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Some problems in the theory of R-closed spaces are solved by showing that every regular 

space can be embedded in a minimal regular space and there is an R-closed space with no coarser 

minimal regular topology. A class of spaces is found so that when fed into the Jones’ machinery 

for producing non-Tychonoff, regular spaces, the output is non-Tychonoff R-closed and minimal 

regular spaces. Also, an example of a strongly minimal regular space that is not locally R-closed 

is given. 

AMS Subj. Class. (1979): Primary 54D25; Secondary 54C25 

1. Introduction 

A regular (includes Hausdorff) space X is R-closed if X is closed in every regular 

space containing X as a subspace, is minimal regular if X has no strictly coarser 

regular topology, and is strongly minimal regular if X is R-closed and has a closed 

basis consisting of R-closed subspaces. It is well-known, cf., [2, 161, that a compact 

Hausdorff space is strongly minimal regular, a strongly minimal regular space is 

minimal regular, and a minimal regular space is R-closed. Many facts are known 

about R-closed spaces [2,4, 5,7, 11, 12, 15, 161 but a number of problems remain 

unsolved. Three of these problems are solved in this paper. 

Jones [9] has developed machinery that produces non-Tychonoff, regular spaces 

when fed with non-normal, Tychonoff spaces. In Section 2, a class of non-normal, 

Tychonoff spaces is developed so that when one of these spaces is fed into the 

Jones machinery, noncompact R-closed and minimal regular spaces result. Also, 

in the second section, two examples are given. First, an example of an R-closed 

space with no coarser minimal regular topology; this solves a problem in [2]. This 

example is modified to obtain an example of a strongly minimal regular space that 
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is not locally R-closed (i.e., some point does not have a neighborhood base of 

R-closed spaces). 

Herrlich [8] showed there are regular spaces that can not be densely embedded 

in an R-closed space. In Section 3, an arbitrary regular space is shown to be 

embeddable in a minimal regular space and, hence, in an R-closed space. This 

result solves two problems in [2] in the affirmative. In the last section, the paper 

is concluded with a couple of unsolved problems. 

The authors thank the referee for his or her useful suggestions and help. 

In the remainder of this section, the definitions and results necessary for the 

sequel are introduced. Also, at the end of this section, a new sufficient condition 

for a subspace of an R-closed space to be R-closed is given. 

The set of all integers is denoted by Z. Ordinals are assumed to have the usual 

order topology and the usual interval notation for ordinals is used, e.g., if (Y < p, then 

[(Y, p) = {y : y is ordinal and (Y ZG y <p}. 

Cardinals are defined as initial ordinals. If K is a cardinal, then K + 1 denotes the 

successor ordinal to K whereas K + denotes the successor cardinal to K. In particular, 

K + 1 is a compact Hausdorff space. As usual, w denotes the first infinite ordinal 

and w1 denotes the first uncountable ordinal. A regular-open subset A of a space 

X satisfies A = int(c1 A); A is regular-closed if X\A is regular-open. 

A regular filter 9 on a space X is a filter with the property that for A E 9, there 

is an open set U E 9 such that cl U E A. Clearly, a regular filter is an open filter, 

i.e., has an open filter base. A maximal regular filter is a maximal element in 

the set of all regular filters partially ordered by inclusion. It follows easily 

that the neighborhood filter JV~ of a point p in a regular space is a maximal 

filter. The adherence of a filter 9, denoted as ad 9, is defined as n{cl A : A E 9). 
A filter 9 is fixed if ad %# 0; otherwise, 4 is said to be free. Thus, for a 

regular filter 9, ad LF = n% A filter 9 on a space X traces on A GX if 

F n A # 0 for all FE 9; otherwise, 9 is said to miss A. Note that if 9 is a regular 

filter on a space X and traces on A, then 9/A = {F nA : F E 9) is a regular filter 

on A. 
Many of the basic properties of R-closed and minimal regular spaces are contained 

in [2]. Some of the properties needed in the paper are now listed. 

1.1. (a) A regular space X is R-closed iff every regular filter on X is fixed. 
(b) A regular space X is minimal regular iff every regular filter on X with a unique 

adherent point is convergent. 
(c) A Tychonoff, R-closed space is compact. 
(d) The continuous image of an R-closed space onto a regular space is R-closed. 
(e) The product of an R-closed (resp. minimal regular) space with a compact 

Hausdorff space is R-closed (resp. minimal regular). 
(f) A clopen subspace of an R-closed (resp. minimal regular) space is R-closed 

(resp. minimal regular). 
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(g) A regular space that is the finite union of R-closed (resp. minimal regular) 

spaces is R-closed (resp. minimal regular). 

