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a b s t r a c t

It is well known that the category of covering projections (that is, locally constant objects)
of a locally connected topos is equivalent to the classifying topos of a strict progroupoid
(or, equivalently, a localic prodiscrete groupoid), the fundamental progroupoid, and that
this progroupoid represents first degree cohomology. In this paper we generalize these
results to an arbitrary topos. The fundamental progroupoid is now a localic progroupoid,
and cannot be replaced by a localic groupoid. The classifying topos is no longer a Galois
topos. Not all locally constant objects can be considered as covering projections. The key
contribution of this paper is a novel definition of covering projection for a general topos,
which coincides with the usual definition when the topos is locally connected. The results
in this paper were presented in a talk at the Category Theory Conference, Vancouver, July
2004.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

It is well known that if E is a locally connected topos then the category of covering projections (that is, locally constant
objects) is equivalent to the classifying topos of a progroupoid (or, equivalently, a localic prodiscrete groupoid), the
fundamental progroupoid π(E), and that this progroupoid represents first degree cohomology. In this paper we generalize
these results to an arbitrary topos.

The subject that concern us here was developed (in the context of a Grothendieck topos over Sets) for a pointed
locally connected topos by Grothendieck–Verdier in a series of commented exercises in Expose IV of the SGA4 [1], and
by Artin–Mazur [2]. Later Moerdijk [15] treats the subject over a general base topos S, and replace progroups by prodiscrete
localic groups. Bunge [3] does the unpointed case and works with prodiscrete localic groupoids. See also Bunge–Moerdijk [4],
and the Appendix in Dubuc [6] for a resume of this theory.

The salient feature of the theory is that covering projections are considered as a full subcategory of the topos, and this fact
is essential in the proofs of the validity of the statements. Covering projections cannot be considered as a full subcategory
when the topos is not locally connected. And even more, not all locally constant objects should be considered as covering
projections.

The principal source of inspiration for our work was the paper of Hernandez Paricio [8], where he treats successfully the
case of non-locally connected topological spaces. We interpret his work in terms of descent theory in the Appendix.

Given any topos, there is no problem to construct the topos of locally constant objects trivialized by a (fixed) cover. The
problem is that when the topos is not locally connected, the resulting topos is not atomic because it fails to be both locally
connected and boolean.

In Section 1 we prepare the ground for our work by explicitly establishing an equivalence between the usual definition
of locally constant object and a certain descent datum. Section 2 contains the key contribution of this paper, which is a novel
definition of covering projection for a general topos (Definition 2.12). When the topos is locally connected, every locally
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constant object is a covering projection in our sense. We construct the topos of covering projections (corresponding to a
fixed cover) and show that it is atomic (Theorem 2.19). The resulting localic groupoid (Theorem 2.20) appears to be the first
genuine application of Joyal–Tierney results [10, VIII, 3. Theorem 1] to the Galois theory of locally constant objects. Here
for the first time a non-prodiscrete localic groupoid appears in this theory, as well as an atomic topos which is not a Galois
topos. In Sections 3, 4 and 5 we show that our notion of covering projection is well behaved and adequate to a treatment
with inverse limit of topoi techniques. We construct the category of all covering projections, the topos it generates, and the
fundamental (in this case localic) progroupoid. We show an equivalence between the classifying topos of this progroupoid
and the topos of covering projections (Theorem 5.5). Finally, in Section 6 we prove that torsors (for a discrete group)
are covering projections in our sense, and that the fundamental localic progroupoid represents first degree cohomology
(Theorem 6.6).
Comparison between the locally connected, spatial and general cases.

In the case of locally connected topoi, given a (fixed) cover, the points of the topos of covering projections are essential,
and the corresponding groupoid is an ordinary (discrete) groupoid. This determines a fundamental ordinary progroupoid.
The transitionmorphisms are surjective on triangles, a fact that allows us to replace this progroupoid by a prodiscrete localic
groupoid. Equivalent to this, the transition morphisms between the topoi are connected. This implies that the classifying
topos is a Galois Topos.

In the case of a non-locally connected topological space, given a (fixed) cover, the corresponding groupoid is still discrete,
and we still have an ordinary fundamental progroupoid. However, it cannot be replaced by a localic groupoid because the
transition morphisms are not surjective on triangles, or, equivalently, the transition morphisms between the topoi are not
connected. This implies that the classifying topos is not locally connected, thus no longer a Galois topos.

In the case of a general topos, given a (fixed) cover, the points of the topos of covering projections are not essential, and
the corresponding groupoid is a localic (non-discrete) groupoid. This determines a fundamental localic progroupoid. The
topoi in the system are (of course) atomic, but no longer Galois.
Context. Throughout this paper S = Sets denotes the topos of sets. However, we argue in a way that should be valid if S is
an arbitrary Grothendieck topos, but let the interested reader verify this. All topoi E are assumed to be Grothendieck topoi
(over S), the structure map will be denoted by γ : E → S in all cases.

Recall that a geometric morphism E
f
−→ F is said to be essential if the inverse image functor f ∗ itself has a left adjoint f !,

locally connectedwhen f ! is F -indexed, connected if the inverse image functor f ∗ is full and faithful, and atomic if f ∗ is logical.
A topos is said to be locally connected, connected, or atomic, when the structure morphism is so. A topos is atomic if and
only if it is locally connected and boolean. We refer to [1] Expose IV, 4.3.5, 4.7.4, 7.6 and 8.7., [13], and [10].

1. Locally constant objects and descent data

By a cover U = {Ui}i∈I in a topos E
γ
−→ S wemean an epimorphic family Ui → 1 in E , I ∈ S. As usual, this is an alternative

notation for a map ζ : U→ γ∗I, with U→ 1 epimorphic. Notice that covers are 3-tuples U = (U, I, ζ).

Assumption 1.1. We assume that Ui 6= ∅ ∀i ∈ I.

The concept of locally constant object is a direct translation into the topos context of the classical notion of covering
projection [17, Ch. 2, Sec. 1]. It is defined in SGA4 Expose IX, 2.0.

Definition 1.2. Given a topos E
γ
−→ S and a cover U = {Ui}i∈I , a trivialization of an object X ∈ E is a family of sets {Si}i∈I

togetherwith isomorphisms in E , {γ∗Si×Ui
θi
−→ X×Ui}i∈I over Ui. Alternatively, it is an arrow S→ I in S, and an isomorphism

θ : γ∗S×γ∗ I U→ X × U over U. We say that X is U-split by the trivialization.

