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In earlier papers we constructed a Hamiltonian torus action on an open dense set
in the moduli space of flat SU(2) connections on a compact Riemann surface,
where the dimension of the torus is half the dimension of the moduli space. This
torus action shows that this set can be viewed symplectically as a (noncompact)
toric variety. The number of integral points of the moment map for the torus action
turns out to be identical to the Verlinde dimension D(g, k). As an application, we
furnish a new proof of the relation between the large-k limit of D(g, k) and the
volume of the moduli space. From our point of view, this relation follows from the
equality between the symplectic volume of a toric variety and the Euclidean volume
of the image of the moment map. Similar considerations are shown to give rise
to the volumes of moduli spaces of parabolic bundles on a Riemann surface.
Knowledge of these volumes has been shown to allow a proof of the Verlinde
formula for the dimension of the space of holomorphic sections of line bundles on
this space.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In this paper we continue our study of the symplectic geometry of the
moduli space &, of flat SU(2) connections on a Riemann surface 2'*. Our
previous results were stated in the language of geometric quantization: in
[13] it was shown that the space %, possessed a real polarization, which
in [6] was shown to yield a quantization whose dimension coincided with
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the Verlinde dimension of the holomorphic quantization of %,. However,
the existence of the real polarization studied in [6, 13] can be seen as a
manifestation of the structure of %, as a symplectic manifold, quite apart
from any applications to quantization. The purpose of this paper is to
clarify the meaning of our previous results in terms of symplectic geometry,
and to show how they can be applied to the study of the geometry and
topology of Z,.

The basic geometric fact underlying the constructions of [6, 13] is the
existence on (an open set U, in) % of 3g — 3 commuting Hamiltonian S
actions. These flows, which are the analogs of the twist flows on
Teichmiiller space, were studied by Goldman [5], and the study of their
orbits was the main topic of [6, 13]. The dimension of %, is 6g — 6 which
is twice the number of flows; thus these flows give the space U,, considered
as a symplectic manifold, the structure of a (noncompact) toric variety. This
is an open dense set in the toric variety constructed from the convex
polyhedron given by the closure of the image of the moment map of the
torus action.

The basic application we have for this structure is the computation of the
symplectic volume of the space #,. By the Duistermaat-Heckman theorem,
this volume is equal to the volume of the image of the moment map. Now
the convex polyhedron corresponding to this image is equipped with a
lattice, corresponding to the integral points of the moment map; we may
thus compute the volume by counting the number of 1/k-integral points
in the polyhedron, dividing by k™ %2 and taking the limit as k — oo.
Thus we may reduce the computation of the volume to the calculation of
the number of integral points of multiples of the moment map.

This calculation was the main result of [6], where it was shown that the
number of integral points coincided precisely with the combinatorial for-
mula D(g, k) (see Definition 4.7) first proposed by Verlinde in the context
of conformal quantum field theory, and which has been recently shown
(see, e.g., [2]) to compute the dimension of the space of holomorphic
sections of the kth power of a line bundle on %, A rigorous proof of the
relation between the large & limit of D(g, k) and the volume of the moduli
space was given by Witten [14], using Reidemeister torsion methods. The
novelty of our approach is in the relation of this limit to the toric structure
on &% and to the corresponding moment map.

The next natural question is whether the combinatorics of the Verlinde
dimension formula itself can be understood in terms of the toric structure
we are working with. In fact, the dimension of the space of holomorphic
sections of the appropriate line bundle on the natural compactification of
U, (as a toric variety) is given precisely by the number of integral points
of the moment map; this is just the classical result on the relation between
combinatorics and algebraic geometry [9]. But it is not too hard to see



TORIC STRUCTURES ON A RIEMANN SURFACE 153

that the complex structure on this compactification does not concord with
the structure coming from the moduli space. Hence such a direct inter-
pretation of the combinatorial nature of the Verlinde dimension, as an
algebraic manifestation of the toric structure, cannot be sustained.

There is, however, a more indirect method of relating the dimension of
this space to symplectic geometry of moduli spaces, since in (3, 1] it is
shown that knowledge of the intersection pairings in the cohomology ring
of a related moduli space % (1) can be used to compute the dimension of
the space of holomorphic sections of a line bundle.' Now an argument
given in [3] shows that these intersection pairings may be obtained from
the volumes of moduli spaces of parabolic bundies on the surface X 2.7 As
it turns out, the moduli spaces of parabolic bundles can be given a toric
structure in a manner wholly analogous to that applied to % itself. Hence
the results of [6, 13] have a natural extension to the spaces of parabolic
bundles, whose volumes can then be computed by counting the lattice
points of the corresponding polyhedra, just as in the case of %,.

