx1 + (n2 − k)x2 > x1 + x2 > x0, and

(3) > 2(n1 − 1)x2(x1 + x2 − x0) > 0.

Therefore, we have xtD(G)x > xtD(K k,1
n−1)x, a contradiction.

Case 2: n2 = k.
Then k = n2 ≥ n/2 ≥ 3, and since 2x1 > x2, thus we have

(3) = 2(n1 − 1)x2(kx1 − x0) ≥ 2(n1 − 1)x2(3x1 − x0)
> 2(n1 − 1)x2(x1 + x2 − x0) > 0,

which implies xtD(G)x > xtD(K k,1
n−1)x, a contradiction.

So in the following, we may assume that t < k.
We partition V (G) into {u}, Vij(G), i, j = 1, 2 as shown in Fig. 3. Suppose A1(G) = [V12(G), V11(G)] ∩ S, A2(G) =

[V12(G), V22(G)] ∩ S, B1(G) = [V21(G), V11(G)] ∩ S and B2(G) = [V21(G), V22(G)] ∩ S. Suppose that |Ai(G)| = ai and
|Bi(G)| = bi, for i = 1, 2. Then a1 + a2 + b1 + b2 = k − t . Similarly, we may get G from K k,1

n−1 by using the symmetry
of G1,G2 and the structural properties of K k,1

n−1. In fact, we can partition the vertex set V (K k,1
n−1) into u, Vij(K

k,1
n−1), i, j = 1, 2,

as shown in Fig. 3, such that |Vij(G)| = |Vij(K
k,1
n−1)|. Then we can easily construct a graph isomorphic to G from K k,1

n−1 by
deleting some of the edges between V12(K

k,1
n−1)∪ V21(K

k,1
n−1) and V11(K

k,1
n−1)∪ V22(K

k,1
n−1) such that the resulting graph satisfies

a1 = |[V12(K
k,1
n−1), V11(K

k,1
n−1)]|, a2 = |[V12(K

k,1
n−1), V22(K

k,1
n−1)]|, b1 = |[V21(K

k,1
n−1), V11(K

k,1
n−1)]|, b2 = |[V21(K

k,1
n−1), V22(K

k,1
n−1)]|

and adding the edges between u and V21(K
k,1
n−1); see Fig. 3.

Noting that n1 > k + 1 − t as the degree dG(u) > k. Since ϱ(G) > n − 1, (2) implies

2x21 >


2ϱ2

+ 2ϱ + 4
(ϱ + 1)(ϱ + 2)

2
x22 > x22. (4)

Since x2 > x1, we have a1x21 + a2x1x2 + b1x1x2 + b2x22 < (k − t)x22. Therefore,

xt [D(G) − D(K k,1
n−1)]x = 2(k − t)x1[tx1 + (n − n1 − (k − t))x2]

+ 2(n1 − (k − t) − 1)x2[tx1 + (n − n1 − (k − t))x2]
− a1x21 − a2x1x2 − b1x1x2 − b2x22 − (n1 − 1 − (k − t))x1x0

≥ (k − t)(2tx21 − x22) + 2(k − t)x1(n − n1 − t)x2
+ 2(n1 − 1 − (k − t))x2[tx1 + (n − n1 − t)x2 − x0]. (5)

Now, we consider the following two cases.
Case 1: n2 ≥ t + 1.
Then we have

(5) > (k − t)(2x21 − x22) + 2(n1 − 1 − (k − t))x2(x1 + x2 − x0) > 0,

which implies xtD(K k,1
n−1)x < xtD(G)x, a contradiction.

Case 2: n2 = t .
Then n − n1 − t = n2 − t = 0, and we have n2 = t ≥ n/2 ≥ 3. Since 2x1 > x2, we obtain

(5) ≥ (k − t)(2x21 − x22) + 2(n1 − 1 − (k − t))x2(3x1 − x0)

> (k − t)(2x21 − x22) + 2(n1 − 1 − (k − t))x2(x1 + x2 − x0) > 0.

Hence we have xtD(K k,1
n−1)x < xtD(G)x, a contradiction. Therefore, we complete the proof. �
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Fig. 4. The graph G⋆ .

Fig. 5. The graph H .

4. Maximum distance spectral radius of graphs with given connectivity

A graph G is amaximizing graph of Gk
n if G ∈ Gk

n and ϱ(G) = max{ϱ(G)|G ∈ Gk
n}. Subhi and Powers in [16] proved that for

n ≥ 3 the path Pn has the maximum distance spectral radius among trees on n vertices. It is not difficult to see that Pn also
has the maximum distance spectral radius among all connected graphs. Then we will have the following theorem. Noticing
that the graph in section may do not satisfy the inequality D1 ≤ D2 ≤ · · · ≤ Dn.

Theorem 4.1. The graph Pn is the unique maximizing graph in the class G1
n.

