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We show that the known algorithms used to re-write any first order quantifier-
free formula over an algebraically closed field into its normal disjunctive form are
essentially optimal. This result follows from an estimate of the number of sets defin-
able by equalities and inequalities of fixed polynomials. Finally we apply our results
to obtain similar estimates in the real case. © 2000 Academic Press
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1. INTRODUCTION

One of the problems that computational algebra has to face is related to
time: many algorithms to solve different problems are known but so much
time to run them is necessary (in one or even in several computers) that
they are useless. A way to estimate the time an algebraic algorithm takes
is its algebraic complexity: if an algorithm is a directed acyclic graph, its
complexity is the number of nodes of the graph.

Sometimes, it is impossible to obtain a better algorithm (that is, an algo-
rithm of lower algebraic complexity) than the known ones to solve a fixed
problem. In this case, the principal aim of computational algebra is to ob-
tain lower complexity bounds to show that the running time of the known
algorithms cannot be improved.

A basic problem that appears when designing algebraic algorithms is re-
writing an arbitrary first order quantifier-free formula over an algebraically
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closed field (i.e., a formula involving multivariate polynomials, equalities
and inequalities, and the logical connectives ∧; ∨; ¬) into an equivalent
formula written in some standard way. The standard way we are going to
consider is called the normal disjunctive form of the given formula.

Let 8 be an arbitrary quantifier-free formula and let �f1; : : : ; fs� be the
set of polynomials involved in 8. The normal disjunctive form of 8 is a
formula equivalent to 8 of the type∨

I∈S

(∧
i∈I
fi = 0 ∧ ∧

j∈�1;:::;s�−I
fj 6= 0

)
;

where S is a set of subsets of �1; : : : ; s� and the sets defined by∧
i∈I
fi = 0 ∧ ∧

j∈�1;:::;s�−I
fj 6= 0 (1)

are nonempty. This last condition not only provides the uniqueness of the
normal disjunctive form but also allows one to design better elimination
algorithms in terms of complexity (see [1]).

The algorithm to get the normal disjunctive form of any given formula
8 used in [1] consists of two steps. In the first step, it determines all the
formulas of type (1) defining nonempty sets. In the second step, it decides
which of these appear in the normal disjunctive form of 8. The algebraic
complexity of this algorithm depends on the number of formulas of type
(1) which define nonempty sets.

Heintz (see [3]) proved that, for any set of s n-variate polynomials with
total degrees bounded by d, the number of nonempty sets defined by con-
junctions of type (1) is less or equal to �1+ sd�n.

In this paper we improve the upper bound obtained by Heintz. We also
obtain a lower bound on the maximum number of these sets. This bound
allows us to show a lower bound for the algebraic complexity of any algo-
rithm that re-writes a given formula into its normal disjunctive form. We
also show that the upper and the lower bounds obtained have the same
asymptotical behavior. This implies that the algorithm described in [1] can-
not be essentially improved.

Finally, we apply our results in order to obtain lower bounds on the real
case and show that they have the same asymptotical behavior as the upper
bounds obtained in [4].

2. DEFINITIONS AND NOTATIONS

Let k be an arbitrary field and let X1; : : : ;Xn be indeterminates over k.
As usual, we denote by k�X1; : : : ;Xn� the polynomial ring in X1; : : : ;Xn
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with coefficients in k. Let k̄ be an algebraic closure of k. �n�k̄� (or simply,
�n) will be the affine space k̄n equipped with its Zariski topology.

Given a closed set V ⊆ �n, we will consider two intrinsic numbers related
to V :

The dimension of V (denoted by dim V ) is the Krull dimension of its
coordinate ring, as usual.

If V is an irreducible closed set of dimension r we define the degree of
V as

deg V x= sup �#H1 ∩ · · · ∩Hr ∩ V y H1; : : : ;Hr affine hyperplanes

in �n such that H1 ∩ · · · ∩Hr ∩ V is a finite set�:
For an arbitrary closed set V ⊆ �n, we define deg V as the sum of the
degrees of all the irreducible components of V .