The problem of determining which subsets of R-closed spaces are also R-closed 

is still unsolved. From the well-known examples of noncompact, R-closed spaces 

(e.g., Example 4.18 in [2]), it is clear that regular-closed subspaces of an R-closed 

space are not necessarily R-closed. By 1.1(f), clopen subsets of R-closed spaces 

are R-closed. Another sufficient condition is presented in the next result. 

1.2. If X is R-closed and U (resp. A) is an open (resp. closed) subset of X such that 

bd U (resp. bd A) is R-closed, then cl U (resp. A) is R-closed. 

Proof. Since the proofs are similar, only the open case is proven. Let B = cl U. 

Assume 9 is a free regular filter on B. Since bd U is R-closed, then 9 misses 

bd U. So, there is V E 9 such that V n bd U = 0 and V is open in B. Since V c U, 

then V is open in X. Let CC? be the filter on X generated by 91 U. Then % is a 

regular filter and n% = ns = 0. This is a contradiction as X is R-closed. 

A regular space is locally R-closed if every point has a neighborhood base 

consisting of R-closed subspaces. There are strongly minimal regular spaces which 

are not locally R-closed (see 2.7 in this paper). Also, there are R-closed, locally 

R-closed spaces which are not minimal regular (see the space J(X) described before 

2.5 in this paper). However, the next result is a consequence of 1.2. 

1.3. If X is R-closed and has an open basis with R-closed boundaries, then X is 

both locally R-closed and strongly minimal regular. 

Proof. It is immediate from 1.2 that X is locally R-closed. If A CX is closed and 

p & A, there is an open set U of p such that bd U is R-closed and A n cl U = 0. Let 

B =X\U. Then p&B, A c B, and bd B = bd U is R-closed. By 1.2, B is R-closed. 

So, X is strongly minimal regular. 

2. Jones’ machinery 

In 1973, Jones [9] developed for each non-normal regular space X, a non- 

Tychonoff, regular space J(X) which contains X as a closed subspace. Let A and 

B be disjoint closed subsets of X that can not be separated by disjoint open sets. 

Then H = A\int A and K = B\int B are disjoint nowhere dense closed subsets of 

X that can not be separated by disjoint open sets. Let Y =X X Z with this 

identification: if x E H and n is even, identify (x, n) and (x, n + 1) and if x E K and 

n is odd, identify (x, n) and (x, n + 1). Let X, =Xx(n), H, = H x {n}, and K, = 

K x {n}. Suppose {p+, p-} n Y = 0. Let DJ(X) = Y u {pi. p-> where U c IN(X) is 
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open if U n Y is open in Y and p+ E U (resp. p- E U) implies there is IZ > 0 such 

thatU{X,:m >n}~ U(resp.U{X ,:m c-n}5 U).LetJ(X)={p+}u{X,:m 20). 

2.1 [9]. Suppose X is regular and H and K are disjoint closed sets that can not be 

separated by disjoint open sets. Then J(X) and DJ(X) are regular, non-Tychonoff 

spaces. Also, iff is a real-valued continuous function on DJ(X), then f (p+) = f(p_). 

We now give a sufficient condition for J(X) to be R-closed and DJ(X) to be 

minimal regular. 

2.2. Suppose X is a regular space with a pair of disjoint closed sets H and K that 

satisfies : 

(*) Every free regular filter on X traces on H and K. 

Then J(X) is R-closed. 

Proof. Assume J(X) is not R-closed. So, there is a free regular filter 9 on J(X). 

Case 1. 9 misses each X,. For each n E w, there is U, E 9 such that (XO u. + * u 

X,) n U, = 0. Thus, if U is a neighborhood of p+, then for some n > 0, J(X)\(X,, u 

* * . uX,) G U; so, U,, E U. Hence, 9 converges to p +, contradicting that 9 is free. 

Case 2. 9 traces on some X,,. Then SIX, is a free regular filter on X,. Hence, 

9 traces on H, and K,. If n is even (resp. odd), then 9 traces on H,,+I (resp. 

K,+l). So, 9 traces on X,,+l. By induction, it follows that 9 traces on X,,, for m 2 n. 

Hence, p+ E ad 9 contradicting that 9 is free. 

2.3. Suppose X is a regular space with a pair of disjoint closed sets H and K that 

satisfies : 

(**> Every regular filter on X with a unique adherent point and which misses one 

of H or K is a maximal regular filter. 

Then DJ(X) is minimal regular. 