Trivializations will be denoted by the letter θ in all cases.

Definition 1.3. An object X in a topos E is locally constant if it is U-split for some cover U in E .

In [3] Bunge introduces a push-out of topoi whose underline category is the category of locally constant objects split by
a (fixed) cover, and whose arrows are maps which preserve the trivializations.

Definition 1.4 (M. Bunge). Given a cover ζ : U → γ∗I in a topos E , the category PU of locally constant objects split by U is
given by the following push-out topos:

E/U
ϕU //

ρU

��

E

υU

��
S/I

%U // PU
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where ρU and ϕU are given by ρ∗U(S→ I) = γ∗S ×γ∗ I U and ϕ∗U(X) = X × U. By the constructions of push-outs of topoi, the
category PU is the following:

Objects: (X, S→ I, θ), is a 3-tuple, with X ∈ E , S→ I ∈ S/U and X × U
θ
−→ γ∗S×γ∗ I U an isomorphism over U.

Arrows: (X, S→ I, θ) → (Y, T → I, θ), is a pair of morphisms X f
−→ Y ∈ E , S ϑ

−→ T ∈ S over I, {Si
ϑi
−→ Ti}, compatible with

the trivialization data:

γ∗Si × Ui
θi //

γ∗ϑi×Ui

��

X × Ui

f×Ui

��
γ∗Ti × Ui

θi // Y × Ui

The functors υ∗U : PU → E and p∗U : PU → S/I are the projections.

It is important to remark that the map X
f
−→ Y completely determines the function S

ϑ
−→ T. That is, the latter, if it exists, is

unique. Arrows in PU can be considered as maps in E satisfying a condition. However, in spite of this uniqueness, we shall
also say that ϑ lifts f to an arrow in PU.

When the toposE is locally connected,we can assume thatρU is connected and locally connected (that is, all the objectsUi

connected). It follows then that the pointS/I
pU
−→ PU is locally connected and surjective, in particular, of effective descent [3].

Thus, PU is equivalent to the classifying topos of the (discrete because the point, being locally connected is representable)
groupoid of automorphisms of pU [10], in particular,PU is an atomic topos. It also follows that υU is connected, thusPU ⊂ E
is a full subcategory via the inverse image functor υ∗U [4]. The reader can also check the appendix in [6], where all this is
proved “by hand”, without recourse to the results in [10].

The known theory for the locally connected case stops here for non-locally connected topoi. It is no longer possible to
assume that ρU is connected and locally connected. Now PU is no longer a full subcategory of E , and furthermore, the point
S/I

pU
−→ PU fails to be of effective descent. We analyzed the situation and found that although pU is surjective, the problem

is that PU is not atomic because it fails to be both locally connected and boolean.
Trivializations versus descent data

A locally constant object together with a trivialization structure is the object constructed by descent on a certain descent
datum associated to the Cech nerve of the covering. The descent data corresponding to locally constant objects form a topos
equivalent to PU. We found that an explicit use of this equivalence is not only technically useful, but also contributes to a
better understanding of the concept of locally constant object (particularly in the case of covering projections of a topological
space, see Appendix).

Consider a topos E
γ
−→ S and a cover U = (U, I, ζ), ζ : U→ γ∗I, I ∈ S, U ∈ E .

Let U• (resp. I•) be the simplicial object (resp. set) whose n-simplexes are given by Un = U×U×· · ·U (resp. In = I×I×· · · I).

Cech nerve 1.5. Let U• ⊂ I• be the Cech nerve of U, that is, the simplicial set Un = {(i0, i1, . . . in) | Ui0 × Ui1 · · · × Uin 6= ∅}

(notice that U0 = I).

Since the cover will remain fixed in this section, to simplify the notation we shall omit a subindex U on the arrows. The
map ζ : U → γ∗I induces a morphism of simplicial objects ζ• : U• → γ∗I• which factors through U• → γ∗U• ⊂ γ∗I•.
Actually, γ∗U• is the image of ζ•. We abuse the notation and write ζ• : U• → γ∗U•. This morphism determines a morphism
of simplicial topoi ρ• : E/U• −→ S/U• .

Consider the truncated simplicial topoi which determine the descent situations (see for example 3.2 Descent. in [14]):

E/U×U×U

//
//
//

ρ2

��

E/U×U

//

//

ρ1

��

E/Uoo ϕ //

ρ

��

E

µ

��

υ

��
S/U2

//
//
//
S/U1

//

//
S/Ioo % //@A BC

δ

OOPU
// DU

(1.6)

where S/I
δ
−→ DU is defined to be the descent topos. It is well known that the morphism E/U

ϕ
−→ E is of effective descent.

It follows the existence of the arrow E
µ
−→ DU. PU is the push-out topos 1.4, and the morphism PU → DU follows by the

universal property of this push-out. We shall now examine in more detail diagram (1.6).

Facts 1.7. (1) The morphism ϕ is given by

ϕ∗(X) = X × U : ϕ∗(X) = {X × Ui}i∈I.
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(2) The morphism ρ is given by

ρ∗(S→ I) = γ∗S ×γ∗ I U : ρ
∗({Si}i∈I) = {γ

∗Si × Ui}i∈I.

ρ∗1(S→ U1) = γ∗S ×γ∗U1 (U × U) :

ρ∗({S(i, j)}(i, j)∈U1) = {γ
∗S(i, j) × (Ui × Uj)}(i, j)∈U1 .

(3) The morphism υ “forgets” the family and the trivialization, and is given by

υ∗(X, S→ I, θ) = X, υ∗is a faithful functor.

(4) The morphism % “forgets” the object and the trivialization, and is given by

%∗(X, S→ I, θ) = S→ I, %∗ is a faithful functor.

(5) An object of DU is a pair (S→ I, λ), where λ is a U•-descent datum on the object S→ I in the topos S/I . Such a descent
datum is an isomorphism in the topos S/U1 , and it consists of the following data:

bijections λj i : Si → Sj, (i, j) ∈ U1, such that
λi i = id, i ∈ I,λk,i = λk j ◦ λj i, (i, j, k) ∈ U2.