Definition 1. Let f1; : : : ; fs be polynomials in k�X1; : : : ;Xn�. A set
Z ⊆ �n is called an �f1; : : : ; fs�-cell if:

• There exists I ⊆ �1; : : : ; s� such that

Z = �x ∈ k̄n x fi�x� = 0 ∀ i ∈ I and fj�x� 6= 0 ∀ j ∈ �1; : : : s� − I�:
• Z 6= Z.

Note that, according to this definition, an �f1; : : : ; fs�-cell is a nonempty
intersection of sets of the type �x ∈ k̄n x fi�x� = 0� and �x ∈ k̄n x fi�x� 6= 0�
over all indices i, 1 ≤ i ≤ s.

3. AN UPPER BOUND FOR THE NUMBER OF CELLS

In this section we will give an upper bound for the number of cells
determined by a set of multivariate polynomials. The bound, stated in the
following theorem, depends on the number of variables, the number of
polynomials involved, and their degrees. We will consider

(
s
k

) = 0 whenever
k > s.

Theorem 2. Let f1; : : : ; fs ∈ k�X1; : : : ;Xn� be s polynomials in n vari-
ables. Let d be a non-negative integer such that deg fi ≤ d for all 1 ≤ i ≤ s.
Then the number of �f1; : : : ; fs�-cells of �n is at most

∑n
k=0

(
s
k

)
dk.

The idea of the proof of Theorem 2 is to obtain our bound by means of a
bound for the number of irreducible components of the Zariski closures of
the cells. To estimate this number we apply the following Bezout inequality
(see [3]):

Bezout inequality. Let X;Y ⊆ �n be closed sets. Then

deg�X ∩ Y � ≤ degX: degY:
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The proof of Theorem 2 is based on two previous lemmas.
Let f1; : : : ; fs be polynomials in k�X1; : : : ;Xn�.
For each �f1; : : : ; fs�-cell Z, we consider its Zariski closure Z and the

decomposition of Z into irreducible components. We define

I �Z� x= �C ⊆ �n x C is an irreducible component of Z�:
If Z = �x ∈ k̄n x fi�x� = 0 ∀ i ∈ I and fj�x� 6= 0 ∀ j ∈ �1; : : : ; s� − I�, it
can be shown that

I �Z� = �C ⊆ �n x C
is an irreducible component of

⋂
i∈I
�fi = 0�; C ∩ Z 6= Z� (2)

(when I = Z; ⋂
i∈I
�fi = 0� = �n).

We denote by I the set of all irreducible components of the Zariski
closures of all the �f1; : : : ; fs�-cells in �n, that is,

I x=⋃I �Z�;
where the union ranges over the set of all �f1; : : : ; fs�-cells.

The following lemma, which can be easily proved from (2), provides a
characterization for the elements of I . To make notation shorter, �fi = 0�
will denote the set �x ∈ k̄n x fi�x� = 0�.

Lemma 3. Let f1; : : : ; fs be polynomials in k�X1; : : : ;Xn� and let I be
defined as above. Then

I =
{
C ⊆ �n x ∃ I ⊆ �1; : : : ; s�/C

is an irreducible component of
⋂
i∈I
�fi = 0�

}
:

The next result allows us to estimate the number of cells from the cardi-
nality of I . We skip the proof because it is straightforward.

Lemma 4. Let f1; : : : ; fs be polynomials in k�X1; : : : ;Xn� and let Z1 and
Z2 be two different �f1; : : : ; fs�-cells. Then I �Z1� ∩ I �Z2� = Z.

Now, we are going to prove Theorem 2:

Proof of Theorem 2. As an immediate consequence of Lemma 4, the
number of �f1; : : : ; fs�-cells of �n is bounded by the number of irreducible
components of their Zariski closures, denoted by #I .