Proof. First, we will show that X satisfies (*). Assume X does not satisfy (*), i.e., 

there is a free regular filter 9 on X that misses H. Let y EX\H and 9 = 

{F u U: F E 9, U E NY}. Then ad Ce = {y} and 9 is a regular filter on X missing H. 

By (**), $? is a maximal regular filter on X; this is impossible as $? is properly 

contained in NY. So, X satisfies (*). To show DJ(X) is minimal regular, let 9 be 

a regular filter on DJ(X) with a unique adherent point y. 

Case 1. y =p+ (the y = p_ case is similar). There is m E w such that 9 misses 

{X, : k G -m} u {p_}. Assume 9 traces on some X,. Then 3” = 9 IX, is a free regular 

filter on X,. Thus, P,, traces on H, and K,. If n is even (resp. odd), then s,, traces 

on K,-I (resp. H,_I). So, 9 traces on X,,_i, and by induction, it follows that 9 

traces on Xk for all k <n. This is impossible as 9 does not trace on X_,. Hence, 

9 does not trace on X, for all n E Z. It follows that 9 converges to pt. 
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Case 2. y E X,, for some n. Assume 9’ traces on both H, and K,. Now y&H, or 

y&K, as H,, nK, = 0. Suppose YE’ H,. If n is even (resp. odd), then 9 traces on 

H,,+i(resp. H,_l) and y@X,+i (resp. X,,_,) as y&H”. So, %“+i(resp. F”_i) is a free 

regular filter on X,+i(resp. X,-i). By induction, it follows that 9 traces on Xk for 

all k 2 n (resp. k G n). This is a contradiction as it shows that p+ E ad 9 (resp. 

p_ E ad 9). So, 9” misses H, or K,. By (**), @” is a maximal regular filter on X,. 

Since y E nF, then 9 EN,,. Let NY = NY IX,,. So, 9” zX~; by maximality of $,,, 

F,, =Ky.Ify& H, UK,, thenX,,\(H, u K,)~N~;itfollowsthatN~ = $andSconver- 

ges to y. If y E H,, u K,,, then y EX,+~ (or X,-i) and %“+i (or F,,_r) is a maximal 

regular filter on X,,+i (or X,-r); so, F”+i =Ny” (or gn_i =.Ny-‘). Thus, X,, u 

Xn+i EJV~ (or X, uX,_i EN,,); it follows that NY = 9 and 9 converges to y. 

2.4. Let X be a regular space with disjoint closed sets H and K that can not be 

separated by disjoint open sets. Suppose X also satisfies: 

(1) For every pair of disjoint regular-closed sets, one is R-closed, and 

(2) X has an open base with R-closed boundaries. 

(a) If X is Tychonoff, then Xsatisfies (*). 

(b) If X satisfies (*), then X satisfies (**>. 

Proof. To show (a), assume 9 is a free regular filter on X that does not trace on 

H. Then there is an open set U E 9 such that H n cl U = 0. Also, there is an open 

set V E 9 such that cl V E U. Now cl V is not R-closed since 9 is free. But 

H c cl(X\cl U) and cl(X\cl U) n cl V = 0. So, cl(X\cl U) is R-closed and Tychonoff 

and, hence, is compact. But the compact set H in a regular space can be separated 

from a disjoint closed set by disjoint open sets; this is a contradiction. 

To prove (b), suppose 9 is a regular filter on X with a unique adherent point y 

that misses H. Assume 9 does not converge to y, then there is an open neighborhood 

U of y such that bd U is R-closed, and 9 traces on X\U. Let 9 be the filter 

generated by {F\U: F E 9). Since 91 (X\U) is a free regular filter on X\U and 

bd U is R-closed, then X\cl I/ E 9) (X\U). Thus, % is a free regular filter on X. 

But % misses H, a contradiction, as X satisfies (*). 

Let X=((wl+l)x(w+l))\{(ol,w)} where H={(cu,w):a<ol} and K= 
{(We, a): (Y <w}. The non-normal Tychonoff plank X is locally compact and for 

every pair of disjoint regular-closed sets, one is compact; also, H and K can not 

be separated by disjoint open sets. By 2.4, J(X) = {p+}u {X,: n 3 0) (resp. DJ(X) = 

{p,, p_} u {X, : In 1 E w }) is R-closed (resp. minimal regular); J(X) (resp. DJ(X)) 

is a well-known example that is not minimal regular (resp. compact), cf. [3]. 

2.5. (a) The R-closed subspaces of J(X)\{p+} are compact subspaces. 
(b) J(X) has only one coarser minimal regular topology and this topology is compact 

Hausdorff. 



