The Exponential Homomorphism for the Second Syntomic Cohomology

Takao Yamazaki

Institute of Mathematics, University of Tsukuba, Tsukuba 305-8571, Japan
E-mail: ytakao@math.tsukuba.ac.jp

Communicated by Walter Feit
Received February 29, 2000

Let O_K be a complete discrete valuation ring with perfect residue field F of characteristic $p \geq 3$ and M a free filtered Dieudonné module. The second relative syntomic cohomology $H^2((O_K, F), \mathcal{F}(M, 2))$ with coefficients in M is an object related to arithmetic geometry, such as the Albanese kernel. In this article, we study $H^2((O_K, F), \mathcal{F}(M, 2))$ by constructing the exponential homomorphism. We determine the structure of $H^2((O_K, F), \mathcal{F}(M, 2))$, under the assumption that M is of Hodge–Witt type and that the absolute ramification index of O_K is prime to p.

© 2001 Academic Press

1. INTRODUCTION

Let F be a perfect field of characteristic $p \geq 3$, $W = W(F)$ the ring of Witt vectors of F, and K_0 be the field of fractions of W. Let K/K_0 be a totally ramified finite extension of degree e, and O_K the ring of integers in K. In this article we study the relative syntomic cohomology

$$H^2((O_K, F), \mathcal{F}(M, 2))$$

with coefficients in M, which was defined in [14]. (We will review the definition; cf. Definition 2.3.) Here M is a free filtered Dieudonné module over W in the sense of Wintenberger [13] (cf. Definition 2.1; M is a W-module endowed with a decreasing filtration $(M^i)_{i \in \mathbb{Z} \geq 0}$). Our relative syntomic cohomology with coefficients is a variant of the syntomic cohomology of Fontaine and Messing [6]; the one with coefficients has been considered in [11, 12]. It is related to objects of arithmetic geometry in many directions (e.g., Milnor K-groups, p-divisible groups, and Albanese kernel).
as explained in Examples 1.3–1.5 below. According to Bannai [1], it could be interpreted as a p-adic absolute Hodge cohomology.

Our study of the syntomic cohomology is based on a homomorphism

$$\exp : \frac{M}{M^e} \otimes_W \Omega_{O_K/W} \to H^2((O_K,F), \mathcal{F}(M,2)),$$

which we call the exponential homomorphism. This could be regarded as a generalization of Kurihara's exponential homomorphism [9], in which he treated the case that M is the unit object. (However, he treated higher syntomic cohomology groups and did not assume the residue field F to be perfect; cf. Example 1.3 for more on the relation with his work.)

By using our exponential homomorphism, we shall give a precise description of the structure of the group $H^2((O_K,F), \mathcal{F}(M,2))$, under the assumption that the extension K/K_0 is tamely ramified and that M is of Hodge–Witt type in the sense of Kato [8] (cf. Definition 2.2). Under those assumptions, we shall introduce the group $H_M(O_K)$. We define $H_M(O_K)$ in an explicit and concrete way, depending on the choice of a prime element of K and the structure of M. However, it is rather complicated. Here we only mention that $H_M(O_K)$ is a p-torsion group, and that it has a simple form when $e \leq p - 1$ (cf. Example 4.6). The reader should refer to Definition 4.5 for the precise definition.

Theorem 1.1. Assume that M is of Hodge–Witt type. Then

(i) The homomorphism \exp is surjective.

(ii) Assume further e is prime to p. Then there exists a connected p-divisible group G_M over W (whose characterization is given in Remark 1.2 below) and an exact sequence

$$G_M(O_K/pO_K) \to H_M(O_K) \xrightarrow{\epsilon} H^2((O_K,F), \mathcal{F}(M,2)) \to 0.$$

Here, the map ϵ is defined by using the exponential homomorphism (cf. (8)).

Remark 1.2. Let N be the level $[1, 2)$-part of M (cf. Definition 2.2). The translation $N[1]$ of N is a free filtered Dieudonné module of level $[0, 1)$. The connected p-divisible group G_M over W is defined to be the one corresponding to $N[1]$ via the (covariant) Dieudonné functor.

In Section 2, we review the definition of the relative syntomic cohomology. Section 3 is devoted to the definition of the exponential homomorphism and the proof of Theorem 1.1(i). In Section 4, we define the group $H_M(O_K)$ and prove Theorem 1.1(ii). In the rest of this section, we illustrate the relation of the syntomic cohomology to the arithmetic geometry.
Example 1.3. Let M be the unit object, that is,

$$M = M^0 = W, \quad M^1 = 0, \quad \phi = \sigma \text{ (Frobenius endomorphism)}.$$

Then it is an immediate consequence of the result of Kurihara [9] that $H^2((O_K, F), \mathcal{F}(M, 2))$ is isomorphic to the p-adic completion of the group $\ker(K_2^M(O_K) \to K_2^M(F))$, where K_2^M denotes the Milnor K_2-functor. The composition map

$$\Omega_{O_K/W} \xrightarrow{\exp} H^2((O_K, F), \mathcal{F}(M, 2))$$

$$\cong \ker(K_2^M(O_K) \to K_2^M(F))^* \hookrightarrow K_2^M(O_K)^*$$

is nothing but Kurihara’s exponential homomorphism [9] for $\eta = p$. (Here * means the p-adic completion.)

In this case we have $G_M = 0$, so that Theorem 1.1 gives a complete description of the group $H^2((O_K, F), \mathcal{F}(M, 2))$ when $(e, p) = 1$; if $(e, p - 1) = 1$, the group $H_M(O_K)$ is trivial. Otherwise it is isomorphic to $\text{coker}(1 + (\pi^e/p)\phi : F \to F)$, where $\pi \in K$ is a prime element of K. In view of the relation with Kurihara’s result, Theorem 1.1 provides a description of the structure of $K_2^M(O_K)$, which is of course compatible with results of Kahn [7].

This method to study the structure of $K_2^M(O_K)$ is due to Nakamura [10], in which he determined the structure of higher Milnor K-groups under the assumption $(e, p) = 1$, without the assumption of F being perfect. Our method to study $H^2((O_K, F), \mathcal{F}(M, 2))$ owes much to him, especially for the idea of using the exact sequence (3) (cf. [10, Sect. 2]).