As every nonempty closed set has positive degree,

#I ≤ ∑
C∈I

degC:
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Therefore, it suffices to prove that∑
C∈I

degC ≤
n∑
k=0

(
s

k

)
dk:

For each 0 ≤ k ≤ n, let

Ik x= �C ∈ I x codimC = k�
and let

ck x=
∑
C∈Ik

degC:

We are going to prove that c0; : : : ; cn verify a recursive relation.
Since I0 = ��n�, it follows that c0 = 1.
Fix 1 ≤ k ≤ max�s; n� and let C ∈ Ik be an irreducible component of

codimension k of the closure of a cell. From Lemma 3, there exists a subset
I ⊆ �1; : : : ; s� such that C is an irreducible component of

⋂
i∈I
�fi = 0�. Take

I minimal in this sense, i.e., such that C is not an irreducible component
of
⋂
i∈J
�fi = 0� for any proper subset J of I. Note that #I (the number of

elements of I) is at least k.
For each j ∈ I, there exists an irreducible closed set C�j� of codimension

k − 1 which is an irreducible component of
⋂

i∈I−�j�
�fi = 0� (i.e., C�j� is an

element of Ik−1) such that C ⊂ C�j�.
It is easy to see that, if j1; j2 are different elements of I, C�j1� 6= C�j2�.
Therefore, we have that, for each C ∈ Ik, there exist at least k polyno-

mials fj1; : : : ; fjk and k elements C�j1�; : : : ; C�jk� in Ik−1 such that for every
1 ≤ l ≤ k, C is an irreducible component of the variety C�jl� ∩ �fjl = 0�.

Let us now consider the degrees of the closed sets involved.
Let Dk be the set

Dk x=
{�D; fj� x D ∈ Ik−1; j ∈ �1; : : : ; s�; codim�D ∩ �fj = 0�� = k}:

From the previous considerations and the definition of degree we have

kck =
∑
C∈Ik

k degC ≤ ∑
�D;fj�∈Dk

deg�D ∩ �fj = 0��: (3)

For every D ∈ Ik−1 we have

#�j ∈ �1; : : : ; s� / �D; fj� ∈ Dk� ≤ s − �k− 1�: (4)

Applying the Bezout inequality to (3) and combining it with (4) we deduce
that the following recursive relation holds:

c0 = 1

ck ≤
s − k+ 1

k
d ck−1 �k = 1; : : : ; n�: (5)
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Therefore, for every 0 ≤ k ≤ n,

ck ≤
(
s

k

)
dk

and then ∑
C∈I

degC =
n∑
k=0

ck ≤
n∑
k=0

(
s

k

)
dk:

As the number of �f1; : : : ; fs�-cells is less or equal to
∑
C∈I

degC, as stated

before, the theorem follows.

4. LOWER BOUNDS

In Section 3 we obtained an upper bound for the number of cells of
�n determined by s polynomials in n variables of degrees bounded by d.
The question that arises now is whether this bound is optimal or it can be
improved. The present section is devoted to the analysis of this problem.

In the sequel, k will always denote an infinite field.

4.1. Examples

We are going to construct families of polynomials (first in one variable,
and then in several variables), trying to obtain as many cells as possible.
These families will allow us to get lower bounds for the general case as will
be stated afterwards.

The first example is an intermediate step in our construction. We will
consider a family of d univariate polynomials f1; : : : ; fd ∈ k�X� of degree d.

Note that, when the polynomials are univariate, a cell is either the set of
points which are not zeroes of any polynomial (the cell defined by fj 6= 0 for
every j) or a finite number of points, which are common zeroes of some
of the polynomials (in fact, they are common zeroes of the polynomials
which appear equal to 0 in the definition of the cell). In order to control
the degrees of the polynomials involved, we shall deal only with cells which
correspond to zeroes of at most two polynomials.

Example 5. We consider polynomials f1; : : : ; fd ∈ k�X� with all their
zeroes in k and no multiple zeroes, which satisfy the following conditions:

1. Each polynomial has only one zero which is not a zero of any of
the others.

2. Given two polynomials, they have only one common zero that is
not a zero of any of the others.

3. The zeroes involved in items 1 and 2 are the only zeroes of the
polynomials f1; : : : ; fd.
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Note that, as k is infinite, for every positive integer d, there exists a family
f1; : : : ; fd of polynomials in k�X� satisfying these conditions. Moreover, we
can easily see that deg fi = d for every 1 ≤ i ≤ d.