This paper is structured as follows. In Section 2, we recall some basic
facts about the moduli spaces in question, followed in Section 3 by a quick
review of the results of [6,137]; this serves both to make this paper
reasonably seif-contained, and to extend these results to moduli spaces of
parabolic bundles. In this section we describe the S' actions which underlie
the work of [6,13], and which we use to compute the volumes. In
Section4 we recall how symplectic volumes are related by the
Duistermaat-Heckman theorem to integral points of the moment map,
and apply this method to compute the volumes of our moduli spaces.
Finally we recall in Section 5 how these volumes allow the calculation
of the intersection pairings in the cohomology ring of %(1), and
of the dimension of the space of holomorphic sections of line bundles
on % and %(1)--the Verlinde dimension formula. We emphasize that
this last section is a summary of other work in the literature and is not
original.

2. MobuL1 SPACES ASSOCIATED TO RIEMANN SURFACES

In this section we recall the construction of the moduli spaces we study,
and the symplectic structures on them. This material is standard; we refer
the reader to, e.g., [ 1] for more details.

! More precisely, in [3] this dimension is computed for line bundles over Z(1); in order
to compute the dimension for line bundles on & in terms of the intersection pairings on (1)
we combine the results of [3] with those of [2]. See Section 5.

2 These moduli spaces are described in subsection 2.2.
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2.1. The Moduli Space of Flat Connections on a Closed Surface

Let G denote SU(2), and g its Lie algebra. Also, denote by T the maxi-
mal torus U(1). We treat the moduli space %, of gauge equivalence classes
of flat G connections on a compact Riemann surface 2 # of genus g. More
precisely, we have the space of all G connections, & = 2'(2%, g), and
Ay={Aded  F,=dd+ A n A=0}. The gauge group ¥ =Map(XZ?, G)
acts on .., with ge% taking Ae.o/, to A¥=g 'Ag+ g 'dg. Then
Z = d,[%.

We may alternatively identify %, =Hom(n,(2 %), G)/G, the space of
conjugacy classes of representations of n,(Z#) into G. This is a stratified
symplectic space, with an open dense set .%, consisting of conjugacy classes
of irreducible representations of =, (2 *) into G. The space ¥, is a smooth
manifold of dimension 6g — 6.

On %, there is a natural symplectic form ®, which descends from the
following symplectic form @ on .« if a, be Q'(Z ¥, g), then we define

@(a,b)zz—:r—zf'rr(m b). (2.1)

The symplectic form @ is invariant under the action of ¢, and descends to
give a symplectic form @ on %,.

2.2. The Moduli Space of Flat Connections on a Surface with Boundary

Let 2% be the surface of genus g with d boundary components, and let
t,e[0,1]fora=1, .., d

Let C,, a=1, .., d, denote the ath boundary component, and [(,] the
corresponding element of n,(2'%). Then we make the following

Dermition 2.1, The moduli space of flat connections on X'¢ with
weights ¢, ., 1,18

Z(t)={peHom(n,(£%), G)|Tr p([C,)]=2cos nt,, a= 1, ... d}/G.

Remark. We denote by #(t) the space of (conjugacy classes of)
irreducible representations of m,(2%) lying in ., (1).

We can also interpret this space as a moduli space of flat connections on
a noncompact surface. Let £&=X¢0UT[?_, (S'xR™*) be the noncompact
surface consisting of X4 extended by a half-infinite cylinder along each
boundary component. We denote by ({,, s,) the coordinates on the ath
copy of S'xR*. Then we define %, (1) = (£ %)/%(£ %), where

AL ={4e" (L2, g)|F,=0, and 3s°e R+ s.t.
Al g, . =1l diag(i, —i)d(, for 5,250}, (2.2)
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and
4 (E2)={g:£5->G(3s%eR* and h,e Stab(diag(e™>, e~ "))
st gl s.)="h, for s,> 52} (2.3)

Remark. 1f t,e(0, 1), the stabilizer Stab(diag(e™ e~ ")) is just the
maximal torus 7.

Then for Ae.of.(£8), the tangent space to /(£ %)/%,(Z¢) at [4] is
identified with Z',/d,CY, where

Z'={aeQ' (L%, g)|d,a=0 and a has compact support}, (2.4)
and
C% = {¢e2%ZL%, g)|3n, € Lie(Stab(diag(e™, e ~™)))
and s2e R™* s.t. é(s,, {,)=n, for s,>s°}. (2.5)

The symplectic form on T ,,%(¢) descends from an antisymmetric pairing
on Z: for a,be Z,, we define

1
wla,b)=7— Lg Tr(a A b). (2.6)

Using Stokes’ Theorem, we see that this definition depends only on the
equivalence classes [a], [b].