Example 1.4. Let G be a connected p-divisible group over W, and M the free filtered Dieudonné module corresponding to G via the (covariant) Dieudonné functor. Again we have $G_M = 0$. When $G = G_m$ (the p-divisible group attached to the multiplicative group), M is nothing but the unit object (cf. Example 1.3).

It is shown in [14, Theorem D] that there is a canonical isomorphism

$$G(O_K) \cong H^1((O_K, F), \mathcal{F}(M, 1)).$$

The group M/M^1 is canonically isomorphic to the tangent space $\text{Lie}(G)$ of G. By the same method as in this article, one can construct a homomorphism (\ast) which fits into a commutative diagram

$$\begin{array}{ccc}
M/M^1 \otimes_W O_K & \xrightarrow{(\ast)} & H^1((O_K, F), \mathcal{F}(M, 1)) \\
\cong & & \cong \\
\text{Lie}(G) \otimes_W O_K & \xrightarrow{\exp} & G(O_K),
\end{array}$$
where the map in the bottom row is the classical exponential homomorphism.

In this setting, our exponential homomorphism can be written as

$$\text{Lie}(G) \otimes_W \Omega_{O_K/W} \rightarrow H^2((O_K, F), \mathcal{F}(M, 2)).$$

Comparing with the map $(*)$ above, this could be regarded as the degree two version of the classical exponential homomorphism. The group $H^2((O_K, F), \mathcal{F}(M, 2))$ might be considered as a kind of “translated p-divisible group” (cf. [3]).

Example 1.5. Let X be a smooth projective scheme over W of relative dimension $d < p$. Assume that the de Rham cohomology groups $H^i_{\text{dR}}(X/W)$ are free W-modules for any j. Let r be an integer such that $0 < r < p$. Set $X_{O_k} = X \otimes_W O_k$ and $X_F = X \otimes_W F$. Let K_{oX, O_k} and K_{r, X_F} be the (Zariski) sheaf of Milnor K-groups on X_{O_k} and X_F, respectively. The cohomology group

$$(2) \quad H^d(X_{O_k}, \ker(K_{r, X_{O_k}} \rightarrow K_{r, X_F}))$$

is important in arithmetic geometry. It is related to the Chow group $\text{CH}^d(X)$ of X when $r = d$, and appears in the class field theory of X when $r = d + 1$. We shall explain that the group $H^2((O_K, F), \mathcal{F}(H^{d+r-2}_{\text{dR}}(X/W)[r - 2], 2))$ has something to do with a certain subgroup of this group. (Here $[r - 2]$ means the translation. There is a natural structure of a free filtered Dieudonné module on $H^j_{\text{dR}}(X/W)$; cf. [4, 8].)

It is shown in [14] that the group (2) is nicely approximated by the relative syntomic cohomology group $H^{d+r}((X_{O_k}, X_F), S(r))$. In the simplest case $X = \text{Spec}(W)$ and $r = 2$; the group $H^2((\text{Spec}(O_k), \text{Spec}(F)), \mathcal{F}(2))$ is nothing but $H^2((O_K, F), \mathcal{F}(M, 2))$ with M the unit object. This group nicely approximates the Milnor K-group as explained in Example 1.3 above. In general, it is shown in [14] that in the infinitesimal point of view the groups (2) and $H^{d+r}((X_{O_k}, X_F), \mathcal{F}(r))$ are isomorphic modulo “essentially zero functors.”

The group $H^*((X_{O_k}, X_F), \mathcal{F}(r))$ is related to our syntomic cohomology $H^*((O_K, F), \mathcal{F}(M, r))$ by the exact sequence

$$0 \rightarrow H^2((O_K, F), \mathcal{F}(H^{d+r-2}_{\text{dR}}(X/W), r)) \rightarrow H^{d+r}((X_{O_k}, X_F), \mathcal{F}(r)) \rightarrow H^1((O_K, F), \mathcal{F}(H^{d+r-1}_{\text{dR}}(X/W), r)) \rightarrow 0.$$
Theorem C). Using the translation, we have isomorphisms (cf. Remark 2.6)
\[H^1((O_K, F), \mathcal{F}(H^{d+r-1}_{\text{dR}}(X/W), r)) \cong H^1((O_K, F), \mathcal{F}(H^{d+r-1}_{\text{dR}}(X/W)[r - 1], 1)), \]
\[H^2((O_K, F), \mathcal{F}(H^{d+r-2}_{\text{dR}}(X/W), r)) \cong H^2((O_K, F), \mathcal{F}(H^{d+r-2}_{\text{dR}}(X/W)[r - 2], 2)). \]

Now we assume \(H^{d+r-1}_{\text{dR}}(X/W) \) to be of Hodge–Witt type. Then, it is shown in [14, Proposition 6.12] (also cf. Example 1.4) that the former group \(H^1((O_K, F), \mathcal{F}(H^{d+r-1}_{\text{dR}}(X/W)[r - 1], 1)) \) is isomorphic to the group of \(O_K \)-rational points of some \(p \)-divisible group over \(W \). Hence the latter group \(H^2((O_K, F), \mathcal{F}(H^{d+r-2}_{\text{dR}}(X/W)[r - 2], 2)) \) is the “non-pro-representable part” of \(H^{d+r}((X_{O_K}, X_F), \mathcal{F}(r)) \). Our exponential homomorphism in this setting
\[H^d(X, \Omega_{X/W}^{−2}) \otimes W \Omega_{O_K/W} \rightarrow H^2((O_K, F), \mathcal{F}(H^{d+r-2}_{\text{dR}}(X/W)[r - 2], 2)) \]
suggests that \(H^d(X, \Omega_{X/W}^{−2}) \otimes W \Omega_{O_K/W} \) is the “tangent space” of \(H^2((O_K, F), \mathcal{F}(H^{d+r-2}_{\text{dR}}(X/W)[r - 2], 2)) \) (cf. [2]).