50 A. Dow, .I. Porter / Embedding in R-closed spaces 

Proof. (a) This follows by 1.1(c) and the fact that every subspace of J(X)\{p+} is 

Tychonoff. 

(b) Let T denote the usual topology of J(X) and r* denote the topology on 

J(X) which is the one point compactification of the locally compact spaceJ(X)\{p+}. 

Now T* is a coarser regular topology which is compact Hausdorff. Suppose that 

T’ E T and 7’ is a minimal regular topology on J(X). Let y E J(X)\{p+}, and let V 

be a compact r-neighborhood of y. By 1.2 J(X)\(int,V) is R-closed since 

bd,[J(X)\int,V] is compact. Therefore J(X)\(int,V) is r’-closed and so int,V is T’ 

open. So, 

T* 1 (J(x)\{P+)) = 7’1 (J(x)\{P+}) = 7 1 (J(x)\{P+}). 

If U is a r*-open neighborhood of p+, then J(X)\U is compact and, hence, closed 

in T’. This shows that U is T’-open and proves T* c T’. By minimal regularity of 

T’, it fOllOWS that T* = 7’. 

Remark. If a space P satisfies 2.4 and is Tychonoff (and hence locally compact), 

then the same proof for 2.5(b) yields that J(P) has only one coarser minimal regular 

topology and this topology is compact Hausdorff. This would seem to indicate that 

one should not expect the Jones machinery to yield a positive solution to Problem 

17(b) in [2] (finding an R-closed space with at least two coarser minimal regular 

topologies). 

Let Z={(x,y)~DJ(X)x(w+l): if YEW, then x=p+ or x=(a,P,n) where 

n 3 -7). For y E w + 1, let Y, = {(x, 5) E 2: l= y} and T, = {x: (x, y) E Y,}. Note that 

2 is a subspace of the minimal regular space DJ(X) x (o + 1) (see 1.1(e)), for 

n E w, T,, is homeomorphic to J(X), and T, is homeomorphic to DJ(X). NOW, 

UGZ is open iff UnY, is open in Y, for each yew+1 and if (x,W)E Y,,,nU, 

there are an open neighborhood W of x in DJ(X) and k E w such that 2 n 

(W x [k, o + 1)) s U. 

2.6. Z is R-closed and has no coarser minimal regular topology. 

Proof. First, we show Z is R-closed. Let 9 be a regular filter on Z such that 

(p_, w) ci n%. There are an open neighborhood U of (p_, w) and FE 9 such that 

F n U = 0. Thus, for some integer m, 

which is an R-closed space by l.l(e, g). Thus, n9 # 0. This shows Z has no free 

regular filters and, hence, is R-closed. Assume Z’ is Z with a coarser minimal 

regular topology. Since for n E W, Y,, is clopen in Z, then Y, and Z\ Y, are R-closed 

by 1.1(f). Thus, Y, and Z\ Y, are closed subsets of Z’. Hence, Y, is a clopen subset 

of Z’. Let YL be Y,, with the Z’ topology. By 1.1(f), Yk is minimal regular. Since 

Y, is homeomorphic to J(X), then by 2.5(b) YL is a compact Hausdorff space; 
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hence, every neighborhood of (p+, n) in 2’ traces on X-, X {n}. Let U be an open 

neighborhood of (p+, w ) in Z’. For some n ~w, (p+, m)~ U for m sn. So, U n 

(X-, x {m}) # 0 for all m 2 n. This implies that (p-, w) E clzJJ. So, (p,, w) and 

(p-, W) can not be separated by disjoint open sets; hence, Z’ is not Hausdorff, a 

contradiction. 

Now, 2.6 gives a negative answer to Problem 17(a) in [2] by showing that 

P = regular does not have this property: every P-closed space has a coarser minimal 

P topology. Also, when P = Urysohn [13] the property is not satisfied; however, 

the property is satisfied when P = Hausdorff [lo] or Tychonoff [l]. 

Now, we modify Z to obtain a strongly minimal regular space W that is 

not locally R-closed. In Z, for each n E w, identify {(WI, n, 0, y)cZ: y E w t 1) 

to a point. Let W be the corresponding quotient space of Z and $I:Z + W the 

corresponding quotient map. 

2.1. W is strongly minimal regular but not locally R-closed. 

Proof. It is straightforward to show that W is regular; hence, by 1.1(d), W is 

R-closed. To prove W is strongly minimal regular, we need to find for each y E W, 

a neighborhood base 93 such that W\B is R-closed for each B E 93. 

Case 1. y& {(p-, w)}u {(p,, y): y E w + 1). In this case W is locally compact at y. 

