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1. INTRODUCTION 

A stochastic sequential control system has been studied as a Markovian 
Decision Process (M.D.P.) originally discussed by Bellman [l]. In M.D.P.‘s 
two approaches have been studied. One is a Policy Iteration Algorithm 
(P.I.A.) originally formulated by Howard [2]. This approach has been 
extended by Blackwell [3], Veinott [4], and others. Another is a Linear 
Programming (L.P.) Algorithm originally formulated by Manne [5]. Further, 
Wolfe and Dantzig [6], Derman [7], D’Epenoux [8], De Ghellinck and 
Eppen [9], and others have also discussed L.P. approach. It is also known that 
these two approaches are mutually dual in mathematical programming, i.e., 
these are equivalent. This fact of duality is only known when M.D.P.‘s 
are discounting, completely ergodic with no discounting in the sense of [2], 
or terminating in the sense of [lo]. But no result has been established for a 
general M.D.P. in which there are some ergodic sets plus a transient set, and 
these sets may change according to any policy we choose. 

In this paper we formulate a general M.D.P. with no discounting by an L.P. 
problem. And we give a procedure to solve this L.P. problem. We further 
show that P.I.A. is equivalent to this L.P. problem, i.e., P.I.A. is a special 
structure algorithm of the revised L.P. in which pivot operations for many 
variables are performed simultaneously. An example is presented to under- 
stand this relation of equivalence. We show that L.P. problems formulated 
here contain those of completely ergodic, and terminating M.D.P.‘s as special 
cases. Finally we extend this discussion to semi-Markovian Decision pro- 
cesses (semi-M.D.P.‘s). 

2. PRELIMINARIES 

Consider a system whose state space S has a finite set of states labeled by 
i = 1, 2,..., N. We observe periodically one of states at time n = 1,2,... and 
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have to make a decision chosen from given actions at each time. In each state 
i E S we have a set Ki of actions labeled by K = 1,2,..., Kj . When we choose 
an action K in state i at any time, the following two things happen: 

(i) We receive the return yili. 

(ii) The system obeys the probability law pz (j E S) at next time, where 
pz is the transition probability that the system is in statej at next time, given 
that the system is in state i at this time. 

Here we assume that yik is bounded. Moreover, we give an initial distribution 

a = (a1 , a2 ,-*-, @.I), (1) 

where 

ai > 0 (iE S), zai = 1. (2) 

Let F be a set of functions f from S to XL, Ki (Cartesian product). A 
policy rr is defined as a sequence ( fi , fi ,..., fn ,... ), where fn E F. We call 
r = (f, f,..., f,...) a stationary policy and write rr = f”. When we choose an 
action li in state i at time n, we write k = fn(i). Specifying f EF, we have 
an N x N Markov matrix Q(f) whose i-jth element pFj , and an N x I 
column vector r(f) whose ith element rik, where k = f(i). 

LEMMA 1 (Blackwell [3]). Let Q be any N x N Mmkov matrix. 

(4 1 In CZ P converges as n + co to a Markov matrix Q* such that 

QQ* = Q*Q = Q*Q* = Q*. (3) 

(b) rank (I- Q) + rank Q* = N. (4) 
(c) For every N x 1 column vector c, the system 

Qx = x, Q*x = Q*c (5) 

has a unique solution. 

(d) I - (Q - Q*) is nonsing&r, and 

H(/l)=f/3(Qi-Q*)+H=(I-Q+Q*)-1-Q* (6) 
i=O 

aspy I(0 <p < 1). 

H&l) Q* = Q*H@) = HQ* = Q*H = 0 

and 
(7) 

(I-Q)H=H(I--)=I-Q*. (8) 
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Let ,!I (0 < @ < 1) be a discount factor. Then the discounted total expected 
return vector starting in each state i E S is given by 

Ve(4 = 2 PQi(4 y(ft+d, (9) 
i=O 

where Q;(r) = Q(fJ --* Q( fi) (i > 0) and Qo(rr) = I. 

THEOREM 2 (Blackwell [3]). Take any f EF and denote by Q*(f) the 
matrix Q* associated with Q(f). Then 

Ve(f “) = 1 _ fl u(f) + v(f) + 4%f ), (10) 

where u(f) is a unique solution of 

V - Q(f )) u = 0, Q*(f)u =Q*(f)y(f), 
v( f) is a unique solution of 

(I- Q(f )) v = y(f) - u(f), Q*(f) v = 0, 
a~4B,f)-+O asp.7 1. 