Now % (1) has dimension 6g — 6 +2d’, where d’ is the number of ¢, that
are in (0, 1). A particularly important special case is %/(1), which is a
compact smooth manifold (see [1]) of dimension 6g — 6.

3. THE ToriC STRUCTURE ON THE MODULI SPACES

In this section we recall the construction of the toric structure on %,
from [6, 137, and describe how this structure may be constructed also on
the moduli spaces % (1) of parabolic bundles on X'¢. We use, as in [6], two
methods to describe the Hamiltonian flows giving rise to this structure; the
first, that of [13], makes the symplectic nature of the flows clear but masks
the topology of the orbits of the flows. The second method, related to the
work of [14], can then be used to understand these orbits, and show that
they in fact correspond to a torus action.

3.1. Poisson Commuting Functions on the Moduli Space

The trinion or pair of pants P is the space S$*— (D, v D, U D;), where
the D, are three disjoint disks. Recall that we may choose a trinion
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decomposition £ of a closed surface 2'#: this means X'¢ is decomposed
as the union of 2g—2 trinions P, (y=1, .., 2g¢ —2). The boundary com-
ponents of the trinions determine 3g — 3 disjoint simple closed curves C;
(j=1,..,3g—3)in 2%

We use these curves C; to give a family of Poisson commuting
Hamiltonian functions on ? Now a simple closed curve C in X¢
determines a function f<: % — R as follows. By choosing a base point *
and an arc joining =* to some point in C, we obtain an element
[Clen,(X*). Thus, if pe Hom(n,(2¢), G), we may define a function
f<:Hom(xn,(Z#), G)/G — R by

FIpD=Trp([C]). (3.1)

We have the following

ProPOSITION 3.1 [5,13]. If C, C’ are disjoint simple closed curves in
2%, then the Poisson bracket §fS,f Y is .

Let us also define the function A“:% ~[0,1] by f([p])=
2 cos th“([p]). The function A is continuous on %, though not differen-
tiable when A< =0 or A<= 1. It follows from the explicit description of the
Hamiltonian flows given in [5, Theorems 4.5, 4.7] that

PROPOSITION 3.2. Suppose xe%, and h“(x)e(0,1). Then the
Hamiltonian flow of h“ through x has period 1 if C is a nonseparating loop,
and period 1/2 if C is a separating loop.

A trinion decomposition ¢ determines 3g —3 disjoint simple closed
curves C;: thus we obtain 3g — 3 Poisson commuting functions f;= /' on
%,. The Hamlltoman flows of the _functions h; are defined on the open
dense set U, = ﬂj"i .’ ho {0, 1)Y= &, and these funcuons Poisson commute
on U,. We define a map u=(h,, .. h3g“3) U,—R*72

We want to identify the obits of the Hamiltonian ﬂows of the functions
h;. We denote by &%(x) the Hamiltonian flow of the function # at time ¢,

starting at the point x € %. An action of R* ° on U, is then given by
((Ars s A3), X) > DEI(x). (3.2)

The kernel of this action (the subgroup of R*~? that acts trivially for
all x) is then a lattice 4 in R*~3: thus we obtain an action of a forus
K=R*"’/4 on U,. A generic orblt is identified with K.

In order to identify the lattice A, it will be convenient to have an
alternative description of the Hamiltonian flows, which takes up the next
subsection.
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3.2. Alternative Description of Hamiltonian Flows on the Moduli Space

In order to understand the geometry of the orbits of the torus actions,
it will be useful to use another construction of these actions. Suppose 2 is
a (not necessarily connected) surface with two distinguished boundary
components S, S’. We may form a surface £ with two fewer boundary
components, by gluing S to S’. We denote by Z(X) and Z(X) the corre-
sponding moduli spaces of gauge equivalence classes of flat connections.
There is thus a map «:#(X)— F(2).

The fibre of a above a point [4]e &(X) for which 4| is gauge equiv-
alent to 4|y is given as follows. We pick a representative connection A4 in
the class [4] such that 4|g= A]. Denote by %,(2) the subgroup of the
gauge group %(2’) consisting of gauge transformations which restrict on S,
S’ to elements of H =Stab(4]g), the stabilizer of 4|5 under the gauge
group action. We denote also by J the stabilizer of 4 under the action
of 4(X). There is a surjective map ¢:%(Z)J—a '([A]) given by
#([g])=14%], the gauge equivalence class on X of A4 viewed as a
connection on X.