So, there is an open neighborhood base 3 of y such that bd B is compact for 

B E: 93. Since bd B = bd( W\B) and W is R-closed, then by 1.2, W\B is R-closed. 

Case 2. y = (p_, w). Now for each m E w, P,,, = { Yk : 0 G k G m} u T,,, x [m, w] is 

R-closed (see proof of 2.6). But +(P,,,) is R-closed and {w\q!~(P,,,): m E w} is a 

neighborhood base of (p_, w). 

Case 3. y = (p+, y) for y E w + 1. For each even integer m 2 0, let 

Now, we will show that 4(S,) is R-closed. Assume there is a free regular filter 9 

on 4 (S,). Since 4 (Y, n S,) is homeomorphic to J(X), an R-closed space, there is 

an FEN such that Fn#~(Y,n&)=0. There are sets Fo,F1,...,F,,,,1=F~9 

such that Fi E cl F, c Fi+l for 0 i i c m. If FO meets 4 (H, x {y}) (recall that H,,, = 

{(a, w, m) E J(X): a E wl}) in an unbounded subspace, then by the same proof as 

in Case 2 of 2.2, F meets 4(Ko X {y}) ( recall that Ko={(w,,p,O)~J(X):p~w}). 

Hence, F meets c5 (Kc, X {w}), a subspace of 4 (Y, n S,), a contradiction. Thus, 

Fan q5(H,,, x {y}) is a bounded set. Thus, there is a bounded subset C c H,,, (the 

closure of a countable union of bounded subsets of H, is bounded) such that 

So, there is a F’ E 9 such that F’ c Fo and F’ n 4 (H,,, x (w + 1)) = 0. Thus, 9 (F’ is 

a free regular filter base on W as 4 (H, X (w + 1)) is the boundary of 4 (S,); this is 

a contradiction as W is R-closed. This shows that 4(S,) is R-closed for each even 
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integer. Since Z\ Y, is R-closed for y E o, then c5 (Z\ Y,) u 4 (S,) is R-closed. But 

{W\(4(Z\Y,) u 4(S,)): even m E w} is a neighborhood base for (p+, y). Also, for 

m EW, lJ{Y,: O<y==m} is R-closed and 

{W\(q5(S,)uq5(lJ{Y,: OCysm})): even m Ew} 

is a neighborhood base for (p,, w). 

Finally, we will show that W is not locally R-closed at (p_, 0). Let l_J be a 

R-closed neighborhood of (p-, o) such that U E +(S_2) (see above Case 3 for 

definition of S,). There is m E w such that c5 (X-, x {WI}) E U n C#J (Y,,,). Also, U n 

q5 (Y,,,) is clopen in U and, hence, R-closed. Thus, U n C$ (Y,,,) is homeomorphic to 

an R-closed subspace D of J(X)\{p+}. By 2.5, D is compact; however, D contains 

a closed, nonnormal subspace, namely, 4 (X_, x {WI}), a contradiction. So, (p_, w) 

does not have a neighborhood base of R-closed subspaces. 

3. Embeddings 

In this section, every regular space is shown to be embeddable in a minimal 

regular space; this result solves Problems 8 and 9 (the non-dense part) in [2]. 

Let X be an infinite regular space. Overall, the plan is simple - X is embedded 

in a regular space Y such that every element of X=(9: % is a non-convergent 

regular filter on X with a unique adherent point} extends to a regular filter with 

two adherent points in Y. At the same time this is accomplished, no new non- 

convergent regular filters on Y\X with unique adherent points are introduced. 

Thus, X is embedded in a minimal regular space Y. As the construction is rather 

long and complicated, a quick sketch is presented here. First, X is embedded in a 

space Yi which is X plus many spokes coming out of X, one for each element of 

N; each spoke is attached to X via a gluing space. In constructing Yi, two new 

sets of problem regular filters are introduced; one set arises from the spokes and 

the other from the gluing spaces. The problem filters arising from the spokes are 

handled by compactifying the spokes and obtaining a space Y2 containing Yi. 

Unfortunately, Y2 may not be regular; so, a regular subspace Ys of Yz is selectkd 

so that X is a subspace of Y3. Finally, the problem filters arising from the gluing 

spaces are handled by compactifying; the resulting space Y is minimal regular and 

contains X as a subspace. 