(11) 

(12) 

We now consider the limit infimum of the average return per unit time 
starting in an initial distribution a. For any policy n, we define 

Then ?T* is called an optimal policy (under average return criterion) if 
G(r*) = sup= G(V). 

Next theorem is well known. The proof needs a slight modification of 
Blackwell [3], or Derman [7]. 

THEOREM 3. There exists an optimal policy which is stationary. 

As Blackwell [3] has pointed out, a nearly optimal policy, which is in 
optimal policies defined here, is important if two or more optimal policies 
exist. But in this paper we restrict our attention to finding only an optimal 
stationary policy. We do not discuss here a problem of finding a nearly optimal 
policy. A problem of finding a nearly optimal policy will be discussed in near 
future. 

3. LINEAR PROGRAMMING ALGORITHM 

Using Theorem 3, we study a problem of finding an optimal stationary 
policy. Restricting our attention to stationary policies, we write f instead off*. 
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From (13) we have for any policy 

G(f) = aQ*(f) 4f> = 2 & w;(f) ~j(fh (14) 

where Q*(f) = [q;(f)]. Th us an optimal objective is to find an f such that 

It is convenient to extend policies to randomized stationary ones. So, let 
djk denote the probability that we choose an action k in state j. It is evident 
that 

dik>O (jES,kE&), $. dj” = 1. F-5) 
1 

As we note in later discussion, we consider any fixed nonrandomized policy. 
Setting 

xjk = 1 a&f) dj” (jEXkE&), (17) 
iE.9 

Yj” = & &df > djk (i E S, k E Kj), (18) 

where 

[h(f >I = fJC.0 = (I- Q(f > + Q*(f)>-’ - Q*(f), (19) 

and using the relations Q*(I -8) = 0 (from (3)), Q* + H(I - Q) = I 
(from (8)), we have 

&A, (b -P,“l, XiK = 0 (ZE S), 

and 

(20) 

(21) 

where Sj, is the Kronecker’s delta. (See Ref. [ll], which is suggestive to 
calculate the above equations.) It is evident from (l), (16), and (17) that 

xjk = C a&(f) din > 0 ( j E S, k E Kj). 
&S 

(22) 

While the sign of yjk is not clear, and Lemma 6 will give the answer. 
Thus we have a following L.P. problem with (N) redundant constraints: 
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Maximize 

subject to 

1 c rj’“xj” (23) 
j&3 k6K, 

1 c (%I - PS) xjk = 0 
j&C7 kEKK, 

Xjk 3 0 

(I E s>, (24) 

(i E s, k E m, (25) 

(26) 

We shall afterwards show that yik 3 0 for any j of a subset of S. 
For a fixed policy f, Markov matrix Q(f) has some ergodic sets plus a 

transient set. Approrpiately relabeling the number of states, we have the 
following form for Markov matrix Q(f): 

where QI1 ,..., Qvy are submatrices associated with each ergodic set Ep 
(p = l,..., v), respectively, and the remaining states specify a set T of tran- 
sient states. 

Next two lemmas are useful to eliminate redundant constraints in (24) and 
(26). In the discussion of these lemmas (containing Lemma 6) we have to 
restrict to any fixed nonrandomized policy since we cannot consider 
simultaneously state classification for randomized policies. 

LEMMA 4. Take any f E F. For any C! E Ep (p = l,..., Y), constraints (26) 
become 

PROOF. Using Lemma l(b), we combine constraints (26) by summing on 
E,, . While, 

(from (27)) imply (28). 

409126/1-15 
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LEMMA 5. For any ergodic set E,, (p = I,..., Y), one of constraints (24) 
associated with E, is redundant. 

PROOF. It is obvious from the property of Markov chains and the fact 
that QVy (V = l,..., V) is a Markov matrix. 

The above two lemmas give the necessary constraints for any ergodic set. 
Next lemma also gives a constraint for any transient state. 