(6) The morphism δ “forgets” the descent datum, and is given by

δ∗(S→ I, λ) = S→ I, δ∗ is a faithful functor.

(7) An object in the image of the functor ρ∗ is an object in the topos E/U of the form γ∗S ×γ∗ I U −→ U, {γ∗Si×Ui −→ Ui}i∈I . A
U•-descent datum σ on such an object is an isomorphism in the topos E/U×U , and it consists of a family of isomorphisms
in E , {σj, i}(i, j)∈U1 :

γ∗Si × Ui × Uj

σj, i //

��

γ∗Sj × Uj × Ui

��
Ui × Uj

τ // Uj × Ui

satisfying the appropriate identity and cocycle conditions (the arrow τ is the symmetry isomorphism). The
commutativity of the square implies that σj, i is completely determined by its first projection. We abuse the notation
and write this projection with the same letter: γ∗Si × Ui × Uj

σj, i
−→ γ∗Sj.

(8) Given a descent datum as in (5), the morphism of simplicial topoi ρ• induces a descent datum as in (7):

σ = ρ∗1λ, σj, i = γ∗λj, i × τ.

(9) The fact that E/U
ϕ
−→ E is of effective descent means (in particular) that given a descent datum as in (7), there

exist a (unique up to isomorphism) object X in E together with an isomorphism γ∗S×γ∗ I U
θ
−→ X × U over U,

{γ∗Si × Ui
θi
−→ X × Ui}i∈I (Thus, X is a locally constant object U-split by a trivialization θ). Moreover, this isomorphism

θ is compatible with the descent datum σ and the trivial descent datum on X × U → U, {X × Ui → Ui}i∈I , given by
X × Ui × Uj

X×τ
−→ X × Uj × Ui. That is:

γ∗Si × Ui × Uj

σj, i //

θi×Uj

��

γ∗Sj × Uj × Ui

θj×Ui

��
X × Ui × Uj

X×τ // X × Uj × Ui

The object X corresponding to a descent datum as in (8) furnishes the inverse image for the morphisms E → DU and
PU → DU.

Proposition 1.8. The push-out topos PU of locally constant objects split by U (Definition 1.4) is equivalent to the following
category:
Objects: (S→ I, σ), is a pair, where S→ I ∈ S/I , and σ is a U•-descent datum on γ∗S ×γ∗ I U −→ U in E (1.7 (7)).

Arrows: (S→ I, σ)→ (T → I, η), is a family of functions {Si
ϑi
−→ Ti}i∈I compatible with the descent data:

γ∗Si × Ui × Uj

σj, i //

γ∗ϑi×Ui×Uj

��

γ∗Sj × Uj × Ui

γ∗ϑj×Uj×Ui

��
γ∗Ti × Ui × Uj

ηj, i // γ∗Sj × Uj × Ui
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Proof. We have a functor defined by the assignment (X, S→ I, θ) 7→ (S→ I,σ), where the descent data σj, i is given by the
composite:

γ∗Si × Ui × Uj

θi×Uj
−→ X × Ui × Uj

X×τ
−→ X × Uj × Ui

θ−1j ×Ui
−→ γ∗Sj × Uj × Ui.

The statement in 1.7(9) says that this functor is an equivalence of categories. �

All the details in the proof of this proposition can be checked in an straightforward way, and it is interesting to do so to
understand exactly how the two types of data match.

1.9

When dealing with locally constant objects we shall use the trivialization or the descent data indistinctly. We shall write
X = (X, S→ I, θ), or X = (S→ I,σ), indicating as usual with X either the object X or the whole structure.

Facts 1.10. (1) The morphism S/I
%
−→ PU “forgets” the descent datum, and is given by

%∗(S→ I, σ) = S→ I.

Clearly it is surjective (actually a surjective family of points).
(2) Given a set T ∈ S, the inverse image of the structuremorphismP

γ
−→ S in T is the trivial descent datum on the constant

family γ∗T × U→ U, given by γ∗T × Ui × Uj
γ∗T×τ
−→ γ∗T × Uj × Ui. Thus, γ∗T = (γ∗T, γ∗T × τ).

Clearly, if E is connected, so is P . �

2. Covering projections associated to a (fixed) cover

Let X = (S→ I, σ) be a locally constant object trivialized by a cover U→ γ∗I.

Definition 2.1. An action triple for X is a 3-tuple (u, v, s) where C
u
−→ Ui, C

v
−→ Uj, C ∈ E , C 6= ∅, and Si

s
−→ Sj a bijective

function, such that

γ∗Si × Ui × Uj

σj, i // γ∗Sj × Uj × Ui

γ∗Si × C

γ∗Si×(u, v)

OO

γ∗s×C // γ∗Sj × C

γ∗Sj×(v, u)

OO

Remark 2.2. Notice that C 6= ∅ implies that for given (u, v), if there exists a bijection s to complete an action triple, this
bijection is unique. �

Remark 2.3. Given an action triple (u, v, s) and an arrow C′
f
−→ C, C′ 6= ∅, the pair (u′, v′), where u′ = uf , v′ = vf , can be

completed into an action triple (u′, v′, s′), with s′ = s. �

Remark 2.4. Any pair (u, v) with C, a connected object, can always be completed by a bijection s into an action triple. �

The proof of the following proposition is rather straightforward, and it is left to the reader.

Proposition 2.5. Let X → Y , (S → I,σ)
ϑ
−→ (T → I,η), S ϑ

−→ T (see 1.8) be a morphism between locally constant objects.
Then:

(a) If ϑ is surjective, given any action triple (u, v, s), Si
s
−→ Sj for X, the pair (u, v) can be completed into an action triple

(u, v, t), Ti
t
−→ Tj for Y , tϑi = ϑjs.

(b) If ϑ is injective, given any action triple (u, v, t), Ti
t
−→ Tj for Y , the pair (u, v) can be completed into an action triple

(u, v, s), Si
t
−→ Sj for X, tϑi = ϑjs. �

Definition 2.6. The descent data σ determines an equivalence relation on the set S as follows: Given x, y ∈ S, x ∈ Si, y ∈ Sj,
then x∼σ y if there exists an action triple (u, v, s) such that y = sx. That is,

γ∗Si × C
γ∗s×C // γ∗Sj × C

C

γ∗x×C

``@@@@@@@@ γ∗y×C

>>~~~~~~~~

This relation is reflexive (given x ∈ Ui, take C = Ui, u = id, v = id, so that (u, v) = ∆, and s = id, this establishes x∼σ x) and
clearly symmetric. Its transitive closure is an equivalence relation, that we denote also by∼σ .
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Remark 2.7. Notice that if x∼σ y, we can always choose an action triple such that the arrow C
(u, v)
−→ Ui × Uj is a

monomorphism. �

The generating pairs are those pairs x∼σ y which are related by a single action triple. We shall now characterize in an
explicit way the transitive closure.