Preliminaries. For each Ce EN, there is regular-closed neighborhood Vg of the 

unique adherent point of %? such that G\Vg # 0 for all G E 9. Let Ju = {filter 

generated by 3 1 (X\V,): Ce EN}. So, M is a family of free filters (not necessarily 

regular)onX.Letm=1~l,~={~~:CY<m},andK=[IXI.m]+.ThespaceT= 

(K + 1) X (K + l)\{(~, K)} is a non-normal, locally compact space in which for every 

pair of disjoint regular-closed sets, one is compact. Using Jones’ machinery, S = 

DJ(T) is a minimal regular space. For each (Y E m, a copy of S (the spoke) will be 
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attached to X via a gluing space. Let D * = {d, : a C K} be homeomorphic to K + 1, 

D={d,:(Y<K},andE={(K,p,O)ES:p<K}. 

Construction of Y1. Let 

where for each (Y E m the corresponding points of K X{d,}x{a} and E x(a) are 

identified, i.e., for p E K, {(p, d,, a), (K, /3,0, a)} is identified to a point. So, for each 

a E m, 

.&=Xx~x{(Y}u[(K+1)x~*\{(k,d,)}]x{a}USx{a} 

is attached to X. The S x {a} is the spoke and 

~~~~{cY}U[(K+~)XD*\{(K,~,)}I~{CU} 

is the gluing space. A subset U c_ X u Z, is open iff 

(i) U nX is open in X, 

(ii) there is an open interval C = (d8, d,) in D for some S < K such that (U nX) X 
Cx{a}EUandif UnXE~~,then(S,K]X(Cu{d,})X{(Y}~Uand 

[{p+, J’-}U ((6 K]x (6, K]\{(‘G K)}) xz]x{Q)c D, 

(iii) forxrzX, Un({x}xDx{cr})isopenin{x}xDx{cu}, 

(iv) if (K, do, a) E U, there is V E Fa such that V X {d,} x {a} c U, 

(v) Un(Sx{~})isopeninSx{a},and 

(vi) Un(K+l)xD*x{cr}\{(~,d,,a)} is open in (K + 1) X D* X {a}\{(~, d,, a)}. 
Now, U c Y1 is defined to be open if U n (X u Z,) is open in X u Z, for each 

(Y urn. The new space Y1 isolates and separates the problem filters in Jbl. It is 

straightforward to show that Yi is regular at all points of Yl\(X u {p+, p-} x m). 

Construction of Y2. Let Y2 = Y1 u (S x pm\m) where /3m is the Stone-eech com- 

pactification of m with the discrete topology. Note that S x m c Y2. Before the 

topology on Y2 is defined, two other sets, A u and I!?“.*, must be defined first. Let 

U be an open subset of X. Define A “={aEm: UEPa}, and for 8EK and n a 

positive integer define 

u[(S\lJ{7’,: -2n G k ~2n + 1) x clsmArr] 

u [(s, K] X K X {-2n, 2n + 1) x clpmALr] 

where Tk is the kth plank of S. Now, define V 5 Y2 to be open iff V n Y1 is open 

in Yr, V n (S x pm) is open in S x pm, and there are S E K and n E w such that 

(V nX)Z,, c V. An examination of G,,,, for n > 0, 6 E K and U open in X reveals 

that fi”,,\X is clopen in Y2\X. Unfortunately, Y2 is not necessarily regular; so, a 

subspace Y3 of Y2 is defined. 
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Construction of Y3. Let U E X be open, A E m, 8 <K, and n E o. Note that I!?“.~ n 

S x clp,A = 0 iff cl,,A n cla, ALI =@iffA nAU =@DefineR ={tEpm\m:foreach 

AEt,thereisanxEXsuchthatforallopenUEXwithxEU,ALInAf0).Itis 

easy to show that (1) R is closed in pm and (2) if t E R, A E f, and x is a point of 

X such that ALr n A # 0 whenever x E U G X and U is open, then AU n A is infinite. 

Let F = {p,, p-} x R, and define Y3 = Yz\F and H = Ys\(X u S X pm). Note that 

Y3\X is a regular space. 

3.1. Y, is regular. 

Proof. It is straightforward to show that Y3 is regular at points of Yj\(X u 

({p+,p-)x@m)). So, let Y l Wu{P+,p-lX@m)n Y3. 

Case 1. y =x EX. Now a neighborhood base for x is Q, = {l.?,,s: n E w, 6 E K, U 

is an open neighborhood of x in X}. Let U, V be open subsets of x in X such that 

clxU G V and n E w, S E K. It suffices to show that ~l~~fi”+i~ G pm,,,. This will follow 

from the fact that cly,fi n+l,S c fin,, u clxU. Clearly, c~~,U,+~,~\X G ri,,,. Let 2 E 

W =X\clxU. Then AU nAw = 0 implying ~?~+i,~ n @O,O = 0. So, z & cIY~U,,+~,~. 

Case 2. y = (p,, t)~ Y3 (the proof for the case y = (p_, t) is similar). Now, 

