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Reduction of the proton radius discrepancy by 3σ

I.T. Lorenz a,∗, Ulf-G. Meißner a,b

a Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
b Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 June 2014
Received in revised form 4 August 2014
Accepted 5 August 2014
Available online 11 August 2014
Editor: W. Haxton

We show that in previous analyses of electron–proton scattering, the uncertainties in the statistical 
procedure to extract the proton charge radius are underestimated. Using a fit function based on a 
conformal mapping, we can describe the scattering data with high precision and extract a radius value 
in agreement with the one obtained from muonic hydrogen.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Two principally different methods are commonly used to de-
termine the proton charge radius r P

E . On the one hand, it enters 
the QED calculations of atomic energy splittings (electronic and 
muonic [1] hydrogen) and can thus be obtained from measure-
ments of these. On the other hand, r P

E can be obtained from elastic 
electron–proton scattering. The corresponding cross sections can 
be parameterized in terms of the electric and magnetic Sachs form 
factors G E (Q 2) and G M(Q 2), respectively, that depend on the in-
variant momentum transfer squared Q 2 = −t . Positive Q 2-values 
refer to the scattering process, negative to annihilation/creation. 
The reduced cross section, here in the one-photon approximation, 
describes the deviation from the scattering off a point-like particle:
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where ε = [1 + 2(1 + τ ) tan2(θ/2)]−1 is the virtual photon polar-
ization, θ is the electron scattering angle in the laboratory frame 
and τ = −t/4m2

N , with mN the nucleon mass.
Both methods refer to the same quantity, the slope of the pro-

ton form factor at the origin:
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The form factor obtained from the cross sections has to be extrap-
olated from the data at lowest momentum transfer to the origin. 
The most precise electron–proton scattering data from Ref. [2] an-
alyzed using spline and polynomial fit functions lead to a proton 
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charge radius that differs by ∼ 7σ from the muonic hydrogen ra-
dius of Ref. [1], when averaged with measurements in electronic 
hydrogen [3].

The purpose of this Letter is to illustrate that such extrapola-
tions lack precision in purely statistical analyses with arbitrary fit 
functions. For example, the fit functions quoted in the final results 
of Ref. [2] are polynomials and splines. In this Letter, we construct 
a simple function, that describes the data equally well and corre-
sponds to a small radius r P

E in agreement with the one obtained 
from muonic hydrogen spectroscopy. This function is based on a 
conformal mapping and thus obeys the analytic structure of the 
form factors. The following function maps the cut in the t-plane 
onto the unit circle in a new variable z:

z(t, tcut) =
√

tcut − t − √
tcut√

tcut − t + √
tcut

, (3)

where tcut = 4M2
π is the lowest singularity of the form factors with 

Mπ the charged pion mass. The Sachs form factors can then be 
expanded in the new variable z:

G E/M
(
z(t)

) =
kmax∑
k=0

akz(t)k. (4)

Here, the form factors are normalized to the charge and anomalous 
magnetic moment of the proton, respectively.

Conformal mapping techniques are a standard tool in hadron 
physics. So far, they have not been applied to the electron–proton 
scattering data by the A1 Collaboration, the data for this process 
with the highest quoted precision. A previous elaborate analysis of 
world form factor data in a similar approach was carried out by 
Hill and Paz [4]. In contrast to their analysis, we do not constrain 
the parameters ak any further to have a most flexible fit func-
tion, which is needed for the statistical reasoning here. Moreover, 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. Dependence of χ2, r P
E and r P

M on the number of terms kmax in the expansion 
in the conformal mapping variable.

the results by Hill and Paz refer to older form factor data, that are 
extracted from cross sections mainly via the Rosenbluth method. 
We avoid the systematical uncertainties related to this procedure 
by directly fitting the cross sections. Also, the results by Hill and 
Paz show a strong ambiguity due to the included fit range. As we 
have shown before [5], this can be avoided in a full dispersion 
relation approach, since this makes use of the complete available 
information on the spectral function. Loose constraints on the co-
efficients in a z-expansion neglect the mass-related information on 
the spectral function.

We emphasize the mainly illustrative purposes of this work. 
This means that the significance of these fits lies in the compar-
ison to the data analysis by the A1 Collaboration [2]. To allow for 
a direct comparison to that work, we use exactly the same data 
without further radiative corrections and with fixed normalization 
parameters (see the next section for details). Physically, the main 
advantage of the function used here, compared to the polynomi-
als and splines used by the experimenters, is the correct inclusion 
of the lowest singularity of the form factors. Besides the basic an-
alytic structure of the form factors, the imaginary part of the form 
factors can be constrained further due to unitarity, see e.g. [5], but 
this goes beyond the aim of this work. However, arbitrary coeffi-
cients correspond to an unconstrained spectral function. Therefore, 
the fits shown here have to be treated on the same footing as poly-
nomial or spline fits.

2. To illustrate the comparison to the original analysis [2], we 
follow the same procedure to choose the number of parameters. 
This means, we increase the number of terms in the expansion (4)
until the χ2 of the fits reach a plateau and the fits stabilize. We 
have performed the calculations in python and checked the results 
with Mathematica. The fits are carried out using the lmfit package 
with several optimization methods as the Levenberg–Marquardt 
and simulated annealing algorithms [7].