Consider the (small) set of “arrows” i
φ
−→ j between the elements of I : GU

δ0 //
δ1 // I , δ0φ = i, δ1φ = j, where i

φ
−→ j

denotes a sequences of spans:

φ = ((Ui0

u0
←− C0

v0
−→ Ui1), (Ui1

u1
←− C1

v1
−→ Ui2), . . . (Uin−1

un−1
←− Cn−1

vn−1
−→ Uin))

(ik, ik+1) ∈ U1, and Ck

(uk, vk)
↪→ Uik × Uik+1 , Ck 6= ∅, a subobject of Uik × Uik+1 , i0 = i, in = j, n > 0.

It follows from Remark 2.7:

Proposition 2.8. Given any x ∈ Si, y ∈ Sj,

x∼σ y ⇐⇒ ∃ i
φ
−→ j ∈ GU such that sφx = y,

where sφxmeans that φ can be completed into a sequence of action triples ((u0, v0, s0), (u1, v1, s1), . . . (un−1, vn−1, sn−1)), and
sφx = sn−1 . . . s1s0x. �

Proposition 2.9. Let X = (S→ I, σ) be any locally constant object, and R ⊂ S be an equivalence class of ∼σ . Given any subobject
Y = (T → I, σ), T ⊂ S, if R ∩ T 6= ∅, then R ⊂ T.

Proof. The proof is immediate (consider Proposition 2.5(b)) �

Corollary 2.10. A locally constant object X = (S → I,σ) is a connected object in PU if and only if ∼σ has a single equivalence
class (that is, x∼σ y for all pairs x, y). �

Warning: In general the descent datum does not restrict to R, so that equivalence classes are not subobjects.
We see then that all possible families S → I which admit a connected descent datum are quotients of subsets of GU. It

follows

Proposition 2.11. The collection of all connected locally constant objects trivialized by a cover U→ γ∗I is a (small) set. �

Covering projections
Not all locally constant objects should be considered as covering projections. However, to require that the U•-descent

datum comes from a U•-descent datum (1.7(8)), as in the case of topological spaces (see Appendix), is too restrictive when
the topos is not spatial.

Definition 2.12. We say that a locally constant object X = (S→ I, σ) trivialized by a cover U→ γ∗I is a covering projection
if, for each (i, j) ∈ U1 (the set of 1-simplexes of the Cech nerve, 1.5), the family C

(u, v)
−→ Ui×Uj is an epimorphic family, where

(u, v) ranges over all action triples (u, v, s).

The following two propositions follow immediately from Proposition 2.5.

Proposition 2.13. Any subobject in PU of a covering projection is a covering projection. �

Proposition 2.14. Any quotient in PU of a covering projection is a covering projection. �

Proposition 2.15. Any finite limit in PU of covering projections is a covering projection. �

Proof. The terminal object clearly is a covering projection. Let (u, v, s), (u′, v′, s′) be action triples for X = (S → I, σ),
X′ = (S′ → I′, σ′). The fiber product of C and C′ over Ui × Uj (if non-empty) is an action triple for X and X′ simultaneously.
By the construction of binary products in PU it readily follows that it determines, together with s × s′, an action triple for
the product X × X′. The proof follows from this and the fact that in a topos the fiber products of epimorphic families yield
an epimorphic family. The case of a general finite limit can be treated exactly in the same way, but it follows anyway from
Proposition 2.13. �

Proposition 2.16. Let X = (S→ I, σ) be a covering projection, and R ⊂ S be an equivalence class of ∼σ . Then, the descent datum
σ restricts to R → I and it determines a subobject A ↪→ X, A = (R → I, σ). Furthermore, given any subobject Y = (T → I, σ),
Y ↪→ X, T ⊂ S, if A ∩ Y 6= ∅, (equivalently R ∩ T 6= ∅), then A ↪→ T, (equivalently R ⊂ T).
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Proof. Let (i, j) ∈ U1. Take an epimorphic family C
(u, v)
−→ Ui × Uj, with (u, v, s) action triples, and consider the following

diagram;

γ∗Si × Ui × Uj

σj, i // γ∗Sj × Uj × Ui

γ∗Ri × Ui × Uj

� ?

OO

σj, i //____ γ∗Rj × Uj × Ui

� ?

OO

γ∗Ri × C

γ∗Ri×(u, v)

OO

γ∗s×C // γ∗Rj × C

γ∗Rj×(v, u)

OO

The family γ∗Ri × C
γ∗Ri×(u, v) // γ∗Ri × Ui × Uj is epimorphic, and the outer diagram commutes by definition. It follows

that σj, i factors as shown. The second assertion is immediate (see Proposition 2.9). �

Proposition 2.17. Let (S→ I, σ) be a covering projection. The quotient set S→ S/∼σ has the following property:

Given any set T, T ∈ S, and a function S
ϑ
−→ T × I over I (that is, a function S

ϑ
−→ T, {Si

ϑi
−→ T}i∈I , then ϑ determines a

morphism (S, σ)
ϑ
−→ (γ∗T, γ∗T × τ) in PU if and only if it factors S −→ S/∼σ −→ T.

Proof. Let x ∈ Si, y ∈ Sj be such that x∼σ y by an action triple (u, v, s). Consider the following diagram:

γ∗T × Ui × Uj
γ∗T×τ // γ∗T × Uj × Ui

γ∗Si × Ui × Uj

γ∗ϑi×Ui×Uj

OO

σj, i // γ∗Sj × Uj × Ui

γ∗ϑj×Uj×Ui

OO

γ∗Si × C

γ∗Si×(u, v)

OO

γ∗s×C // γ∗Sj × C

γ∗Sj×(v, u)

OO

C

γ∗x×C

ccGGGGGGGGG γ∗y×C

;;wwwwwwwww

(a) The middle square and the lower triangle commute by definition.
(b) The commutativity of the upper square means that ϑ is a morphism in PU.