When \(r = d \), as \(H^{2d}((X_{O_K}, X_F), \mathcal{F}(d)) \) approximates \(H^d(X_{O_K}, \ker(K^d_{M_{X_{O_K}} \rightarrow K^d_{M_{X_F}}})) \) (and hence \(\text{CH}^d(X) \)), the group \(H^2((O_K, F), \mathcal{F}(H^{d-2}_{\text{dR}}(X/W)[r - 2], 2)) \) should approximate the “non-pro-representable part,” that is, the Albanese kernel. It seems an interesting problem to make a precise relation between those:

Problem 1.6. Let \(T(X_K) \) and \(T(X_F) \) be the kernel of the Albanese maps
\[A_0(X_K) \rightarrow \text{Alb}_{X_K}(K) \quad \text{and} \quad A_0(X_F) \rightarrow \text{Alb}_{X_F}(F), \]
respectively. (Here \(A_0(\ast) \) denotes the degree zero part of the Chow group \(\text{CH}^d(\ast) \).) Does there exist a canonical surjection
\[H^2((O_K, F), \mathcal{F}(H^{d-2}_{\text{dR}}(X/W)[d - 2], 2)) \rightarrow \ker(T(X_K) \rightarrow T(X_F))\{p\}? \]
(Here \(\{p\} \) means the \(p \)-primary part.)

2. DEFINITION OF THE SYNTOMIC COHOMOLOGY

Let \(\sigma : W \rightarrow W \) be the Frobenius endomorphism. We recall the two definitions.

Definition 2.1 (cf. [13]). A filtered Dieudonné module over \(W \) (of finite type) is a free \(W \)-module \(M \) of finite rank, endowed with

(i) a decreasing filtration \((M^i)_{i \in \mathbb{Z}_{\geq 0}} \) such that \(M^0 = M, M^i = 0 \)
\((i \gg 0) \);
(ii) a σ-linear homomorphism $\phi : M \to M$, satisfying the conditions

(iii) M' is a direct summand of M as a W-module for all $i \in \mathbb{Z}_{\geq 0}$;

(iv) $\phi(M') \subset p^i M$ for all $i \in \mathbb{Z}_{\geq 0}$ and $M = \sum_{i=0}^{\infty} (1/p^i) \phi(M')$.

Definition 2.2. A free filtered Dieudonné module M is said to be of Hodge–Witt type if there is a (finite) sequence of subobjects of M $(M_i)_{0 \leq i \leq N}$ such that

$$0 = M_0 \subset M_1 \subset \cdots \subset M_N = M$$

and such that, for each $0 \leq i \leq N - 1$, $(M_{i+1}/M_i)^i = M_{i+1}/M_i$, $(M_{i+1}/M_i)^{i+2} = 0$, and the slopes of (M_{i+1}/M_i) is in the interval $[i, i+1)$. The quotient object M_{i+1}/M_i is called the level $[i, i+1)$-part of M.

This definition coincides with Kato’s one in [8, Part II Definition 2.12], as is seen by (a slight modification of) [8, Part II Lemma 2.14].

We recall the definition of the syntomic cohomology. We shall follow the method of Kato [8], namely, we directly define a complex on the Zariski site. (We shall not use the syntomic site of Fontaine and Messing [6]; cf. [8, Remark 1.1].)

Let M be a free filtered Dieudonné module. We use the notation $\phi_r = p^{-r}\phi$, which is defined on $\sum_{i=0}^\infty p^i M^{r-i} \subset M$. Let $B = W[[T]]$ be the ring of formal power series. Fix a prime element $\pi_K \in K$. Let $f(T) \in B$ be the monic minimal polynomial of π_K, so that $f(T)$ is an Eisenstein polynomial of degree e. We identify $B/(f(T))$ and O_K by the isomorphism $B/(f(T)) \cong O_K$; $T \mapsto \pi_K$. Let D be the PD-envelope of B with respect to the ideal $(f(T))$, so that

$$D = B \left[\frac{f(T)^m}{m!} \mid m \in \mathbb{Z}_{\geq 0} \right] = B \left[\frac{T^m}{m!} \mid m \in \mathbb{Z}_{\geq 0} \right].$$

The projection map $B \to O_K$ can be naturally extended to $D \to O_K$, whose kernel is denoted by J. Let $I = J + pD$ be the kernel of the composite map $D \to O_K \to O_K/pO_K$. For $r \in \mathbb{Z}_{\geq 0}$, let f^r and I^r be the rth divided power of J and I, respectively. We define $f^r = I^r = D$ for $r \leq 0$.

Let $\hat{\Omega}_{B/W}$ be the p-adic completion of the differential module $\Omega_{B/W}$ of B. This is a free B-module of rank one with a base dT. The differential map $d : B \to \hat{\Omega}_{B/W}$ can be extended to $d : D \to D \otimes_B \hat{\Omega}_{B/W}$. We shall use the (trivial) connection

$$\nabla = id \otimes d : M \otimes_W D \to M \otimes_B D \otimes \hat{\Omega}_{B/W}.$$
This connection restricts to
\[
\sum_{i=0}^{r} M'^{-i} \otimes_W I[i] \rightarrow \sum_{i=0}^{r-1} M'^{-i-1} \otimes_W I[i] \otimes_B \hat{\Omega}_{B/W},
\]
\[
\sum_{i=0}^{r} M'^{-i} \otimes_W J[i] \rightarrow \sum_{i=0}^{r-1} M'^{-i-1} \otimes_W J[i] \otimes_B \hat{\Omega}_{B/W},
\]
which are also denoted by \(\nabla \).

Let \(r \) be an integer satisfying \(0 \leq r < p \). Let \(\phi \) be an endomorphism of \(B \) defined by \(\phi(T) = T^p \) and \(\phi(a) = \sigma(a) \) \((a \in W) \). This endomorphism \(\phi \) can be naturally extended to an endomorphism of \(D \). Furthermore, we have \(\phi(I[i]) \subseteq pD \) by the assumption \(r < p \) (cf. [8, Part I, Lemma 1.3]). Thus we can define \(\phi_r = p^{-r} \phi : I[i] \rightarrow D \). (We need the cases \(r = 1, 2 \). This is the reason why we need to assume \(p \geq 3 \).) We define for \(0 \leq r < p \)
\[
\phi_r : \sum_{i=0}^{r} M'^{-i} \otimes_W I[i] \rightarrow M \otimes_W D
\]
to be the unique homomorphism which coincides with \(\phi_{r-i} \otimes \phi_i \) on \(M'^{-i} \otimes I[i] \) for each \(i \). The restriction of \(\phi_r \) to \(\sum_{i=0}^{r} M'^{-i-1} \otimes J[i] \) is also denoted by \(\phi_r \).