The extracted radii and χ2-values are shown in Fig. 1. For 
kmax = 9, the absolute χ2-value of 1563 is reached. This is ex-
actly the value found in [6] for the best polynomial fit. For kmax =
10, both electric and magnetic radii start to stabilize. The proton 
charge radius is found to be r p

E � 0.84 fm, consistent with the 
muonic hydrogen value of Ref. [1] and also the one obtained from 
a dispersion theoretical analysis of the Mainz and older data, in-
cluding the ones for the neutron [5]. The level of variation in the 
magnetic radii is larger than in the electric case, as we expect, 
since G M is suppressed by a factor of the momentum transfer 
squared in the reduced cross section, cf. Eq. (1). The proton mag-
netic radius comes out as r p

M � (0.85 ± 0.04) fm, somewhat larger 
than the value found by the A1 Collaboration and within large 
variations compatible with the one obtained in Ref. [5]. The level 
of precision of the original analysis [2] is reproduced here only 
with unconstrained parameters. As an example, we give the pa-
rameters for the kmax = 10 fit: a1 = −0.9481457, a2 = −4.953483, 
a3 = 88.55243, a4 = −978.0812, a5 = 6091.365, a6 = −22558.25, 
a7 = 50007.79, a8 = −63978.5, a9 = 42440.28, a10 = −10757.15
for the electric form factor and b1 = −2.527861, b2 = −12.71964, 
b3 = 233.4448, b4 = −2025.318, b5 = 8129.828, b6 = −15013.78, 
b7 = 4935.569, b8 = 26389.54, b9 = −40617.2, b10 = 18526.76 for 
the magnetic form factor. Clearly, such large coefficients generate 
an unphysical spectral function and thus are far from realistic, just 
like polynomial or spline fits. However, the crucial point is that 
constraints on the coefficients as suggested by Hill and Paz in-
crease the χ2 in our fits. This is also the case in a dispersive frame-
work. Currently, there exist no fits in the literature with an equally 
good χ2 to these data that obey all known physics constraints. In 
order to unambiguously distinguish between purely statistical and 
theoretically motivated data analyses, here we treat only statistical 
issues. The consideration of more physically motivated and con-
strained spectral functions will be covered in a later publication [8]
using the statistical reasoning and unphysical fits shown here as a 
prerequisite. In contrast to here, the constraints from a realistic 
spectral function and the asymptotic behaviour naively expected 
from quark counting rules will be treated. The possible impact of 
data at larger Q 2 on the radius term is of course an additional 
source of uncertainty. The main point of this paper is to clearly 
show that the combined uncertainties of fits without physics input 
do not allow to distinguish between the ‘small’ and ‘large’ radius.

3. The cross sections corresponding to this fit are shown in 
Fig. 2 for the conformal mapping function with kmax = 10. The 
six data sets for different energy settings of the incoming elec-
tron beam are separated by an offset. Note that each of these data 
sets contains measurements from three different spectrometers. 
The different experimental settings give rise to a normalization un-
certainty between the individual data sets. One can take this into 
account by 31 floating normalization parameters, as described in 
the original analysis. According to Ref. [6], the data contains the 
normalizations determined by the spline fit. In order to show the 
underestimation of uncertainties in previous analyses, it is suffi-
cient to keep the normalization parameters fixed. However, the 
additional normalization uncertainty covers an even larger range 
of radius values than given here when considered in floating nor-
malizations. To be more precise, we exactly fit to the same data 
as was done by the A1 Collaboration just using an alternative fit 
function. Other issues like an improved treatment of radiative and 
two-photon corrections are not of relevance for this Letter but will 
be taken up in a later publication [8], as well as the rigorous in-
clusion of physics constraints. Here, this procedure is necessary for 
a proper comparison to the Mainz analysis.

4. As a further check on our fits, we now consider the form 
factor ratio that has been measured precisely using recoil polariza-
tion techniques. The form factor ratio from the illustrative fit with 
kmax = 10 compares well to the recent measurements at Jefferson 
Laboratory, see Fig. 3. The displayed ratio is very similar to the 
one obtained in the spline fit in Ref. [6]. The ‘wiggle’ they found 
below Q 2 = 0.2 GeV2 from the magnetic form factor is also re-
produced. This could be interpreted as a result from overfitting, 
which would be consistent with the fact that the wiggle vanishes 
when including further physical constraints, see e.g. Ref. [5]. We 
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Fig. 2. Cross sections of elastic electron–proton scattering by the A1 Collaboration
[2], divided by the cross section of the dipole form factors, σdip. All 1422 data points 
are fitted. The data measured at different energies of the incoming electron beam 
are shown with an offset.

do not want to enter this issue here in more detail but refer the 
reader to Ref. [11] for a discussion. However, under the assump-
tion that all statistical and systematic errors are sufficiently under 
control, a good data description in terms of a low χ2 is required. 
In this case, one has to consider polynomial, spline and uncon-
strained conformal mapping fits on the same footing. In principle, 
the latter is to be preferred due to the requirements from analyt-
icity. Even if one were to neglect this fact, one can see from this 
work that a disagreement between the proton charge radius ex-
tracted from electron–proton scattering data and muonic hydrogen 
cannot be inferred from polynomial or spline fits, as one neglects 
a sizeable source of uncertainty.

5. In this Letter, we have reanalyzed the recent elastic electron–
proton scattering data from Mainz with a fit function that is suf-
ficiently flexible to describe the data with a given precision, i.e. 
with the same precision as achieved by the experimenters us-
ing spline and polynomial fit functions. The results for the proton
Fig. 3. Prediction for the form factor ratio from the fit to cross sections. The data 
for the form factor ratio are from polarization measurements by Ron et al. [9] and 
Zhan et al. [10].

charge radius r p
E are in perfect agreement with the values obtained 

via a dispersion relation approach [5] and the recent muonic hy-
drogen measurements. The remaining r p

E -discrepancy is the ∼ 4σ
deviation between the average of the spectroscopic measurements 
in electronic hydrogen and those in muonic hydrogen, see e.g. 
Ref. [3]. To solve this, further measurements in ordinary hydrogen 
are under way [3]. The planned muon–proton scattering experi-
ment MUSE [12] might also shed further light on these issues.
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