(c) If C
(u, v)
−→ Ui × Uj is a monomorphism, the commutativity of the outer diagram implies that ϑ factors through S/∼σ .

Notice that this together with C 6= ∅ implies that we have:

(γ∗(ϑix), (v, u)) = (γ∗(ϑjy), (v, u)) ⇐⇒ ϑix = ϑjy.

f morphism ⇒ ϑ factors: Let x∼σ y. Clearly it is enough to take a generating pair. Furthermore we can assume that the
arrow (u, v) is a monomorphism (Remark 2.7). Since the outer diagram commutes, it follows that ϑix = ϑjy.

ϑ factors⇒ ϑ morphism: Take an epimorphic family C
(u, v)
−→ Ui × Uj, with (u, v, s) action triples. For all x ∈ Si let y = sx.

The family C
γ∗x×(u, v) // γ∗Si × Ui × Uj is epimorphic. Since for all x, (u, v) the outer diagram commutes, it follows that

the upper square commutes. �

From Proposition 2.11 we have, in particular:

Proposition 2.18. The collection of all connected covering projections trivialized by a cover U→ γ∗I is a (small) set. �

Let GU ⊂ PU be the full subcategory whose objects are sums of covering projections trivialized by the cover U→ γ∗I.
From Propositions 2.14–2.18 and 1.10(2) it follows

Theorem 2.19. 1. The category GU is an atomic (locally connected and boolean) topos and the full inclusion is the inverse image
of a geometric morphism PU −→ GU. If E is connected, so is GU.

2. The functor GU
%∗

−→ SI , %∗(S→ I, σ) = S→ I is the inverse image of a surjective point S/I
%
−→ GU. �
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We abuse the notation and write E
υ
−→ GU and S/I

%
−→ GU for the composites E

υ
−→ PU −→ GU and S/I

%
−→ PU −→ GU

respectively. Notice that the point S/I
%
−→ GU can be thought as a family S

%i
−→ GU, %∗i (S → I, σ) = Si, of (enough) points

indexed by the set I.
Let I → GU be the localic groupoid of the points S/I

%
−→ GU, with (discrete) set of objects I (this groupoid is explicitly

constructed in [6, Section 2]), and let S/I −→ βGU be its classifying topos ([10,14,6]). There is a comparison morphism
βGU −→ GU compatible with the respective points. The next theorem follows from Theorem 2.19 by [10, VIII, 3. Theorem
1] (also [5, Theorem 8.4], or, explicitly [6, Theorem 3.6.4]).

Theorem 2.20. The comparison morphism βGU

∼=
−→ GU is an equivalence which identifies the point % with the canonical point

of βGU. �

Observation 2.21. Recall that GU may be chosen to be etale complete [14]. Actually, the construction in [6] yields an etale
complete localic groupoid.

The theory presented here generalizes the known theory for the locally connected case, bringing a direct proof for the
atomicity of the topos of locally constant objects split by a covering. FromRemark 2.4 it immediately follows that for a locally
connected topos every locally constant object is a covering projection. Also, in this case, the points S/I −→ PU = GU are
essential (therefore representable). This amounts to the fact that the fibers of an inverse limit in PU are the inverse limit
of the fibers in S (fact that is not true if the topos is not locally connected). It follows that the localic groupoid GU is an
ordinary discrete groupoid, and the representation Theorem 2.20 can be easily proved without recourse to Joyal–Tierney
results (see [5,6]). We have

Proposition 2.22. If the topos E is locally connected, every locally constant object is a covering projection. That is, GU = PU.
Furthermore, the points are representable, and the groupoid GU is an ordinary groupoid in S. �

Our Theorem 2.20 for the non-locally connected case appears to be the first genuine application of [10, VIII, 3. Theorem 1]
in the Galois theory of locally constant objects. It is also worth noticing that it is the first time a non-prodiscrete localic
groupoid appears in this theory, as well as an atomic topos which is not a Galois topos.

3. Geometric morphisms induced by cover refinements

The covers of a topos form a category Cov(E), taking as arrows the family morphism. Given two covers U = (U, I, ζ),
V = (V, J, ξ), an arrow is a pair U h

−→ V , I α
−→ J, making the following square commutative:

U
h //

ζ

��

V

ξ

��
γ∗I

γ∗α // γ∗J

We say that U refines V , and call the morphisms refinements. In alternative notation, the arrow U
(h,α)
−→ V corresponds to a

family h = {Ui
hi
−→ Vα(i)}i∈I .

Any two covers have a common refinement, namely, the family {Ui × Vj}(i, j)∈I×J,|Ui×Vj 6=∅. We remark that Cov(E) is not a
filtered category because given two refinements they cannot be further refined to become a single one. However, covers
do form a filtered poset cov(E) directed by the existence of a refinement, and there is a functor Cov(E) → cov(E) which
identifies the different refinements.

We shall let T opS denote the 2-category of Grothendieck topoi and geometric morphisms. We have:

Proposition 3.1. The construction of the atomic topos GU of covering projections (2.19) is functorial : Cov(E)
G
−→ T opS . Given

a refinement U
(h,α)
−→ V in Cov(E), we also denote GU

(h,α)
−→ GV the corresponding geometric morphism. The following diagram

commutes:

E
υU //

υV

��?
??

??
??

? GU

(h,α)

��

S/I
%Uoo

α

��
GV S/J

%Voo
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Proof. It follows from the universal property of the push-out that there is a geometric morphism PU
(h,α)
−→ PV , and that the

statement of the theorem holds for the push-out construction PU (1.4). Consider the following diagram of topoi and inverse
image functors:

E GU
υ∗U

oo � � // PU

%∗U // S/I

GV

υ∗V

__????????
� � // PV

%∗V //

(h,α)∗

OO

S/J

α∗

OO

It is clear that the theorem follows if we prove that the inverse image functor PV
(h,α)∗

−→ PU sends covering projections to
covering projections. We need an explicit description of this functor.