The kernel of ¢ is then identified as

Ker(¢)={ge%(2) jlsgls=Jlsgls for some jeJ}. (3.3)
Thus Im(¢) =% (Z)/Ker(¢), and we have

Lemma 3.3. Im(¢)= H/J, where J acts on H by
Jihejlshilg! (3.4)

Proof. We have a map &:%(2)~ H/J given by d(g)=[glsgls'],
where the latter is the equivalence class under the action of J. Furthermore,
Ker(é) = Ker(¢).

Thus finally we have
THEOREM 34. The fibre a~'([A]) is diffeomorphic to Stab(A|g)/
Stab(A), where the action of Stab(A|) on Stab(A) is given by (3.4).

We want to use this identification of the fibre to relate flat connections
on X*# to their restrictions to individual trinions P, in the trinion
decomposition . First we quote

ProPoSITION 3.5 [6, Proposition 3.1].  The moduli space #(P) of gauge
equivalence classes of flat connections on a trinion P is in bijective
correspondence with the set

{(t1, 1, ) [0, 1P|t — ] St <0+ 1y, 1+ 1+ 1,<2). (35)
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The correspondence is induced by the map x — (h;{x), h,(x), h;(x)), where
the h, are the functions on P (P) defined above, corresponding to the three
boundary circles of P.

This proposition shows that the fibre of the map p: U, >R*°

coincides on U, with the fibre of the restriction map &, — []%7* Z(P,).

PROPOSITION 3.6. The closure p(U,) = R* " of the image of U, under p
is a convex polyhedron.

Proof. The polyhedron is determined by imposing the inequalities (3.5)
for every trinion P,.

Applying Theorem 3.4 repeatedly to a surface Z2'¢ formed by gluing
together successive boundary circles of trinions, we obtain

PROPOSITION 3.7.  Suppose A is a flat connection on X 8. Then the fibre of
the map p: %, — R*? containing [ A] is diffeomorphic to

3g--3 22
p )= ] Stab(AlCl)/ [T Stab(4i,,). (3.6)

j=1 y=1

Let U¥"c U, denote {x é?;]there is a flat connection A4 in the gauge
equivalence class of x such that [ 4], ] eInterior(¥(P,)) for every trinion
P,}. If [A]e U4, then the stabilizers Stab(A |c,) are just copies of U(l),
while Stab(A4|,) is a copy of Z, = Z(G).

Furthermore, let us represent the copy of U(1) corresponding to the jth
boundary circle by {e*™, 0<¢,<1}. By Proposition 3.7, we have the
following identification:

PrROPOSITION 3.8. The generic fibre of u (i.e., the fibre through a point of
U%") may be identified with

poi(x)= U Yz 2, (3.7)

where the action of (e(1),..,e(2g—2))eZ¥ " * is given by e*™i—
e(y) e(y') €¥™®, where P, P, are the two trinions bounding the curve C;.

We have a vector field 6/0¢; on hj“((O, 1)) = %, There is the following

identification:

THEOREM 3.9 [6, Proposition 5.4].  The vector field ¢/04; is equal to the
Hamiltonian vector field X, corresponding to the function h;.
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Thus we have identified {¢*%:0<¢;< 1} with the copy of U(1) arising
from the Hamiltonian flow of the function /,. Now Proposition 3.8 permits
us to identify the lattice A that is the kernel of the Hamiltonian flow 3.2.
Summarizing, we have shown the following:

ProPOSITION 3.10. The trinion decomposition & determines a 3g— 3-
dimensional torus K =R "*/A which acts on U, preserving the symplectic
Jorm, and acts effectively (in other words, the only element of K acting
trivially everywhere is 1). The action of K is given by (3.2). The lattice
AcR** has rank 3g -3, and is spanned by é,=(0, .., 1, .. 0)
(j=1,.,3g—-3)and &, (y=1,..,2g —2), where

=380+ €+ s (3.8)

for C; (), Cp,,1,Cjy () the three boundary circles of the trinion P..

The map p is the moment map for the action of the torus K.