t E pm \R. So, there is A E t such that for each x E X, there exists an open set U, 

of x in X so that A, n A = 0. Since [(S x cl,,A)\F]n (fix),,~ = 0 and (p+, t) has a 
regular neighborhood base in (S xclp,,, A)\F, then it follows that Y3 is regular at 

(P+, t). 

3.2. If UI and U2 are open subsets of Y3 such that clv,Ui E UZ~cly,lJ2~ H, then 
there is a clopen subset C of Y3 such that U, c C G H. 

Proof. Since cly3U2 nX = 8, then for CY E m and x E X, there are open W, of x in 

X and 6, E K such that 

clY3U*n(W,x(d,~,d,)x(cu))=0. 

Let LY’ = sup{& : x E X}. Then 

(Xx(d,z,d,)x{a})ncly,U2=0. 

Thus,({~}X(d,~,d,)x{cu})ncly,U~=121.Sincecly,U~nEx{cr}=O,thereisa~“~~ 

such that 

((~+l)x(d,,,,d,)x{(~})ncl~~U,=0. 

Let p = sup{a’, (Y”: LY E m}. Then 

C=(Xx[d~,de]xm)u((K+l)x[do,dp]xm) 

is clopen in Y3 and cly,U1 E C c H. 

Construction of Y. Let ‘%’ = {C c H: C is clopen in Y3}. Let Y4 = Y3 u /3H (assuming 

that PH\H n Y3 = 8), and define V E Y4 to be open if V n Y3 is open in Y3 and 
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V noH is open in PH. Consider the subspace Y = Y3 u U{clpHC: C E E}. If U is 

open in X, O< IZ E w, and 6 <K, let U& = I!?~,, ~U{cl~~(fi,,,~ n C): C E %‘). It is 

straightforward to show that Y is regular. Also since c,,,,\X is clopen in Y2\X it 

is easy to check that U&\X is clopen in Y\X. Let H’ = Y\(X u S x pm). 

3.3. Let 9 be a regular filter on Y. 
(a) If 9 traces on X and 91x is not convergent on X, then ad=9 contains at least 

two points. 

(b) If H’ E 9 and 9 has at most one adherent point in Y, then 9 converges in Y 

to some point in H’. 

Proof. (a) Suppose that ladx(91x)l <2 and that x EX is not an adherent point of 

.91x. Let 8 =9l x and Nx be the neighborhood filter of x in X. If % has no adherent 

point, let 9? = {K UN: K E 8, N ENS}. Otherwise let % = 8. Then 97 is a non- 

convergent filter on X with a unique adherent point and 9 EN. Let 9 be the filter 

onX generated by %l~x,v,J. Then 9 E J! and 9 = 9e for some cy E m. Now, S6, 19 Ix. 
If UE~ is open, then for some n EW and 6 <K, (Unx)&~ U. But U~XE~~ 

implies {(p+, a), (p-, a)}~ (U nX)l,s~ U. Thus ady9 z{(p+, a), (p-, a)}. 
(b) There are open sets Ui,U2~9 such that cl&i c Uz cclyU2c H’. Now, 

clyUi=cly(U,nH)for i=1,2 and 

c~~,(UI~H)~U*~HECI~~(U~~H)EH. 

By 3.2, there is a C E %? such that cly,(Ur n H) c C implying 

~l~(Ui)=~l~(U~nH)~cl,C=cl~~C 

is compact. Since 9 contains a compact set, clyC, 9 converges to a point in 

cl& G H’. 

Theorem 3.4. Y is a minimal regular space containing X as a closed subspace. 

Proof. Clearly X is a closed subspace of Y. To show Y is minimal regular, let 9 

be a regular filter on Y with at most one adherent point. Let y be the adherent 

point of 9 if it exists. 

Case 1. $3 misses X u ((S x /3m)\F). This is clearly equivalent to assuming H’ E 9. 

Therefore, by 3.3(b) 9 converges to y in H’. 
Case 2. 9 misses X but traces on (S xBm)\F. Choose W, V E 9 such that 

clYWcVandclYVnX=0.LetA={a~m:(p+,~)~Vor(p-,~)~V}.Foreach 

x E X, choose a neighborhood U(x) of x such that (U(x))&n W = 0 for some S E K 

and n E w\(O). Therefore, for (p,, t) E F or (p-, t) E F, A@ t; in particular, (S X 
cl,,A)nF =0. Also, note that if (p+, t)E clyW, then (p+, t)E V implying 

((~{Tk:k~l})u{p+})~BcVforsomel~wandB~t.ButsinceB~tandBsA, 

then A E t. Likewise if (p-, t) E clvW, then A E t. Now, we will show that, for some 
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(*) cl~xpm(Wn(Sxp~))~(~{Tk:-N~k~N})x~muSxclp,A. 

Assume that (*) is not true. Then, by symmetry, we can assume for each i E w that 

Wn [O__HT~: k > i}) x (Bm\cl,,A)] $0. 

Since W is open in S X pm, W n [(UC ok : k > i}) x (m \A)] f 0. For each i E w, choose 

some ai E m \A such that W n [(U{T~: k > i}) X {a;}] # 0. Let B = {ai: i E CO}. If B is 

finite, then for some j E OJ, (p+, (Yj) E cIYW G V where ‘Yj E B\A; however, this is 