The endomorphism \(\phi \) induces an endomorphism of \(\hat{\Omega}_{B/W} \), which is also denoted by \(\phi \). Since \(\phi(\hat{\Omega}_{B/W}) \subseteq p\hat{\Omega}_{B/W} \), we can define \(\phi_1 = p^{-1} \phi \), which is an endomorphism of \(\hat{\Omega}_{B/W} \). We define
\[
\phi_r : \left(\sum_{i=0}^{r-1} M'^{-i-1} \otimes_W I[i] \right) \otimes_B \hat{\Omega}_{B/W} \rightarrow M \otimes_W D \otimes_B \hat{\Omega}_{B/W}
\]
to be a unique homomorphism which coincides with \(\phi_{r-i-1} \otimes \phi_i \otimes \phi_1 \) on \(M'^{-i-1} \otimes I[i] \otimes \hat{\Omega}_{B/W} \) for each \(i \). The restriction of \(\phi_r \) to \(\sum_{i=0}^{r-1} M'^{-i-1} \otimes J[i] \otimes \hat{\Omega}_{B/W} \) is also denoted by \(\phi_r \).

We define the complex \(\mathcal{E}(M, r)_{O_k} \) and \(\mathcal{E}(M, r)_{O_k/pO_k} \) to be the complex of abelian groups
\[
\sum_{i=0}^{r} M'^{-i} \otimes_W J[i]^{(V, 1-\phi)} \rightarrow \left(\sum_{i=0}^{r-1} M'^{-i-1} \otimes_W J[i] \right) \otimes_B \hat{\Omega}_{B/W}
\]
\[
\oplus (M \otimes_W D)^{(1-\phi, v)} \rightarrow M \otimes_W D \otimes_B \hat{\Omega}_{B/W}
\]
and
\[
\sum_{i=0}^{r} M'^{-i} \otimes_W I[i]^{(V, 1-\phi)} \rightarrow \left(\sum_{i=0}^{r-1} M'^{-i-1} \otimes_W I[i] \right) \otimes_B \hat{\Omega}_{B/W}
\]
\[
\oplus (M \otimes_W D)^{(1-\phi, v)} \rightarrow M \otimes_W D \otimes_B \hat{\Omega}_{B/W},
\]
respectively. Since the ring \(O_K/pO_K \) is isomorphic to \(F[T]/(T^r) \), we sometimes use the notation \(\mathcal{F}(M, r)_{O_k/pO_k} = \mathcal{F}(M, r)_{F[T]/(T^r)} \).

Definition 2.3. Let \(M \) be a free filtered Dieudonné module and \(r \) an integer satisfying \(0 \leq r < p \). The \(q \)th syntomic cohomology group \(H^q(O_K, \mathcal{F}(M, r)) \) (resp. \(H^q(O_K/pO_K, \mathcal{F}(M, r)) \)) of \(O_K \) (resp. \(O_k/pO_K \)) with coefficients in \(M \) is defined to be the \(q \)th cohomology group of \(\mathcal{F}(M, r)_{O_k} \) (resp. \(\mathcal{F}(M, r)_{O_k/pO_k} \)).

Remark 2.4. It is clear from the definition that

\[
H^q(O_K, \mathcal{F}(M, r)) = H^q(O_K/pO_K, \mathcal{F}(M, r)) = 0 \quad \text{for } q \geq 3.
\]

Next, we define the relative syntomic cohomology. Note that we already defined \(\mathcal{F}(M, r)_{W[T]/W} = \mathcal{F}(M, r)_F \) (as for the case \(K = K_0 \)). We define the complexes \(\mathcal{F}(M, r)_{O_k/pO_k, F} \) and \(\mathcal{F}(M, r)_{O_k, F} \) to be the mapping fibers of

\[
\mathcal{F}(M, r)_{O_k/pO_k} \xrightarrow{\psi} \mathcal{F}(M, r)_F \quad \text{and} \quad \mathcal{F}(M, r)_{O_k} \xrightarrow{\psi'} \mathcal{F}(M, r)_F.
\]

Here \(\psi \) is the map induced by \(O_K/pO_K = F[T]/(T^r) \rightarrow F; T \mapsto 0 \), and \(\psi' \) is the composition of the natural map \(\mathcal{F}(M, r)_{O_k} \rightarrow \mathcal{F}(M, r)_{O_k/pO_k} \) and \(\psi \). We remark that the complex \(\mathcal{F}(M, r)_F \) is quasi-isomorphic to

\[
\sum_{i=0}^{r} p^i M^{(i-1)} \rightarrow M.
\]

Definition 2.5. Let \(M \) and \(r \) be as in Definition 2.3. The \(q \)th relative syntomic cohomology \(H^q((O_K, F), \mathcal{F}(M, r)) \) (resp. \(H^q((O_K/pO_K, F), \mathcal{F}(M, r)) \)) of \(O_K \) (resp. \(O_k/pO_k \)) with coefficients in \(M \) is defined to be the \(q \)th cohomology group of \(\mathcal{F}(M, r)_{O_k, F} \) (resp. \(\mathcal{F}(M, r)_{O_k/pO_k, F} \)).

Remark 2.6.

(i) If \(0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \) is an exact sequence of filtered Dieudonné modules, then the sequence of complexes

\[
0 \rightarrow \mathcal{F}(L, r)_* \rightarrow \mathcal{F}(M, r)_* \rightarrow \mathcal{F}(N, r)_* \rightarrow 0
\]

is exact for \(* = O_K, O_K/pO_K, (O_K, F) \) and \((O_K/pO_K, F)\).

(ii) If \(0 \leq q \leq r < p \) and \(M \) is a free filtered Dieudonné module such that \(M^q = M \), then

\[
\mathcal{F}(M, r)_* = \mathcal{F}(M[q], r-q)_*,
\]

for \(* = O_K, O_K/pO_K, (O_K, F) \) and \((O_K/pO_K, F)\). (Here \(M[q] \) is the translation of \(M \), which is defined by \(M[q]^i = M^{i+q} \) and \(p^{-q} \).