Let us compute the number of cells determined by a family of polyno-
mials which satisfies 1, 2, and 3:

Fix i and j, i 6= j. Because of conditions 1 and 2
Zi = �x ∈ k̄n x fi�x� = 0 and f`�x� 6= 0 ∀ ` 6= i�
Zij = �x ∈ k̄n x fi�x� = 0; fj�x� = 0 and f`�x� 6= 0 ∀ ` 6= i; j�

are nonempty sets and, therefore, �f1; : : : ; fd�-cells.
The set

Z = �x ∈ k̄n x fk�x� 6= 0 ∀ 1 ≤ k ≤ d�
is also an �f1; : : : ; fd�-cell.

On the other hand, condition 3 guarantees that there are no other cells.
Then the number of �f1; : : : ; fd�-cells is

d +
(
d

2

)
+ 1 = d + d

2

2
+ 1:

Note that these cells are either a point or the complement of a finite set.
In the next example we show a family of multivariate polynomials which

provides a lower bound for the maximum number of cells depending on
the number of variables involved, the quantity of polynomials, and their
degrees.

The polynomials we are going to consider are those we have constructed
in the case of a single variable slightly modified. To obtain polynomials in n
variables without increasing their degrees, we will specialize the univariate
polynomials in suitably chosen linear forms.

Example 6. Let s and d be positive integers. Let m and r be the quo-
tient and the remainder of the division of s by d.

Let f1; : : : ; fd ∈ k�X� be as in Example 5 and let α1; : : : ; αc be their
different zeroes. We will consider a family of m + 1 homogeneous linear
forms l1; : : : ; lm+1 ∈ k�X1; : : : ;Xn� satisfying

1. Every subset of n linear forms of �l1; : : : ; lm+1� is a linearly inde-
pendent set.

2. Every linear system involving n+ 1 different linear forms, of the
type

lj1�x� = αij1
lj2�x� = αij2
:::

:::

ljn+1
�x� = αijn+1

;

has no solution in kn.



640 jeronimo and sabia

The first condition is equivalent to the fact that the determinants of all
matrices of size n × n, whose rows are the coefficients of n of the linear
forms, are different from zero. Once this condition is stated, the second one
is equivalent to the fact that the determinants of the augmented matrices
of all the �n+ 1� × �n+ 1� systems considered are different from zero.

Therefore, conditions 1 and 2 are equivalent to a nonempty open condi-
tion over the coefficients of the linear forms. Then, the existence of such
linear forms follows from the fact that k is an infinite field.

For each pair �i; j�, 1 ≤ i ≤ d; 1 ≤ j ≤ m, let fij x= fi�lj� be the poly-
nomial of degree d obtained by specializing the polynomial fi in the linear
form lj . If j = m + 1, we only consider the polynomials fij x= fi�lj� for
1 ≤ i ≤ r.

We are going to determine all the cells defined by the polynomials fij . If
Z is such a cell, then

Z = Z1 ∩ : : : ∩ Zm ∩ Zm+1; (6)

where, for each 1 ≤ j ≤ m, Zj is an �fij�1≤i≤d-cell and Zm+1 is an
�fim+1�1≤i≤r-cell. From the construction of the polynomials f1; : : : ; fd (see
Example 5), we have that, for a fixed 1 ≤ j ≤ m, an �fij�1≤i≤d-cell is an
hyperplane in �n (given by an equation of the form lj = αij for some
1 ≤ ij ≤ c) or it is the complement of a finite union of hyperplanes (this
happens when the cell is defined by fij 6= 0 ∀ 1 ≤ i ≤ d). Similarly, if
�β1; : : : ; βc′ � ⊆ �α1; : : : ; αc� is the set of the different zeroes of the poly-
nomials f1; : : : ; fr , an �fim+1�1≤i≤r-cell is a finite union of hyperplanes (of
equations of type lm+1 = βk) or it is the complement of a finite union of
hyperplanes.