LEMMA 6. Take any fixed f E F. For any state 1 E T, a constraint (26) 
becomes 

1 (SG - P,“,> yilc = a, (I E T), (29) 
jeT 

where 
Ylk 2 0 (ZE T, k = f(l)). (30) 

PROOF. From [&(f)]ips,j.r = [O]ios,,pr and (17), we have xdk = 0 for 
any I E T and k = f(Z). Thus we have (29). While, from 

[hU(f)l&feT = [I - Qv+l.v+ll-l = f Q;+l.v+l 2 0, 
n=o 

and (18), we have 

YI” = c a&it(f) 4” a 0 (1~ T, k =f(l)). 
kS 

From (30), we suppose that yik > 0 for any j E S, k E Kj since yjk dis- 
appears for any ergodic state j. 

Thus we also consider a dual problem of the L.P. problem (23), (24), (25), 
(26), and (30). Let N x 1 column vectors u(f) and w(f) be the corresponding 
dual variables. Then its dual problem is: 

Maximize 

subject to 

(i E S, k E Ki), 

(31) 

(32) 

t+(f) + vi(f) 3 rik + C dj4f) 
je.7 

(i E S, k E &I, (33) 

%(f), W); unconstrained in sign (i E S), (34) 
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where u,(f), vi(f) is ith element of u(f), w(f), respectively. We know that 
this dual problem corresponds to P.I.A., i.e., this dual problem is immediately 
derived from P.I.A. We also note that the dual variables u(f) and v(f) are 
unique solutions of 

u(f) = Q(f) 4f), u(f) + v(f) = y(f) + Q(f) w(f), (35) 

where from (4) we set the value of one wi(f) in each ergodic set to zero, which 
refers to (28). Then w(f) is a relative solution and the difference between the 
exact solution of (12) and w(f) in (35) is a constant. 

Now we have an L.P. Algorithm for a general M.D.P. The algorithm is 
made by using Lemmas 1,4, 5, and 6. Further we note that the dual variables 
(u(f), w(f)) are also simplex multipliers. Using these simplex multipliers, 
we have the simplex criterion, which corresponds to Policy Improvement 
Routine in P.I.A. The direct proof of increasing the average return by its 
simplex criterion without L.P. properties has been given by Howard [2] 
and Veinott [4, pp. 1291-12941. It is convenient to consider the following 
set of actions which corresponds to the simplex criterion of the primal problem 
using simplex multipliers (u(f), w(f)): 

G(Q) = 
I 
k E & I c pfju5(f) > %(fh or 1 Pfjdf> = %(f) and 

jPS 5e 

yik + C &$5(f> > #i(f) + wi(/)/ - (36) 
5ss 

Then we have the following proposition of describing the linear programming 
algorithm without proof. 

PROPOSITION 7. Taking any f E F and determining the constraint for each 
state according to the state classiJication (using Lemmas 4, 5,6), we can obtain a 
basic feasible solution which corresponds to a policy f and giwes its dual wariables 
u(f) and w(f) f sim ~1 ex multipliers). Using these simplex multipliers, we hawe 
the simplex criterion. That is, G(i, f) is empty for all i E S, then we have an 
optimal stationary policy. Otherwise, select a new policy g such that g(i) E G(i, f) 
and g(i) = f(i) 4 G(i, f). R e urning t to the first part of this proposition, repeat 
until an optimal policy is obtained. 

Note that Proposition 7 describes a special structure L.P. algorithm such 
that pivot operations for many variables are performed simultaneously if 
there are two or more nonempty sets G(i,fl. 

Proposition 7 and primal and dual problems imply the following corollary. 

COROLLARY 8. P.I.A. is equivalent to the primal L.P. Algorithm. 
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PROOF. Finding a basic feasible solution (i.e., dual variables) corresponds 
to Value Determination Operation, and the simplex criterion of the next step 
corresponds to Policy Improvement Routine. But in P.I.A. pivot operations 
are performed simultaneously for many variables. The fact that the objective 
in L.P. increases for such a new policy is given by Howard [2] and Veinott [4]. 
Veinott also showed that cycling does not occur. These facts imply the result. 

Next corollary is clear if we consider P.I.A. 

COROLLARY 9. An optimal policy is independent of the initial distribution a. 