Remark 3.2. Let (S → I, σ) ∈ PU be the value of the functor (h, α)∗ on an object (T → J, η) ∈ PV , (S → I, σ)
= (h, α)∗(T → J, η), where S = α∗T (notice that Si = Tα(i)). By construction, there is a commutative diagram:

γ∗Tα(i) × Vα(i) × Vα(j)

ηα(i),α(j) // γ∗Tα(j) × Vα(j) × Vα(i)

γ∗Si × Ui × Uj

σi, j //

id×hi×hj

OO

γ∗Sj × Uj × Ui �

id×hj×hi

OO

Continuation of the proof. For each action triple (x, y) for η , consider a pull-back diagram:

C
(u, v) //

��

Ui × Uj

hi×hj

��
B

(x, y) // Vα(i) × Vα(j)

It is easy to check with the aid of the diagram in Remark 3.2 that the pair (u v) is an action triple for σ. Since pulling back an
epimorphic family yields an epimorphic family, this finishes the proof. �

We can think of the functor in the previous proposition as a system (GU)U∈Cov(E) of topoi and geometric morphisms, or as
a system of categories and inverse image functors, indexed by Cov(E). Although Cov(E) is not filtered, we can give a simple
description of the colimit of the categories.

4. The category and the topos of covering projections

The objects of this category, denoted cG(E), are pairs (X, U), where U is a cover, and X = (X, S→ I, θ) = (S→ I,σ) is a
covering projection (1.9) trivialized by U.

An arrow (X, U) → (Y, V) is map X
f
−→ Y in E such that there exist a common refinement W

(h,α)
−→ U, W

(l,β)
−→ V , and

an arrow (h, α)∗(X)
(f ,ϑ)
−→ (l, β)∗(Y) in GW , υ∗(f , ϑ) = f . From the fact that any two covers have a common refinement it

follows that given two maps X f
−→ Y and Y

g
−→ Z in E , if f and g are arrows in cG(E), then so is the composite X

gf
−→ Z.

The hom-sets in the category cG(E) are the filtered colimit (actually a filtered union) of the hom-sets in the categories
GW , indexed by the W which follow U and V in cov(E), W ≥ U, W ≥ V .

Clearly for each U ∈ Cov(E) there is a faithful functor GU

λ∗U
−→ cG(E), and these functors form a cone for the

system (GU)U∈Cov(E) (given X ∈ GV and a refinement U
(h,α)
−→ V , the identity map X

id
−→ X establish an isomorphism

(X, V) ∼= ((h, α)∗(X), U) in cG(E)).

Proposition 4.1.

1. The category cG(E) has finite limits and the functors λ∗U preserve them.

2. The coneGU

λ∗U
−→ cG(E) is a colimit of the system of categories and inverse image functors (indexed by the category Cov(E)).

Proof. It needs a straightforward but careful verification which is left to the interested reader. �
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Notice that there is a functor cG(E)
υ∗

−→ E making the following diagram a commutative diagram of faithful functors:

GU

λ∗U //
υ∗U

""FF
FF

FF
FF

F cG(E)

υ∗

��
E

(4.2)

Consider in the category cG(E) the Grothendieck topology generated by all the epimorphic families in GU for all
U ∈ CovE . Notice that this topology is subcanonical. The (small) set of covering projections corresponding to the connected
objects of GU, U running over any (small) cofinal set of coverings (for example, covering sieves, see 4.6 3.) is a “topologically
generating” family in the sense of [1, Expose II 3.0.1] (that is, every object in cG(E) is covered by objects in the family). It
follows that the category of sheaves is legitimate and that it is a Grothendieck topos [1, Expose II 4.11]. We shall denote this
topos G(E). There is a full and faithful functor cG(E)→ G(E). Clearly the composite functors GU −→ cG(E)→ G(E) are the
inverse image functors of geometric morphisms G(E) → GU which determine a cone for the system (GU)U∈Cov(E) of topoi
and geometric morphisms. There is a commutative diagram of surjective geometric morphisms:

GU G(E)
λUoo

E

υU

bbEEEEEEEE
υ

OO (4.3)

Theorem 4.4. The cone G(E)
λU
−→ GU is a limit cone in the 2-category T opS . That is, G(E) is the inverse limit of the system of

topoi and geometric morphisms (GU)U∈Cov(E).

Proof. It follows immediately from Proposition 4.1 using [1, Expose IV 4.9.4] (referred to as the basic theorem concerning
classifying topos in [12, Chapter VIII,3]). �

We now consider covering sieves as a technical tool in order to exhibit the topos G(E) as the classifying topos of a
progroupoid.

Covering sieves 4.5. Given C0 ∈ S, ∅ 6∈ C0, a (small) set of generators for the topos E , we say that I ⊂ C0 is a sieve if, given
an arrow C → D, with D ∈ I and C ∈ C0, then C ∈ I. Further, I is a covering sieve if Σ I → 1 is epimorphic, with Σ I =

∑
C∈I C.

Covering sieves form a (small) poset sCov(C0) ordered by inclusion. To each covering sieve I, we can associate the cover
R(I) = (Σ I, I, π), with π =

∑
C∈I(C→ 1). In other words, R(I) = {UC}C∈I , with UC = C. Also, to each cover U = (U, I, η) we

can associate the sieve s(U) = {C ∈ C0 | ∃i ∈ I and C→ Ui}.

Proposition 4.6. 1. The poset sCov(C0) is filtered.
2. There is a functor sCov(C0)

R
−→ Cov(E) defined by R(I) = (Σ(I), I,π).

3. There is a functor Cov(E)
s
−→ sCov(C0), and the composite R(sU) refines U. In this sense, the functor R is cofinal.

4. Given any two sets of generators, C0, D0, there are cofinal morphism of posets
sCov(C0) −→ sCov(D0), sCov(D0) −→ sCov(C0).

5. Given any functor Cov(E)
F
−→ X into a category X, it determines a pro-object (FI)I∈sCov(C0), FI = FR(I), for each set of

generators C0, and all these pro-objects are isomorphic as pro-objects.

Proof. 1. Given two covering sieves I, J ∈ s Cov(C0), the intersection sieve I ∩ J is also covering. This follows from the fact
that given C ∈ I, D ∈ J, the product C × D is covered by objects of C0.