3.3. Surfaces with Boundary

In this section we return to the notation of Subsection 2.2. We equip 24
with a trinion decomposition &, which has 2g—2+d trinions and
3g — 3 +d boundary circles in the interior of 2%, The methods of [13,
Lemma 3.3 and Corollary 3.4] show that we have Poisson commuting
functions h; (j=1,..,3g—3+d') on (1), defined as in Subsection 3.1.
Here, d' was defined in Subsection 2.2 as the number of boundary circles
C, for which t,#0, 1. Observe that if one of the ¢z, is O then the functions
hj ey hjya corresponding to the other two boundary circles C;, ), Cjy(a
of the trinion containing C, satisfy M@y = ey, while if 1, =1 they
satisfy A, ,,= 1 — h;,(,,. Hence the number of linearly independent Poisson
commuting Hamiltonian flows is 3g — 3 + d’ rather than 3g— 3 +d.

Denote by U,(z) the subset ﬂf{l“" h7'(0, 1)). The analog of
Theorem 3.9 also extends to this setting, so that on U(1), if 6/0¢, is the
vector field at the point [4] e U,(¢) corresponding to Stab(4 lc,)=U(1),
we have

THEOREM 3.11.  The vector field 0/0¢; is equal to the Hamiltonian vector
field X, corresponding to the function h;.

Proof. The proof given in Proposition 5.4 of [6] does not generalize
directly to this case. However, one may give an alternative proof by finding
a vector field on the subspace of flat connections o7« Q'(Z%, g), which
represents the Hamiltonian vector field X, corresponding to the function

: this was done in [13, Lemma 3.3]. The vector field 0/0¢, may likewise
be explicitly determined as a vector field on . this was done in the proof
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of Theorem 2.1 in [77]. One may then explicitly check that these two vector
fields agree.

Remark. 1f all the weights ¢, are in (0, 1), an alternative proof of the
existence of Poisson commuting functions on Z(;) and of Theorem 3.11
may be obtained as follows. One observes that % (1) is a symplectic
quotient of a moduli space %, , , corresponding to a surface Z#*¢ which
is formed by attaching one-holed tori N,, a=1, ..,d, to the boundary
circles C,. Let us assume also that N, is equipped with a distinguished
nonseparating simple closed curve C/,, so that N,— C/, is a trinion. Thus
{C’} and ¢ together yield a trinion decomposition Eof Z#+49 Let us label
the boundary circles C; of ¢ in such a way that Cy; 5, 4,15 C3p 3424
are the boundary components C,=3N,, while Cs; 5,201 (s s Crg_ 3434
correspond to the distinguished curves C/, in N,. Thus the Hamiltonian
flows of the functions #; (j=3g—3+d+1, .., 3g— 3+ 3d) are defined on
U=0);s3¢_3+as1 1, '((0, 1)) %, These flows define an action of
U(1)*! on U, with moment map pu'.

Then %(z) may be identified with the symplectic quotient
(1) ' (x)/U(1)* for a suitable x e R*, with (x,, .., x,)={¢,, .., ty). The
symplectic form (2.6) on % (z) is that obtained from the symplectic
reduction. The functions 4; (j < 3g —3 +d) are invariant under the action
of U(1)* and hence descend to give Poisson commuting Hamiltonian
functions on % (1).

PrOPOSITION 3.12.  For 1,€(0, 1), the symplectic volume of %,(t) is a
piecewise continuous function of ¢.

Proof. This follows immediately from the identification of % (1) as a
symplectic quotient, and from the Duistermaat-Heckman theorem [4].

If any of the 7, are equal to 1, it is no longer possible to identify %, (z)
as a symplectic quotient, but one may nonetheless embed an open dense
subset of &, (1) symplectically as a submanifold of %, , ,, and hence likewise
obtain an alternative proof of Theorem 3.11 in this case.

As in the case of closed surfaces, one here obtains a torus acton on
an open dense subset U (1)=N%7"*"h; '((0,1)) of Z(1): we define
the moment map p=(h,, .. hs, 3, 4): U £)>R* T4 We see by
extending the proof of Proposition 3.10 that

PROPOSITION 3.13.  The trinion decomposition & of 2% determines a torus
K=R*">*4A which acts effectively on U, (1), preserving the symplectic
form. The kernel A is spanned by the elements é,=(0,..1,..,0)
(j=1,..,3g—3+d') and &, where

e,=(1/2) Y é,: (3.9)

i)
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here we sum over j(y) corresponding to those boundary circles C,,, of P,
which are not components of 06X %,

As before, p is the moment map for the action of K. We have also
ProrosiTioN 3.14.  The closure u(U,(t)) of the image of U, (t) under p
is a convex polyhedron.