The following lemma will be used later.
Lemma 2.7. Let M be a free filtered Dieudonné module and $0 \leq r < p$. Then, we have

\[
H^q(F, S(M, r)) = 0 \quad \text{for any } q \geq 2
\]
\[
H^q(F, F, S(M, r)) = 0 \quad \text{for any } q \geq 0
\]
\[
H^q(O_K, S(M, r)) = H^q(O_K/pO_K, S(M, r)) = 0
\]
\[
\quad \text{for any } q \geq \max(r + 1, 2)
\]
\[
H^q((O_K, F, S(M, r)) = H^q((O_K/pO_K, F), S(M, r)) = 0
\]
\[
\quad \text{for any } q \geq r + 1.
\]

Proof. The second equation is clear from the definition. Other equations are proved in [14]. \[\square\]

3. Definition of the Exponential Homomorphism

For a free filtered Dieudonné module M and $0 \leq r < p$, we define the complex $S(M, r)$ by the exact sequence

\[
0 \to S(M, r)_{O_K} \to S(M, r)_{O_K/pO_K} \to S(M, r) \to 0.
\]

Then, we also have an exact sequence

\[
0 \to S(M, r)_{O_K/F} \to S(M, r)_{O_K/pO_K/F} \to S(M, r) \to 0.
\]

Since $S(M, 2)$ is acyclic outside $[0, 1]$, we have an exact sequence

\[
H^1(S(M, 2)) \to H^2((O_K, F), S(M, 2)) \to 0.
\]

Lemma 3.1. There is an isomorphism

\[
\beta : H^1(S(M, 2)) \simeq \frac{M}{M^1} \otimes_W \frac{\Omega_{O_K/W}}{p\Omega_{O_K}}.
\]

Proof (cf. Nakamura [10]). By definition, we have

\[
H^1(S(M, 2)) = \text{coker}\left(\frac{\sum_{i=0}^{2} M^{2-i} \otimes I[i]}{\sum_{i=0}^{1} M^{1-i} \otimes J[i]} \otimes \Omega_{B/W}\right).
\]

Via the isomorphism $M \otimes D/(M \otimes J + M^1 \otimes D) \simeq M/M^1 \otimes O_K$, the subgroup $(M \otimes I + M^1 \otimes D)/(M \otimes J + M^1 \otimes D)$ maps to $M/M^1 \otimes pO_K$. Thus we have

\[
H^1(S(M, 2)) \simeq M/M^1 \otimes_W \text{coker}(I[2] \xrightarrow{d} pO_K \otimes \hat{\Omega}_{B/W}).
\]
Using the exact sequence

\[(f(T))/(f(T)^2) \to O_K \otimes \hat{\Omega}_{B/W} \to \Omega_{O_K/W} \to 0,\]

we have

\[H^1(\epsilon(M, 2)) \cong \frac{M}{M^1} \otimes \frac{pO_K \otimes \hat{\Omega}_{B/W}}{d(p^2B + pf(T)B)} \]

\[\cong \frac{M}{M^1} \otimes \frac{O_K \otimes \hat{\Omega}_{B/W}}{d(pB + f(T)B)} \cong \frac{M}{M^1} \otimes \frac{\Omega_{O_K/W}}{d(pO_K)}.\]

(Note that \(O_K \otimes \hat{\Omega}_{B/W}\) is a free \(W\)-module.) This completes the proof. □

Definition 3.2. We define the exponential homomorphism \(\exp\) by the composition map

\[\begin{align*}
M/M^1 \otimes \Omega_{O_K/W} &\xrightarrow{\text{proj.}} M/M^1 \otimes \frac{\Omega_{O_K/W}}{pdO_K} \\
&\xrightarrow{\beta^{-1}} H^1(\epsilon(M, 2)) \\
&\xrightarrow{\alpha} H^2((O_K, F), \mathcal{F}(M, 2)).
\end{align*}\]

Remark 3.3. When \(F\) is a finite field, the group \(H^2((O_K, F), \mathcal{F}(M, 2))\) is finite (without assumption that \(M\) be of Hodge–Witt type nor \((e, p) = 1\). This fact can be shown as follows. Since the group \(\Omega_{O_K/W}\) is a finite group and by the exact sequence (3), we have only to show the finiteness of \(H^2((O_K/pO_K, F), \mathcal{F}(M, 2)) = H^2((F[T]/(T^e), F), \mathcal{F}(M, 2))\). By using the method of [14], one can show that there exists an exact sequence

\[\begin{align*}
M/M^1 \otimes_W \ker(F[T]/(T^e)) &\to F[T]/(T^{e-1}) \otimes_B \hat{\Omega}_{B/W} \\
&\to H^2((F[T]/(T^e), F), \mathcal{F}(M, 2)) \\
&\to H^2((F[T]/(T^{e-1}), F), \mathcal{F}(M, 2)) \to 0.
\end{align*}\]

(cf. [14, Proposition 6.2] and its proof). Since \(H^2((F, F), \mathcal{F}(M, 2)) = 0\) (cf. Lemma 2.7), this exact sequence deduces the finiteness by the induction on \(e\). A similar fact also holds for the non-relative cohomology \(H^2(O_K, \mathcal{F}(M, 2))\).

Proof of Theorem 1.1(i). Assume \(M\) to be of Hodge–Witt type. In view of the exact sequence (3), we need to show that the group \(H^2((O_K/pO_K, F), \mathcal{F}(M, 2))\) is trivial. Let \(N\) be the level \((0, 1)\)-part of \(M\). There exists an exact sequence

\[H^2((O_K/pO_K, F), \mathcal{F}(N, 2)) \to H^2((O_K/pO_K, F), \mathcal{F}(M, 2)) \to H^2((O_K/pO_K, F), \mathcal{F}(M/N, 2)).\]

The vanishing of the third term is a consequence of Remark 2.6(ii) and Lemma 2.7(iv). The following lemma shows the vanishing of the first term.
Lemma 3.4. If M is a free filtered Dieudonné module satisfying $M^2 = 0$, then we have

(i) $H^1(F, \mathcal{F}(M, 2)) = 0,$

(ii) $H^2((O_K/pO_K, \mathcal{F}(M, 2)) = 0.$

Proof. The complex $\mathcal{F}(M, 2)_F$ is quasi-isomorphic to $p^2M + pM^1 \xrightarrow{1-\phi_2} M.$

Since $M^2 = 0$, the map $p^2M + pM^1 \xrightarrow{1-\phi_2} M$ is an isomorphism (cf. Definition 2.1(iv)). Hence this complex is exact, and assertion (i) follows.