2. Clearly, given I, J ∈ sCov(C0), if I ⊂ J, there is a canonical monomorphic refinement R(I) ↪→ R(J).
3. That the sieve s(U) is covering follows because every Ui is covered by objects of C0. The rest of the statement is clear.
4. Given any covering sieve I in sCov(C0), it generates a sieve in sCov(D0), sI = {D ∈ D0 | ∃D → C with C ∈ I}, which is

covering since the objects in D0 generate. This defines amorphism of posets. The same holds in the other direction. It is clear
that ss(I) ⊂ I. This finishes the proof.

5. Follows from 1 and 4 �

Here it is important to remark that although the refining sieve of a cover is canonical, the refinement itself is not. There is
no consistent choice of refinements in such a way that the maps R(sU)→ U define a transformation natural on U.

The functor R is not a real cofinal functor (in the sense of [1, Expose I, 8.]) because Cov(E) is not a filtered category.
However, for the particular functor Cov(E)op

G
−→ Cat, it follows from the construction of the colimit in Proposition 4.1:

Proposition 4.7. Given any set of generators C0 of E , the canonical functor

ColimitI∈sCov(C0)GR(I) −→ cG(E)

is an equivalence of categories.
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Proof. This colimit can be constructed in the same way as the category cG(E), and it determines a full subcategory. Then,
Proposition 4.6, 3. suffices to show that the inclusion is essentially surjective. �

Given any set of generators of a topos E , consider the system (a pro-object in the 2-category T opS) (GR(I))I∈sCov(C0), and
the inverse limit of topoi and geometric morphisms LimitI∈sCov(C0) GR(I) (known to exist, [1, Expose VI, 8.2.11]). This topos
does not depend of the chosen set of generators (Proposition 4.6, 4.).

Theorem 4.8.
1. The restriction of the cone in Theorem 4.4:G(E)

λR(I)
−→ GR(I), is a limit cone in the 2-category T opS . That is,G(E) is the inverse

limit of the protopos (GR(I))I∈sCov(C0).
2. There is a canonical natural transformation (in particular a canonical morphism of pro-objects) (S/I

%I
−→ GR(I))I∈sCovS(C0).

The topos G(E) is equipped with a localic point Sh(L)
%
−→ G(E), where L is the inverse limit in the category of localic spaces of the

discrete spaces determined by the sets I.

Proof. 1. Follows from Proposition 4.7.
2. Follows from Proposition 3.1 and the fact that the assignment of the topos of sheaves is a functor that preserves all

inverse limits (since it has a left adjoint, the localic reflection [10]). �

5. The fundamental progroupoid of a topos

The statementswithout proof in this section are justified by the yoga of the theory of classifying topos of localic groupoids
established in [14].

A localic progroupoid G is a pro-object G = (Gα)α∈Γ in the 2-category of localic groupoids. There are natural
transformations (in particular, canonical morphisms of pro-objects) Iα → Gα, where Iα are the localic spaces of objects.

Definition 5.1. Given a localic progroupoid G as above, its classifying topos is the inverse limit topos of the classifying topoi
βGα, βG = LimitαβGα. It is equipped with a localic point Sh(I) → βG, where I is the inverse limit of the localic spaces Iα,
I = LimitαIα. Notice that Sh(I) is also the inverse limit of the topoi Sh(Iα), Sh(I) = LimitαSh(Iα).
When G is an ordinary (strict) progroup, this is exactly the definition given in [1, Expose IV 2.7.], where the objects of the
topos βG are described explicitly.

Let I→ gG be the inverse limit of the localic groupoids Gα, gG = LimitαGα. There is a comparison functor βgG→ βG (that
is β LimitαGα → LimitαβGα). It is an open problem (plausibly with a negative answer) to know if this is an equivalence. This
is related to the failure or not of the point Sh(I) → βG to be of effective descent. Since Sh(I) → βgG is always of effective
descent, we have:

Proposition 5.2. The comparison morphism βgG→ βG is an equivalence if and only if Sh(I)→ βG is of effective descent �

The answer is positive in the classical cases corresponding to the Galois theory of locally connected topoi. Recall that a
morphism of groupoids G → H is composably onto if it is surjective on commutative triangles (thus, also on arrows and
objects) (see [11] 2.7). Extending SGA4 terminology, we say that a progroupoid is strict if the transition morphisms are
composably onto. In [11] 4.18. it is established that the comparison morphism βgG → βG is an equivalence for any strict
progroupoidG. In the particular case of strict progroups this was first observed in [16], and later stated independently in [15]
(where, furthermore, the equivalence is proved for localic progroupswhose transitionmorphisms are open surjections). This
equivalence allows us to replace strict progroups by localic prodiscrete groups in the SGA4Galois theory of locally connected
topos.

Given any topos E , consider now the system (GU)U∈Cov(E). By theMorita equivalence for etale complete localic groupoids
([3, 2.6], see also [14, 7.7]) it follows:

Proposition 5.3. The equivalences βGU

∼=
−→ GU in Theorem 2.20 determine a system of localic groupoids (GU)U∈Cov(E) and a

natural equivalence (βGU

∼=
−→ GU)U∈Cov(E) of systems. �

Given any set of generators C0, by restriction this determines a localic progroupoid. This progroupoid does not depend
on the chosen generators (up to isomorphism of pro-objects, 4.6, 5.), and it is defined to be the fundamental progroupoid of
the topos.

Definition 5.4. The fundamental progroupoid π1(E), of the topos E , is defined as π1(E) = (GR(I))I∈sCov(C0), for any set of
generators C0.

As before, let L be the inverse limit in the category of localic spaces of the discrete spaces determined by the sets I.

Theorem 5.5. Given any topos E , the topos G(E) of covering projections is the classifying topos of the fundamental localic
progroupoid π1(E), by an equivalence βπ1(E)

∼=
−→ G(E) which identifies the localic points Sh(L) −→ G(E), Sh(L) −→ βπ1(E).

Proof. It only remains to indicate that the theorem follows immediately from the given definitions, Proposition 5.3 and
Theorem 4.8. �
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6. The representation of torsors

In this last section we prove that the fundamental localic progroupoid π1(E) represents torsors. Given a group K ∈ S and
a topos E , recall that the category (groupoid) T orsK(E) of K-torsors (see below) is equivalent to the category of geometric
morphisms from E to the classifying topos βK, T opS[E,βK] ∼= T orsK(E) [12, Chapter VIII, Theorem 7]. We shall denote by
Grpd, proGrpd, the 2-categories of localic groupoids, localic progroupoids, respectively.