Proof. The polyhedron is determined by the inequalities

1, 0 (%) = Ry ) QO S by () Sy ) (X) + By (XD, (3.10)
By oy (XY + hypn (x) + Ay (X) < 2,

for trinions P, not intersecting 6X'%. If P intersects ¢2'¢ in boundary
components C,, then in (3.10) the coordinates /,(x) must be replaced by
the weights ¢,,.

4. INTEGRAL POINTS AND THE SYMPLECTIC VOLUME

Let (M?", w) be a symplectic manifold, and let K" be a rank n abelian
Lie group with a Hamiltonian action on M. Suppose the action of K on M
is effective. The action may be described as an action of the Lie algebra f,
for which the integer lattice A4 is the subgroup of f that acts trivially. The
moment map for the action of K is then a map p: M — I*.

Choose a basis (¢;) (1< j<n) for A4 and the corresponding dual basis
(/) for A*: we may then write the moment map as =Y, ;" Then we
may take coordinates (x/) (j=1,..,n; x’e R/Z) on K, corresponding to
3, x’e on k.

Suppose U= Im(u) = £* is a subset for which there is a Lagrangian sub-
manifold L in g~ '(U) transverse to the fibres of the K action, and mapped
difftomorphically onto U by u. Suppose also that the action of K on
i~ '(U) is free. Then by setting x'=0 on L, the x/, u; become coordinates
on u ~'(U) which identify it with U x K. We thus have

PrOPOSITION 4.1. The symplectic form is given on p (U) by

hn

w=Y,dy; dx’, and the volume form is w"/n'=dy, ---du, dx" --- dx".
COROLLARY 4.2. The symplectic volume satisfies vol(u="(U)) = vol(U),
where the Euclidean volume on ¥* is chosen to assign volume 1 to t*/A*.

Remark. This corollary is the simplest case of the Duistermaat—
Heckman theorem [4, Corollary 3.3].
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If Bc1*, let i(B) denote the number of points in BN A*. For keR™,
denote by kB the dilation of B by a factor k: thus vol(kB)=k" vol(B).
The following is immediate:

LeMMA 4.3. Suppose B is a submanifold of I* with piecewise smooth
boundary. Then vol(B)=1lim, , . i(kB)/k".

COROLLARY 44. Let B be as in Lemma43. Then vol(u '(B))=
lim, _, ., i(kB)/k".

We can apply Lemma 4.3 to compute the volume of the symplectic
manifolds %, and % (¢). In the above notation, we have the following

PROPOSITION 4.5.  The volumes of %, and %, (t) are given by

i(kp(U, (D))
vol(%, (1)) = lim l—k—’ig—fv

It remains to identify the lattice A* Let us examine the condition
ku(x)e A*. Recalling (3.8), (3.9), if we identify £* with R* >+ via a basis
é;, then the lattice A is generated by é, and &, ,=(1/2)3 ., é;,). The
moment map p is given in terms of the dual bas1s {f7} to {é} by

=3, hjf’ thus the condition ku(x)e A* is just

kh;(x)eZ, (41)
kg, (x)eZ, (42)

where g, =(1/2) 3, 4;,, and j(y) denote those boundary components of
P, that do not intersect 02 %.

Let 2'¢ be a closed surface equipped with a trinion decomposition &, and
let ke Z*. We consider labellings of the boundary circles C; of the trinion
decomposition by integers /;, 0</,<k.

DeriniTION 4.6, A labelling (/) of the trinion decomposition ¢ is
admissible if for every trinion P, the labels /), [, {;,, of the three
boundary circles j,(v), j.(y), J3 (y) satisfy the quantum Clebsch~Gordan
condition

@) Lyyt+lomt+lmeZ
(b) Ui = bl S s o + L (4.3)

©) Lo+ lam+ e <2k

DEFINITION 4.7. Let (2%, &, k) be the set of admissible labellings of &,
and let D(g, &, k) be the number of admissible labellings.
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Remark. In fact, D(g, & k) is independent of the choice of trinion
decomposition £ [8], so we denote it by D(g, k).

Let 2% be a genus g surface with d boundary components: we assume
all weights ¢, € Q. Consider k € Z such that kt,=n, €27 for all a.

Assume X% is equipped with a trinion decomposition £. We consider
labellings of the boundary circles C, (j=1, .., 3g — 3 + d) in the interior of
2% by integers [;, 0< [, <k We obtam a labellmg of all boundary circles
of the trinion decomposmon by endowing the boundary component C,
with the label /3, 5, ,,,=n,.

DerFINITION 4.8. A labelling (/;, j=1,..,3g—3+2d) of the trinion
decomposition ¢ of X4 is admissible if for every trinion D, the labels /, .,

Ly Ly of the three boundary circles satisfy the conditlons (4.3).