Suppose first that

Zm+1 = �x ∈ k̄n x fim+1�x� 6= 0 ∀ 1 ≤ i ≤ r� =
�x ∈ k̄n x lm+1�x� 6= βk ∀ 1 ≤ k ≤ c′�:

Let Zj1; : : : ; Zjt be the sets appearing in (6) which are hyperplanes. We con-

sider the set W =
t⋂

h=1

Zjh . Note that W is an irreducible closed set defined

by a linear system of equations

lj1�x� = αij1
lj2�x� = αij2
:::

:::

ljt �x� = αijt
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and that we have
Z = W ∩U;

where U is an open set in �n.
From condition 2 in the choice of the linear forms l1; : : : ; lm+1, as W is

a nonempty set, it follows that t ≤ n.
We are going to show that, whenever t ≤ n, if �j1; : : : ; jt� ⊆ �1 : : : ;m�

and
W = �x ∈ k̄n x lj1�x� = αij1 ∧ lj2�x� = αij2 ∧ · · · ∧ ljt �x� = αijt �
U = �x ∈ k̄n x lj�x� 6= αh y 1 ≤ j ≤ m; j /∈ �j1; : : : ; jt� ;

1 ≤ h ≤ c ∧ lm+1 6= βk y 1 ≤ k ≤ c′�
then Z x= W ∩U is a nonempty set and, therefore, a cell.

First, note that, as a consequence of the linear independence of every
subset of n linear forms of �l1; : : : ; lm+1�, W is a nonempty linear affine
variety of codimension t. Consider

W ∩Uc =
( ⋃

1≤j≤m
j/∈�j1;:::;jt �

⋃
1≤h≤c

W ∩ �lj = αh�
)

⋃ ( ⋃
1≤k≤c′

W ∩ �ln+1 = βk�
)
:

(7)

If t < n, because of condition 1 stated before, each of the sets appear-
ing in the union above is a linear affine variety of codimension t + 1. As
codim�W � = t, it follows that W 6= W ∩Uc and therefore W ∩U 6= Z.

If t = n, condition 2 assures that all the sets appearing in the union (7)
are empty and then W ∩U = W , which is nonempty.

If Zm+1 =
⋃̀
k=1

�lm+1 = βik�, Z = W ∩U with U an open set and

W = ⋃̀
k=1

Wk;

where W1; : : : ;W` are linear affine varieties of the same dimension. Ap-
plying our previous arguments to each of the sets W1 ∩ U; : : : ;W` ∩ U we
obtain that there are at most n − 1 indices j ∈ �1; : : : ;m� such that lj is
involved in the definition of W . The converse follows in the same way as
before (once again, considering the irreducible decomposition of W ).

Summarizing, we have that the cells determined by the s polynomials
considered are all intersections of the form

Z = Z1 ∩ : : : ∩ Zm+1;

where, for each 1 ≤ j ≤ m, Zj is an �fij�1≤i≤d-cell and Zm+1 is an
�fim+1�1≤i≤r-cell and, at most n of the sets Z1; : : : ; Zm+1 are hyperplanes
or, in the case of Zm+1, a finite union of hyperplanes.



642 jeronimo and sabia

It is immediate that the number of these sets is
n∑
k=0

(
m

k

)(
d2 + d

2

)k
+
n−1∑
k=0

(
m

k

)(
r2 + r

2

)(
d2 + d

2

)k
and therefore this is the number of cells determined by the s = md + r
polynomials.

4.2. A Lower Bound for the Maximum Number of Cells

From the examples given in Section 4.1, we can obtain a lower bound for
the maximum number of cells determined by s polynomials in n variables
with coefficients in an infinite field k, whose degrees are bounded by a
positive integer d.

Let s; n, and d be positive integers and let m and r be the quotient and
the remainder of the division of s by d. From Example 6, there exists a
family of s polynomials in n variables which determines

n∑
k=0

(
m

k

)(
d2 + d

2

)k
+
n−1∑
k=0

(
m

k

)(
r2 + r

2

)(
d2 + d

2

)k
(8)

cells in k̄n. Considering m as a variable, for each 0 ≤ k ≤ n,
(
m
k

)
is a

polynomial of degree k in m. Then, if d and n are fixed integers, when
s→∞, the sum in (8) is a number of order sndn

n! 2n .