Remember the group $H^2((O_K/pO_K, \mathcal{F}(M, 2))$ is defined to be the cokernel of the map $(1-\phi_2, \nabla) : ((M \otimes_W I + M^1 \otimes_W D) \otimes_B \hat{\Omega}_{B/W}) \\
\oplus (M \otimes_W D) \to M \otimes_W D \otimes_B \hat{\Omega}_{B/W}.$

Take $v \in M$ and $m \in \mathbb{Z}_{>0}$. To finish the proof, we need to show that $w = v \otimes (T^{-1}dT/[(m-1)/e])$ is in the image of $(1-\phi_2, \nabla)$.

If $m > e$, then $w \in M \otimes I \otimes \hat{\Omega}_{B/W}$, so that $w_1 = \phi_2(w)$ is defined and again in $M \otimes I \otimes \hat{\Omega}_{B/W}$. We can define inductively $w_{i+1} = \phi_2(w_i)$. Then the series

$$w + w_1 + w_2 + \cdots$$

is convergent (p-adically) in $M \otimes I \otimes \hat{\Omega}_{B/W}$. If we write this element by y, then

$$(1-\phi_2, \nabla)(y, 0) = w.$$

Now assume $m \leq e$. In this case, $[(m-1)/e]! = 1$, so that $w = v \otimes T^{-1}dT.$ Write $m = m_0p^i$ with $(m_0, p) = 1$. We use the induction on i. If $i = 0$, then m is invertible, and we have

$$(1-\phi_2, \nabla)(0, \frac{1}{m}v \otimes T^m) = w.$$

Assume $i > 0$. Since $M^2 = 0$, we can write $v = \phi(v_0) + \phi_1(v_1)$ with $v_0 \in M$, $v_1 \in M^1$. Then we have

$$(1-\phi_2, \nabla)((pv_0 + v_1) \otimes T^{m_0p^{i-1}}dT, 0)$$

$$= w + (pv_0 + v_1) \otimes T^{m_0p^{i-1}}dT.$$

By the inductive hypothesis, the second term of the right hand side is also in the image of $(1-\phi_2, \nabla)$. This completes the proof. \blacksquare
4. THE KERNEL OF THE EXPONENTIAL HOMOMORPHISM

In this section, we assume that \(e \) is prime to \(p \). Then, we can take a prime element \(\pi \) of \(K \) which satisfies \(a = \pi^e/p \in W^* \), so that \(f(T) = T^e - pa \).

In what follows, we fix such a \(\pi \). We first define the group \(H_M(O_K) \).

Let \(M \) be a free filtered Dieudonné module such that \(M^2 = 0 \). Then we have a \(\sigma^{-1} \)-linear map \(V : M \to M \) which is characterized by \(V(\phi(x) + \phi_1(y)) = px + y \) (\(x \in M, y \in M^1 \)) (cf. [5, Sect. 9]). The image of \(V \) is \(pM + M^1 \) and \(V \) is the inverse map of \(\phi_1 : pM + M^1 \to M \). Set \(\bar{M} = M/(pM + M^1) \). We define two maps:

\[
\begin{align*}
\rho : M & \to \bar{M}; \quad \text{the projection,} \\
\tau : pM + M^1 & \to \bar{M}; \quad \tau(px + y) = \rho(x) \quad (x \in M, y \in M^1).
\end{align*}
\]

Let \(n \) be a positive integer. We consider a series of positive integers \(L = (i_j)_{j \in \mathbb{Z}/n \mathbb{Z}} \). (We also use the notation \(L = (i_0, \ldots, i_{n-1}) \). We call \(n \) the length of \(L \).) For \(L = (i_j)_{j \in \mathbb{Z}/n \mathbb{Z}} \), we define the group \(H_M(O_K, L) \) to be the quotient group of \(\bar{M} \) by the subgroup

\[
\left\{ a\rho(u_0) + \tau V^{i_{j-1}}(u_{j-1}) \mid \text{there exists } u_0, \ldots, u_{n-1} \in M \text{ such that } \tau V^{i_j}(u_j) + a\rho(u_{j+1}) = 0 \right\}
\]

\((V^i = V \circ \cdots \circ V \text{ (} i \text{ times)})\). For given \(M \) and \(L \), it is a problem of linear algebra to calculate \(H_M(O_K, L) \).

Example 4.1. When \(L = (1) \) (length 1), we have

\[
H_M(O_K, (1)) \cong \frac{\bar{M}}{(1 + a\phi)(M) + \rho(\phi_1(M^1))}.
\]

Example 4.2. Assume \(M^1 = 0 \) (e.g., the unit object (cf. Example 1.3)). For \(L = (1, 1, \ldots, 1) \) of length \(n \), we have

\[
H_M(O_K, L) \cong \frac{\bar{M}}{(1 + a^{1+p+\cdots+p^{n-1}}\phi^n)(\bar{M})}.
\]

If \(L \) is not of the form \((1, 1, \ldots, 1)\), then the group \(H_M(O_K, L) \) is trivial.

Let \(S = \{ m \in \mathbb{Z} \mid 1 \leq m \leq e/(p - 1) \} \). For \(k \in S \), we define a series \(\{m_j^{(k)}\}_{j \in \mathbb{Z}/n \mathbb{Z}} \) of integers inductively as follows: Set \(m_0^{(k)} = k \). Assume we have defined \(m_j^{(k)} \). If \((m_j^{(k)} + e, p) = 1 \) or if \(m_j^{(k)} = 0 \), then we define \(m_j^{(k)} = 0 \). Otherwise, writing \(m_j^{(k)} + e = np^s \) with \((n, p) = 1 \), we define \(m_{j+1}^{(k)} = n \). Then \(0 \leq m_j^{(k)} \leq e/(p - 1) \) for all \(j \). Let \(S_0 \) be the set of all \(k \) such that \(m_j^{(k)} = 0 \) for some \(j \). For \(k \in S - S_0 \), let \(S_k = \{m_j^{(k)} \mid j = 0, 1, 2, \ldots\} \) and \(n^{(k)} = \min\{j \mid m_j^{(k)} = k, j > 0\} \) (= Card\((S_k)\)). Define \(\Gamma = \{k \in S - S_0 \mid k = \min(S_k)\} \).
There exists a decomposition

\[S = S_0 \cup \left(\bigcup_{k \in \Gamma} S_k \right) \]

(disjoint union).