contrary to the definition of A. So B is infinite and there is some t E cl,,B\B. Thus 

(p+, t) E ckx~,,,( W n (S X pm)). If (p+, t) E clew, then by the comment preceding 

(*), A E t which is impossible as B E t and B E m \A. So, (p,, t) E F. Hence, there 

is some x E X such that for all neighborhoods V of x in X, A v n B # 0 which implies 

(U(x))’ n,6n W f 0, a contradiction. Therefore, (*) is true for some N E o\(O). This 

shows that cl~~p,,,( W n (S X pm)) c (S x pm)\F and that $5 = 91Sxpm is a regular 

filter base on S x pm. 

As S x pm is minimal regular and 9 has at most one adherent point, 8 converges 

to a point y in (S x Pm)\F. Suppose, in order to get a contradiction, that 9 does 

not converge to y in Y. There is, therefore, a neighborhood W of y such that 

V\ W # 0 for all V E 9. If y E E x pm (= boundary in Y of (S X pm)\F), then we 

may assume that W is clopen because each point of E x /3m has a clopen neighbor- 

hood base. On the other hand if y E inty((S xpm)\F), then we may suppose that 

C~YW c (S X pm)\F. In this case, since 91 Sxpm converges to y in S xprn, there is a 

V E 9 such that V n S x pm c W. This implies that V\ W = V\(S X pm) and is open 

in Y. In either of the above cases, {V\ W: V E 9 and V n (S X pm) c W} is a base 

for a regular filter 9~~ on Y and H’E~~. By Case 1, 9i has an adherent point 

distinct from y which contradicts that 9 has a unique adherent point. 

Case 3. 9 traces on X. By 3.3(a) 91 x converges in X to y EX. Let U& be an 

arbitrary neighborhood of y in Y and suppose that for each V E 9, V\U& Z 0. 

However, there is a Vc9 such that V\U& n X = 0 since 9 Ix converges. Since 

U&\X is clopen in Y\X, it follows that 9i= {W\Ul,s : WE 9 and W\UL,, nX = 
0) is a regular filter base in Y. 

Since .9r misses X, Cases 1 and 2 imply that 9, has an adherent point in Y\X. 

This, of course, contradicts that 9 has a unique adherent point; hence, 9 converges 

in Y. 

4. Unsolved problems 

Theorem 3.4 completely solves the non-dense embedding problem for regular 

spaces in R-closed spaces. The dense embedding problem has been solved but not 

in terms of a topological property. That is, Harris [6] has found a necessary and 

sufficient condition, in terms of generalized proximities, for a regular space to be 
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densely embeddable in an R-closed space. On the other hand, Porter and Votaw 

[14] have shown that every regular space can be densely embedded in a regular 

space which is nearly R-closed. However, neither solution is topological. 

Problem 4.1. Find a topological characterization of those regular spaces that can 

be densely embedded in R-closed spaces. 

One obvious class of regular spaces that can be densely embedded in R-closed 

spaces is the class of spaces that are the topological sum of a Tychonoff space and 

an R-closed space; the authors are unaware of any other general class of regular 

spaces that can be densely embedded in R-closed spaces. 

A regular space with an open basis of sets with R-closed boundaries is called 

rim R-closed. The results in the second half of the first section show that rim 

R-closed, R-closed spaces are especially nice. It seems natural to form the next 

problem. 

Problem 4.2. Prove or disprove that a rim R-closed space can be densely embedded 

in an R-closed space. 

Of course, a solution of Problem 4.1 should yield a solution to Problem 4.2. 

Another related problem about rim R-closed is the following: 

Problem 4.3. Prove or disprove there exists a noncompact, rim R-closed, R-closed 

space. 

An affirmative answer to a problem by Banaschewski [l] (i.e., the existence of 

a noncompact space in which every closed set is R-closed) would certainly solve 

Problem 4.3. 
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