Let σ�s; n; d� be the maximum number of cells which can be determined
by s polynomials of degrees at most d in n variables with coefficients in an
infinite field k.

Recalling the upper bound

σ�s; n; d� ≤
n∑
k=0

(
s

k

)
dk

we have found in Section 3, and considering as in the previous case the
numbers d and n fixed and s as a variable, we obtain the following result.

Let s; n, and d be positive integers. Let σ�s; n; d� be the maximum number
of cells which can be determined by a set of s polynomials in n variables of
degrees bounded by d with coefficients in an infinite field k. Then, as s→∞,

O
( sndn
n! 2n

)
≤ σ�s; n; d� ≤ O

( sndn
n!

)
:

Remark 7. Let fij , 1 ≤ i ≤ d if 1 ≤ j ≤ m and 1 ≤ i ≤ r if j = m+ 1 be
the polynomials defined in Example 6. Let 8 be any first order quantifier-
free formula involving them and let

9 x f11 = 0 ∨ f11 6= 0 ∨8:
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Consider any general algorithm that, from a given formula, obtains its nor-
mal disjunctive form. As the set defined by 9 is �n, when the input of this
algorithm is 9, the output must necessarily be the disjunction of all the
conjunctions defining the cells given by the polynomials. Then, the com-
plexity of the algorithm must be a number greater or equal to O

(
sndn

n! 2n

)
.

This is another example of the fact that general algorithms (i.e., algorithms
solving all possible instances) in computational algebra are usually of great
complexity.

5. ON THE NUMBER OF CELLS IN THE REAL CASE

Many problems over a real closed field (for example, real quantifier elim-
ination) are solved by algorithms whose algebraic complexity has to do with
the number of real cells defined by the polynomials involved.

We are now going to apply the lower bound for the maximum number
of cells obtained in the previous section in order to estimate the number
of cells in the real case.

Definition 8. Let R be a real closed field. Let f1; : : : ; fs ∈ R�X1; : : : ;
Xn�. A real �f1; : : : ; fs�-cell is a nonempty semialgebraic set of the form{

x ∈ Rn x∧
i∈I
fi�x� = 0 ∧ ∧

i1∈I1

fi1�x� > 0 ∧ ∧
i2∈I2

fi2�x� < 0
}
;

where I ∪ I1 ∪ I2 = �1; : : : ; s�.
This definition of a real cell follows [2, 3] but differs from the definition

used in [4].
In [2], Grigor’ev obtains, from the bound of Heintz in the algebraically

closed field case, an upper bound for the number of connected components
of real cells (defined by s n-variate polynomials of total degree bounded
by d) of order O�sd�2n. Later, Pollack and Roy (see [4]), following [5],
obtained in the same case an upper bound of order O

(
sd
n

)n
.

We assert that this last bound is asymptotically optimal, not only for the
number of connected components of real cells but for the number of real
cells as well.

Let k̄ be an algebraic closure of R. Given f1; : : : ; fs ∈ R�X1; : : : ;Xn�,
the following equality holds:

Rn
⋂ �x ∈ k̄n x∧

i∈I
fi�x� = 0 ∧ ∧

j∈�1;:::;s�−I
fj�x� 6= 0�

= ⋃
I1∪I2=�1;:::;s�−I

{
x ∈ Rn x∧

i∈I
fi�x� = 0 ∧ ∧

i1∈I1

fi1�x� > 0 ∧ ∧
i2∈I2

fi2�x� < 0
}
:
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If we consider k = R and the polynomials defined in Example 6, the inter-
section of Rn with each cell (in the algebraically closed sense) is a nonempty
set.

Therefore, in this case, the number of real cells is greater or equal to
the number of cells (in the algebraically closed sense). From our lower
bound on the maximum number of cells, applying the Stirling formula,
we conclude that the maximum number of real cells (and, therefore, the
maximum number of connected components of real cells) defined by a set
of s polynomials in n variables of degrees bounded by d is at least O

(
sd
n

)n
,

which matches the upper bound in [4].
Again, this gives a lower estimate to the complexity of any algorithm

computing a real normal disjunctive form (see Remark 7).
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