Example 4.3. If \(e \leq p - 2 \), then \(S = S_0 \). If \(e = p - 1 \), the decomposition (4) can be written as

\[S = S_0 \cup \{1\}. \]

Example 4.4. When \(p = 3 \), the decomposition (4) in some cases is as follows:

- If \(e = 8 \), then \(S = S_0 \cup \{1\} \cup \{4\} \).
- If \(e = 13 \), then \(S = S_0 \cup \{2, 5\} \).
- If \(e = 80 \), then \(S = S_0 \cup \{1\} \cup \{4, 28\} \cup \{10\} \cup \{13, 31, 37\} \).

For \(k \in S - S_0 \), we define a series of integers of length \(n^{(k)} \)

\[L^{(k)} = (i_0^{(k)}, i_1^{(k)}, \ldots, i_{n-1}^{(k)}) \]

by \(i_j^{(k)} = \min \{ i \mid e < m_j^{(k)} p^i \} \). The numbers \(i_j^{(k)} \) and \(m_j^{(k)} \) depend only on \(j \) modulo \(n^{(k)} \). We remark that the series \(L^{(k)} \) can recover \(\{m_j^{(k)}\} \):

\[m_j^{(k)} = \frac{p^{\sum_{r=1}^{\infty} i_{j+r}} + p^{\sum_{r=1}^{\infty} i_{j+r} + 1} + \cdots + p^{j+1} + 1}{p^{\sum_{r=1}^{\infty} i_{j} - 1}}. \]

Definition 4.5. Let \(M \) be a free filtered Dieudonné module of Hodge–Witt type. Let \(N \) be the level \([0, 1]\)-part of \(M \). (Hence \(\overline{N} \cong \overline{M} \).) We define the group \(H_M(O_K) \) to be

\[\bigoplus_{k \in \Gamma} H_N(O_K, L^{(k)}). \]

Example 4.6. If \(e \leq p - 2 \), \(H_M(O_K) = 0 \). If \(e = p - 1 \), writing by \(N \) the level \([0, 1]\)-part of \(M \), we have

\[H_M(O_K) \cong \frac{\overline{N}}{(1 + a\phi)(\overline{N}) + \rho(\phi_1(\overline{N}^1))}. \]

The following lemma is the main step of the proof of Theorem 1.1(ii).

Lemma 4.7. Let \(M \) be a free filtered Dieudonné module satisfying \(M^2 = 0 \). Then the group \(H^2(O_K, \mathcal{J}(M, 2)) \) is isomorphic to \(H_M(O_K) \).
Proof. Since e is prime to p, the group $\Omega_{O_K/W}$ is isomorphic to (as a W-module)

$$\bigoplus_{m=1}^{e-1} F\pi^{m-1} d\pi.$$

In particular, pdO_K vanishes in $\Omega_{O_K/W}$. By the definition of $\mathcal{C}(M, 2)$, together with Lemmas 3.4 and 3.1, we have an exact sequence

$$H^1(O_K/pO_K, \mathcal{J}(M, 2)) \xrightarrow{\delta} M \otimes W \Omega_{O_K/W} \xrightarrow{\exp} H^2(O_K, \mathcal{J}(M, 2)) \to 0.$$

We shall calculate the image of δ.

Lemma 4.8. The image of δ is generated by all elements of the forms

\begin{align*}
(5) \quad & \rho(v) \otimes \pi^{m-1} d\pi, \quad v \in M, \, 1 \leq m \leq e - 1, \, (m + e, p) = 1, \\
(6) \quad & (\tau V^{(m)}(v) \otimes \pi^{m-1} + a\rho(v) \otimes \pi^{mp^{i(m)} - e - 1}) d\pi, \\
& v \in M, \, 1 \leq m \leq e - 1, \, (m, p) = 1,
\end{align*}

where $i(m)$ is the least integer which satisfies $e < mp^{i(m)}$.

We first complete the proof of Lemma 4.7, admitting Lemma 4.8. We show that if $k > e/(p - 1)$ then $w = v \otimes \pi^{k-1} d\pi \in \text{Im}(\delta)$ for any $v \in \bar{M}$. To show this, we show the following assertion by the induction on n: If $k > p^{-n}(p^{n-1} + p^{n-2} + \cdots + p + 2)e$, then $w \in \text{Im}(\delta)$. Note that if k is divisible by p, then w is of the form (5), so the assertion holds. Thus we may assume k is prime to p. Then w may appear as the first term of (6) (note $i(k) = 1$ since $k > e/(p - 1)$). When $n = 1$, the assumption shows $kp - e > e$. Hence the second term of (6) is trivial, so the assertion holds. Assume $n > 1$. Then $kp - e > p^{-n-1}(p^{n-2} + p^{n-2} + \cdots + p + 2)e$, so the second term of (6) is in $\text{Im}(\delta)$ by the inductive hypothesis. The assertion is proved.

Next, we consider $w = v \otimes \pi^{k-1} d\pi$ for $k \in S = \{m \mid 1 \leq m \leq e/(p - 1)\}$. (We use the notations in the beginning of this section.) If $k \in S_0$, we see that w is in the image of δ by (6) and (5). Let $k \in S - S_0$. We see by (6) that

$$\left(\bigoplus_{j=0}^{n^{(k)}-1} M \otimes \pi^{m^{(k)}-1} d\pi \right) \text{ modulo } \text{Im}(\delta) \cong H_M(O_K, L^{(k)}).$$

Now the decomposition (4) completes the proof of Lemma 4.7

Proof of Lemma 4.8. Remember that $H^1(O_K/pO_K, \mathcal{J}(M, 2))$ is a quotient of

$$\ker\left(\left((M \otimes I + M^1 \otimes D) \otimes \hat{\Omega}_{B/W} \right) \oplus (M \otimes D)^{(1-\phi_H,v)} \to M \otimes D \otimes \hat{\Omega}_{B/W} \right).$$

The map

\[
1 - \phi_2 : (M \otimes I + M^1 \otimes D) \otimes \hat{\Omega}_{B/W} \rightarrow M \otimes D \otimes \hat{\Omega}_{B/W}
\]

is injective, as is seen by simple calculation. Thus, any element of \(H^1(O_K/pO_K, \mathcal{F}(M, 2))\) is represented by an element \(w\) of \((M \otimes I + M^1 \otimes D) \otimes \hat{\Omega}_{B/W}\) such that \((1 - \phi_2)(w) \in \nabla(M \otimes D)\).