(Notice that here the labels on the boundary circles C, are now fixed as
n,=kt,.)

DErFINITION 4.9. Let 2(X%, &, 1, k) be the set of admissible labellings of
&, and let D(g, d, &, 1, k) be the number of admissible labellings.

As in the case d= 0, this number is independent of the choice of &, so we
may denote it by D(g, d, ¢, k).
We now observe

TueOREM 4.10. (a) The set 2(X%5, &, k) is in bijective correspondence
with k(U ) A*,
(b) The set (X5 ¢ 1, kY is in  bijective correspondence with
k(U (1)) nA*.

Proof. The labels /; correspond to the integer values of the functions A;.
Equation (4.3)(a) arises from the condition that the kg, take integer values
(recalling that the labels n, corresponding to the boundary components C,
are even integers). Equatlons (4.3)(b), (c) arise from the inequalities (3.5)
specifying the moduli space #(P) of gauge equivalence classes of flat
connections on one trinion P.

Our main result is an immediate corollary of Theorem 4.10 and Lemma 4.3:

THEOREM 4.11. The volumes of the modull spaces &, and ¥, (t) are given by

. D(g, k)
(a) VOI(%)zlen; WEEER

. D ’ d? _t’ k
(b) vol('%(_t))=klgrl ——*-*-*,(ﬁg\sw )-
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(In case (a), we take the limit over ke Z*. In case (b), we take the limit
over those ke Z™* for which kt, € 2Z for all a.)

In Section 5 we need alternative formulas for D(g, k). By considering
particular trinion decompositions, it is possible to rewrite D(g, k) and
D(g, d, 1, k) as trigonometric sums. For 0 <m, n< ke Z, define

s - 2 Sinn(m+1)(n+1)
TNk 42 k+2

In terms of this quantity, we have

PrOPOSITION 4.12.  The quantities D(g, k) and D(g, d, t, k) are given by
the trigonometric series (a)

k
0= ¥ 5

(b) Ifall t,e(0,1), and n,=kt, e Z, then

k

D(g, dyt,k)y=7Y Wm H Sin

j=0 a=1

Proof. These formulas result from a set of identities due to Verlinde
[12]. For (a), see [11, (6)-(12)]. Formula (b) is given in [14 (3.16)], and
is proved by a straightforward extension of the calculation in [11].

5. REVIEW OF ToPOLOGICAL CONSEQUENCES

We close with an expository section describing some of the consequences
of Theorem 4.11 identifying the volumes of moduli spaces. These conse-
quences have been worked out by Donaldson [3], Thaddeus [11], and
Witten [ 14]. The volumes yield information about the ring structure of the
cohomology ring H*(¥,(1)) of the smooth moduli space % (1), and also
the dimension of the space of holomorphic sections of powers of a
distinguished line bundle %, over #(1). We emphasize that this section
summarizes results found in the literature and is not original.

Via results of Bertram and Szenes using the Hecke correspondence [2],
one may also obtain the dimension of the space of holomorphic sections of
powers of a distinguished line bundle %, over the non-smooth moduli
space .



TORIC STRUCTURES ON A RIEMANN SURFACE 165

5.1. The Cohomology Ring of the Smooth Moduli Space

The cohomology ring H*(%(1)) is generated by classes which are
obtained from the characteristic classes of a universal rank 2 bundle % over
& (1)x X8 There is a distinguished line bundle %, over % (1) such that
¢ {(&)=2[w,] (where [w,] is the cohomology class determined by the
symplectic form , (2.6) on %(1)). Further, % has the property that
det(#%,) = &, where %, denotes the restriction of # to Z(1)x {p} for a
point pe X2 In terms of the adjoint bundle ad # with fibre sl(2, C), we
have classes

a=—(1/2) p(ad %)/[Z*] € H*(Z,(1)), (5.1)
B=pi(ad %)/[ple H (Z (1)) (5.2)

The slant product of p,(ad %) with all the cycles in A, (Z¢, Z) gives a set
of generators for H*(%,(1)); however, we shalil only be concerned with the
classes o« and f. Here, a=2[w, ].