Proof. Since κ(Pn) = 1 and by the result of Subhi and Powers’, we have Pn as the maximizing graph in G1
n. �

Next wewill consider themaximizing graphs in the classG2
n. Let G ∈ G2

n be a graphwith diameter d. Let x be a vertex such
that d(x, y) = d for some y ∈ V (G). Note that G is 2-connected, then V (G) has a partition V (G) = {x} ∪ V1 ∪ · · · ∪ Vd, where
Vi is the set of all vertices satisfying d(x, z) = i, z ∈ Vi, |Vi| ≥ 2 for each i = 1, 2, . . . , d− 1. Let G⋆

= {G|G be a 2-connected
graphwith diameter d = ⌊

n
2⌋}. Thus, for any G ∈ G⋆, there is a partition V (G) = {x}∪V1∪· · ·∪Vd such that |Vi| = 2 for each

i = 1, 2, . . . , d − 1 and |Vd| = 1 when n is even; |Vd| = 2 when n is odd; see Fig. 4. Let G ∈ G2
n, x ∈ V (G), and d(x, y) = d

for some y ∈ V (G) be the largest length of the distance from x. Thus, V (G) can be decomposed into V = {x} ∪ V1 ∪ · · · ∪ Vd,
where Vi is the set of all vertices satisfying d(x, z) = i, z ∈ Vi. Note that |Vi| ≥ 2, then it is not difficult to see that either

|V1| + 2|V2| + · · · + d|Vd| ≤ 2 × 1 + 2 × 2 + · · · + 2 ×

n
2


− 1


+

n
2


(6)

if n is even, and equality holds if and only if d = ⌊
n
2⌋, or

|V1| + 2|V2| + · · · + d|Vd| ≤ 2 × 1 + 2 × 2 + · · · + 2 ×

n
2


− 1


+ 2

n
2


(7)

if n is odd, and equality holds if and only if d = ⌊
n
2⌋.

Lemma 4.2. Let G be a graph of G2
n and G′ be a graph of G⋆. Then Dn(G′) ≥ Dn(G), the equality holds if and only if G ∈ G⋆.

Proof. Let x ∈ V (G) and d(x, y) = d for some y ∈ V (G) be the largest length of the distance from x. Then V (G) can be
decomposed into V = {x} ∪ V1 ∪ · · · ∪ Vd, where Vi is the set of all vertices satisfying d(x, z) = i, z ∈ Vi. Obviously, Vi is a
cut-set of vertices of G for each i = 1, 2, . . . , d−1 since G is 2-connected, thus we have |Vi| ≥ 2 for each i = 1, 2, . . . , d−1.
Noticing that the diameter of G is at most ⌊

n
2⌋. Assume f = max{


v∈V (G) d(x, v)|x ∈ V (G),G ∈ G2

n}. It follows from
inequalities (6) and (7) that


v∈V (G) d(x, v) = f if and only if d = ⌊

n
2⌋ i.e. G ∈ G⋆. We complete the proof. �

For A, B ⊂ V (G), denote [A, B] the set of edges (of G) whose one end is in A and the other end is in B. Let H be a graph
with vertex connectivity 2 and |V (H)| = n = 2d + 1 such that V (H) has a partition V (H) = {x} ∪ V1 ∪ · · · ∪ Vd for some
y ∈ V (H), |Vi| = 2 and Vi is an independent set of H for each i = 1, 2, . . . , d, and |[Vi, Vi+1]| = 2 for i = 1, 2, . . . , d− 2 and
|[Vd−1, Vd]| = 4; see Fig. 5.

Lemma 4.3. Let H be a graph defined as above (see Fig. 5). Then ϱ(Cn) > ϱ(H).
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Proof. It is easy to see that Dn(H) > Dn−1(H) and Dn(H) = Dn(Cn). Suppose that x = (x1, x2, . . . , xn) is the Perron vector
of D(H), xs = max1≤i≤n xi and xt = maxj≠s xj. Then

ρ(D(H))xs ≤ Ds(H)xt , ρ(D(H))xt ≤ Dt(H)xs.

Hence ρ(D(H)) ≤
√
Dn−1(H)Dn(H) < Dn(H) = Dn(Cn) = ϱ(Cn). �

Using Lemmas 4.2 and 4.3, we immediately have the following result.

Theorem 4.4. The graph Cn is the unique maximizing graph in the graph G2
n.

Proof. Let G be a graph in G2
n and G′

∈ G⋆. By Lemma 4.2, we have Dn(G′) ≥ Dn(G), the equality holds if and only if G ∈ G⋆.
It is well known that ϱ(G + e) < ϱ(G), for any e∈̄E(G). We have ϱ(G′) ≤ ϱ(Cn) or ϱ(G′) ≤ ϱ(H) < ϱ(Cn) since G′ can be
obtained by adding some edges to Cn or H , and the equality holds if and only if G′ ∼= Cn. Thus we complete the proof. �

Remark 4.5. It is easy to see that

ϱ(Cn) = Di(Cn) =


n2

− 1
4

n is odd;

n2

4
n is even.

Thus, we have for any graph Gwith |V (G)| = n, if G is k-connected (k ≥ 2), then

ϱ(D(G)) ≤


n2

− 1
4

n is odd;

n2

4
n is even

the equality holds if and only if k = 2 and G ∼= Cn.
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