Any element of \(M \otimes D \otimes \hat{\Omega}_{B/W}\) can be written as

\[
w' = \sum_{m=0}^{\infty} \nu_m' \otimes T^{m-1} dT, \quad \nu_m' \in ((m - 1)!)^{-1} M.
\]

Assuming \(w'\) is in \((M \otimes I + M^1 \otimes D) \otimes \hat{\Omega}_{B/W}\), the condition \((1 - \phi_2)(w') \in \text{Im}(\nabla)\) is equivalent to

\[
(1 - \phi_2) \left(\sum_{i=0}^{\infty} \nu_{m_i}' \otimes T^{m_{i-1}} dT \right) \in \text{Im}(\nabla)
\]

for any \(m_0 \in \mathbb{Z}_{\geq 0}\) such that \((p, m_0) = 1\).

Fixing \(m_0 \in \mathbb{Z}_{\geq 0}\) such that \((p, m_0) = 1\), we consider an element

\[
w = \sum_{i=0}^{\infty} \nu_i \otimes T^{m_{i-1}} dT.
\]

Considering the case \(m_0 > e\), a straightforward calculation shows that the element of the form (5) is in \(\text{Im}(\delta)\). We consider the case \(m_0 \leq e\). Let \(i(m_0)\) be the least integer which satisfies \(e < m_0 p^{i(m_0)}\). The condition \(w \in (M \otimes I + M^1 \otimes D) \otimes \hat{\Omega}_{B/W}\) is equivalent to

\[
v_i \in pM + M^1 \quad \text{for } 0 \leq i < i(m_0).
\]

On the other hand, we have

\[
(1 - \phi_2)(w) = \left(\nu_0 \otimes T^{m_0-1} + \sum_{i=1}^{\infty} (\nu_i - \phi_1(v_{i-1})) \otimes T^{m_{i-1}} dT \right).
\]

(Even if \(i > i(m_0)\), \(\phi_1(v_{i-1})\) is well-defined in \(((m_0p^{i(m_0)} - 1)/e)\). Thus the condition \((1 - \phi_2)(w) \in \text{Im}(\nabla)\) is equivalent to

\[
v_i = \phi_1(v_{i-1}) \bmod \frac{p^i}{((m_0p^{i(m_0)} - 1)/e)!} M \quad \text{for any } i \geq 1.
\]

This condition implies that \(\tau(v_i) = \tau V(v_{i+1})\) for \(0 \leq i < i(m_0)\). Setting \(v = v_{i(m_0)}\), we have

\[
\delta(u) = \left(\sum_{j=0}^{i(m_0)-1} \tau V^{i(m_0)-j}(v) \otimes \pi^{m_0 p^{i(m_0)} - 1} + ap(v) \otimes \pi^{m_0 p^{i(m_0)} - e - 1} \right) d\pi.
\]
(Here we used the fact \(f(T) = T^2 - pa \).) Conversely, for any \(v \in M \), there exists an element \(w \) satisfying this equation. By using elements of the form (5), we can replace (7) by (6). This completes the proof of the lemma.

Proof of Theorem 1.1(ii). Assume that \(M \) is a free filtered Dieudonné module of Hodge–Witt type and that \(e \) is prime to \(p \). Let \(N \) be the level \([0, 1)\)-part of \(M \). We have a commutative diagram whose rows and columns are exact

\[
\begin{array}{ccc}
H^0(\mathcal{E}(M/N, 2)) & \xrightarrow{\gamma} & H^1(\mathcal{E}(M, 2)) \\
\downarrow & & \downarrow \\
H^1(\mathcal{O}_K, F, \mathcal{F}(M/N, 2)) & \xrightarrow{\gamma} & H^2(\mathcal{O}_K, F, \mathcal{F}(M, 2)) \\
\downarrow & & \downarrow \\
H^1(\mathcal{O}_K \otimes \mathcal{O}_K, F, \mathcal{F}(M, 2)) & \xrightarrow{\gamma} & H^2(\mathcal{O}_K, F, \mathcal{F}(N, 2)) \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}
\]

By Lemma 3.1, we have \(H^1(\mathcal{E}(M, 2)) \cong M/M^1 \otimes \Omega_{O_K/W}/pdO_K \) and \(H^1(\mathcal{E}(N, 2)) \cong N/N^1 \otimes \Omega_{O_K/W}/pdO_K \). They are isomorphic by the definition of \(N \). Thus \(\gamma \) is the zero map. The map \(\gamma' \) is surjective by Remark 2.6 and Lemma 2.7. Now we obtain an exact sequence

\[
H^1(\mathcal{O}_K \otimes \mathcal{O}_K, F, \mathcal{F}(M, 2)) \rightarrow H^2(\mathcal{O}_K, F, \mathcal{F}(N, 2)) \rightarrow 0.
\]

By Remark 2.6 and [14, Proposition 6.12] (cf. also Example 1.4), we have an isomorphism

\[
G_M(\mathcal{O}_K \otimes \mathcal{O}_K) \cong H^1(\mathcal{O}_K \otimes \mathcal{O}_K, F, \mathcal{F}(M, N, 2)),
\]

where \(G_M \) is a connected \(p \)-divisible group defined in Remark 1.2. By Lemmas 2.7, 3.4, and 4.7, we see

\[
H^2(\mathcal{O}_K, F, \mathcal{F}(N, 2)) \cong H^2(\mathcal{O}_K, \mathcal{F}(N, 2)) \cong H_M(\mathcal{O}_K).
\]

This completes the proof. By definition, the map \(\epsilon: H_M(\mathcal{O}_K) \rightarrow H^2(\mathcal{O}_K, \mathcal{F}(M, 2)) \) could be written as

\[
(8) \quad \epsilon \left(\sum_{k \in \Gamma} u_k \right) = \sum_{k \in \Gamma} \exp(\tilde{u}_k \otimes \pi^{k-1} d\pi),
\]

where \(u_k \in H_N(\mathcal{O}_K, L^{(k)}) \) and \(\tilde{u}_k \in M/M^1 \) is a lift of \(u_k \).
ACKNOWLEDGMENT

The author expresses his gratitude to Jinya Nakamura for fruitful discussions.

REFERENCES