In order to extract information about the cohomology ring, it is
necessary to recast the result (Theorem 4.11) for vol(#,(t)) as a polynomial
in . When all t,€(0,1), one may extract the leading term in k in
Proposition 5.8(b): one has [14, (3.17)]

1 i 11, sin(znnt;)

. 1
lim =575 D(8, d 1, k) =2 o= e (53)
n=1

k— oo

Let us confine ourselves now to the case where there is only one boundary
component, with weight ; where r#0, the moduli space % (1)=%(r)
is smooth. We may then rewrite the formula for vol(#(t)) as follows.
We have

VOI(‘S—@([)) =2 2E- 1;2g‘1 i_c:l Si:2(g1r7n]t) from (5.3) (5.4)
=(—1)%2%P,, _,(42) 3, (22)], (5.5)

where P, is the mth Bernoulli polynomial, a polynomial of degree m.
(In other words, (5.4) is the Fourier series for a polynomial in .}

Remark. Qur result (Theorem 4.10) yields the formula (5.4) only when
t is rational; however, it follows from Proposition 3.12 that vol(% (1)) is
a piecewise continuous function of t, so the values for re@Q suffice to
establish the formula for general ¢.

607/106,2-2
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The following argument given in [3, Sect. 6] (see also [14]) shows how
to use formula (5.5) to extract information about the ring structure of
H*(Z,(1)). If ¢ is close to 1, there is a fibration

St 21— Z(1). (5.6)
Moreover, if we denote by [w,] the cohomology class on %(¢)

corresponding to the symplectic form, and by [w,] the corresponding
class on % (1), then we have
[wJ=g*[w, 1+ (1-1)e (5.7)
Here, ee H*(%.(1), Z) restricts on each fibre of g to the generator of
H?(S2, 7), and additionally ¢* = g*(f/4).
We thus see that the coefficients of the different powers of ¢ in the
formula (5.5) for the symplectic volume of %(r) yield the intersection
pairings of powers of « and ff on % (1):

N KO0
VOI(%U))~W[%U)]
(g*[o ]+ -0y 2
= (Gg—2)! [#(1)]
3 1 o2 /3g 2 .
‘(3g~2)!m§0( . )uo

xe"(g*[w,])* " [£(1)]

1 ¥14/3g-2
= —— 1_I2n+\
(3g—2)! 2"{“0(2n+ 1)( )

x (B/4)" (@/2)% 2" [F(1)]. (5.8)

In this way, the intersection pairings of a and § may be read from the
Bernoulli polynomial (5.5).
5.2. Holomorphic Sections of Line Bundles

In addition, work of Thaddeus [11] relates these intersection pairings to
the dimension of the space of holomorphic sections H°(% (1), £+?) for
even positive integers k. The Riemann—Roch theorems tells us that

dim H%(Z,(1), £1?)=(ch £)** Td(%,(1))[ %, (1)], (59)
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and ch #*?=exp(k/2) a=exp k[w,], while [11, above (28)]

22— 2

Td 57;(1)=expoc<———-—-—-. \/—B/Z ) . (5.10)
sinh(,/B/2)

(This is an even function of \/—/3, and thus a power series in f8.) Thus the

dimension dim H%(%(1), £7?) may be obtained from the pairings

alg—l Zan[z(l)]

Finally we give a brief treatment of how these results yield the dimension
of the space of holomorphic sections of powers of a certain line bundle
%, over the (non-smooth) moduli space %. This line bundle %, is
distinguished by ¢,(%l, )= [w], where [w] is the cohomology class
represented by the symplectic form w on %. A theorem of Bertram and
Szenes [2] (using the Hecke correspondence) relates dim H%(%,, & ) to
the holomorphic Euler characteristic of certain vector bundles over & (1):

THEOREM 5.1 [2, Theorem 2.47. The dimension of the space of
holomorphic sections of £ is given by

dim HY(Z,, £5)=Y (—1) dim H/(Z,(1), S*%,).
/

(Here, $*%, is the kth symmetric power of %,.)
By the Riemann-Roch theorem, we thus have

PROPOSITION 5.2. The dimension of the space of holomorphic sections of
L is given by
dim HY(Z,, £%) =ch(S*x,) TA(Z.(1)) [Z,(D)].
But we recall that
o (det %) =c (&) =2, c,(ad %,)=p. (5.11)
A short calculation then yields
sinh((k + 1) /$/2)

h(S*%,) = exp(ka/2
ch(8™%,) = exp(ka/2) Snb(F)2)

(5.12)

One thus finds finally

PROPOSITION 5.3. The dimension of the space of holomorphic sections of
the line bundle ¥ can be expressed in terms of the intersection pairings of
a and f§ on %, (1) via the formula

dim HY(Z,, £%)=exp (k+2)a( \/B/z >2g -2
2 \sinh(/B/2)
sinh((k+1) VB2) 5 1) (5.13)
sinh(\/ﬁ/z) T |
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