4. AN EXAMPLE 

In practical situations we encounter the problem of a general M.D.P. 
because state classification is not clear, and/or changes for each policy. Here 
we shall solve an L.P. problem and its dual of an M.D.P. for Howard’s 
example [2, p. 651. The data of the problem is given in [2, p. 651. Let an 
initial policy denote by f, its associated Markov matrix by Q(f) and the 
return vector by r(f). Then 

f=[i], Q,f,=F 8 $ ,,,=E]. 

Primal and dual problems are written by the following tableau (reduced 
Tucker Diagram), where only the data associated with a basic feasible solution 
are given. And the superscripts of its chosen policy are omitted. 

Xl x2 x3 

Vl 1 0 -1 =o 
112 0 1 0 =a2 @2 = 0) 

u1 = 243 ---.I 1 0 1 = a, + a, (7J3 = 0) 

VI VI VI 

u(f): ,;yjfa:;;;= [-s'l . 

Using the simplex criterion (or equivalently Policy Improvement Routine), we 
have a next improved policy g and its data. 
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Then 

g=[3], ,,,=E ; i], m=E]. 
Yl Y2 x3 

VI VI VI 
3 5 7 

Dual Variables 

Using the simplex criterion, we have an optimal policy g since G(i,g) is 
empty for any i E S. 

5. SPECIAL CASES 

In the preceding sections we have discussed an L.P. solution for a general 
M.D.P. In this section we restrict our attention to special structure problems, 
e.g., completely ergodic, terminating, or other special processes. 

First, we consider a completely ergodic process in the sense of Howard [2, 
p. 321. In this case Markov chains under consideration are always ergodic 
whatever policies we choose, so the L.P. problem is the following form: 

Maximize 

r5”xjk (37) 

subject to 

c c (S5, -p;> X5k = 0 (I = l,...,N - l), (38) 

Xj” > 0 (i E S, k E&l, w 
where a redundant constraint is eliminated (Lemma 5). Using the simplex 
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multipliers or dual variables (u(f) is a relative value), we have the similar 
set of simplex criterion 

because u(f) is the column vector with all elements identical and 

Qk> 419 = u(f) f or any g E F. While, it is clear from the properties of basic 
feasible solutions that 

rJI(‘) + c ppwj(f) = f%(f) + fJi( f), 
j& 

where +(f) = r+(f) for any i, j. Thus we may write 

which corresponds to Policy Improvement Routine in [Z, p. 381. 
Second, we consider a terminating process [IO] in which state 1 is absorbing 

and other states are transient whatever policies we choose. And we consider 
the (finite) total expected return before absorption as a criterion. So, we 
consider the following quantity 

where y#* is defined in (18). Thus we have the following L.P. problem: 

Maximize 

rJkYjk (9 

subject to 

g2 ,; (%z - P3Yik = ad (1 = z-v NY (45) 
f 

Yj” > 0 (j = 2,..., N; k E K,), (46) 

where a redundant constraint for L = 1 is eliminated. And the set of simplex 
criterion for a terminating process is 

G(i,f) = ]k E Ki 1 Ytk + 5 $tiWj(f) > .lf)/ 
j-2 
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Generally, we consider also a special process in which every state is the 
same structure of state classification whatever policies we choose. For this 
process we have a special L.P. problem derived from a general L.P. problem. 
And the similar discussion is made for this problem. 

6. EXTENSION TO SEMI-MARKOVIAN DECISION PROCESSES 

In this section we extend the preceding discussions of M.D.P. to semi- 
M.D.P. with no discounting. Following the notation of Osaki and Mine [II], 
we have a following L.P. problem for a general semi-M.D.P. under the average 
criterion: 

Maximize 

subject to 

C C @jI -I-$> xjk = O 
is.5 k6Kj 

x,” >, 0 (jES,kEG), (50) 

dxrk + c c (h, - P,“,>Yjk = =z (1 E 9, I ieS koKj 
(51) 

Yjk > 0 (j E S, k E Kj). (52) 

Note that the constraints of this L.P. problem have N redundant constraints, 
and according to state classification these constraints are eliminated and 
combined. Also note that primal variables xjk, y,k have N positive values for 
any basic feasible solution as we have stated in Section 3. 

Special cases discussed in Section 5 are straightforward. These special cases 
have been given by Osaki and Mine [ 111. 
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