Proposition 6.1. There is an equivalence of categories proGrpd[π1(E), K] ∼= T orsK(cG(E)).

Proof.
proGrpd[π1(E), K] ∼=

1

ColimitI∈sCov(C0) Grpd[GR(I), K] ∼=
2

ColimitI∈sCov(C0) T opS[βGR(I), βK] ∼=
3

ColimitI∈sCov(C0) T opS[GR(I), βK] ∼=
4

ColimitI∈sCov(C0) T orsK(GR(I)) ∼=
5

T orsK(cG(E)).

(1) holds by definition of morphisms of progroupoids, (2) by the Morita equivalence for etale complete localic groupoids
([3, 2.6], see also [14, 7.7]), (3) by Proposition 5.3, (4) is clear (see [12, Chapter VIII, Theorem 7]), and (5) is an standard
property of filtered colimits. �

Our next task will be to show that there is an equivalence of categories TorsK(cG(E)) ∼= TorsK(E).
Given a topos E , we shall use letters as variables to describe arrows in E . We shall denote by a central dot “·” all group

products and group actions. Given a set S ∈ S, and an element x ∈ S, by the letter x we shall also indicate the corresponding
global section 1 x

−→ γ∗S in the topos.
Given a group K in S, and given x, y ∈ K, we set x/y = x · y−1 and x \ y = x−1 · y. Recall that a K-torsor in a topos E is an

object T ∈ E , T → 1 epi, and an action γ∗K× T −→ T such that the arrow γ∗K× T
ε
−→ T × T defined by ε(x, u) = (x · u, u) is

an isomorphism. There is an arrow T × T −→ γ∗K, (u, v) 7→ v/u defined by ε−1(u, v) = (v/u, v). Thus, z · u = v ⇔ z = v/u.
It immediately follows the equation (x · u)/(y · u) = x/y.

Clearly any torsor T determines in a canonical way a locally constant object T = (T, K, ε) split by the (singleton family)
cover T → 1.

Proposition 6.2. 1. Given any K-torsor in E , the locally constant object T = (T, K, ε) is a covering projection (Definition 2.12),
that is, an object in G T .

2. The covering projection T = (T, K, ε) is a K-torsor of G T with the same arrow as action. The group product K × K → K
furnishes the function that lifts the action γ∗K × T −→ T into a morphism of covering projections.

Proof. 1. The corresponding descent data γ∗K × T × T
σ
−→ γ∗K × T × T is described by σ(z, u, v) = (v / (z · u), v, u) (see

1.8). Any pair of elements x, y ∈ K define an arrow T
(x, y)
−→ T × T in the topos, (x, y)(u) = (x · u, y · u). Let K s

−→ K be defined
by s(z) = (y/x)/z (with an inverse given by h(z) = z \ (y/x)). It is immediate to check that (x, y, s) is an action triple (2.1).
This proves the statement since the family of arrows T

(x, y)
−→ T × T, all x, y ∈ K, is an epimorphic family.

2. γ∗K as an object of G T has the constant split structure, and γ∗K × T the (cartesian) product split structure
γ∗(K × K) × T

ε
−→ (γ∗K × T) × T, described by ε(x, y, u) = (x, y · u, u). It is immediate to check that the group product

K × K → K furnishes the function that lifts the action γ∗K × T −→ T into a morphism of covering projections. �

Given two torsors T,H, an arrow T
f
−→ H in E determines a refinement f = (f , id1) of the respective covers, so that H can be

viewed as an object f ∗H ∈ G T .

Proposition 6.3. An arrow in T
f
−→ H in E between torsors is equivariant (that is, it is a morphism of torsors) if and only if the

pair (f , idK) is a morphism T −→ f ∗H of covering projections (that is, a morphism in G T).

Proof. It is immediate to check (see Remark 3.2) that the identity function K
id
−→ K lifts f to a morphism of covering

projections if and only if f respects the actions. �

We now consider a cover U and a torsor in the topos GU. It consists of a covering projection T = (T, S → I, θ), an action
γ∗K × T −→ T which comes together with an action {K × Si −→ Si}i∈I in the topos S/I , such that θi(x · s, u) = x · θi(s, u).
The torsor in S/I is non-canonically (and it seems choice dependent) isomorphic to the canonical torsor {K × K −→ K}i∈I

([9, 8.31], [1, Expose IV 7.2.5]). Given a section I
s
−→ S, it determines an isomorphism {K

si
−→ Si, si(x) = x · si}i∈I . It also

determines a refinement (that we denote θs) of covers θs = { Ui
θ(si,−) // T }i∈I.
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Proposition 6.4. Given any torsor inGU as above, the pair (idT, {si}i∈I) establishes an isomorphism θ∗s (T, K, ε)
∼=
−→ (T, S→ I, θ)

of torsors in GU.

Proof. Notice that the action in both covering projections is the same. It is immediate to check (see Remark 3.2) that {si}i∈I
lifts idT to a morphism of covering projections. �

Theorem 6.5. The faithful functor cG(E)
υ∗

−→ E (4.2) establishes an equivalence of categories TorsK(cG(E))
∼=
−→ TorsK(E).

Proof. It follows from Propositions 6.3 and 6.4 that the torsor defined in Proposition 6.2 determines an inverse
TorsK(E)

∼=
−→ TorsK(cG(E)). �

It then follows from this theorem and Proposition 6.1.

Theorem 6.6. Given any topos E and group K ∈ S, the fundamental localic progroupoidπ1(E) represents K-torsors. That is, there
is an equivalence of categories proGrpd[π1(E), K] ∼= T orsK(E). �

Of course, this equivalence induces a bijection between the sets of equivalence classes of objects.
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Appendix. The particular case of topological spaces

When the topos E is spatial, the situation is much simpler, since the topos GU of covering projections trivialized by a
fixed cover U can be defined simply as the descent topos DU in the bottom row of diagram (1.6).

Topologists have dealt successfully with covering projections of non-locally connected topological spaces. In their work,
the descent data underneath the notion of covering projection has to be taken into account in one way or another. In
the paper of Hernandez Paricio [8] we can see an implicit situation of classical topological descent as described in the
introduction to “Categories Fibrees et Descente”, [7, Expose VI]. Once the descent datum is made explicit, the category of
covering projections of a topological space trivialized by a (fixed) covering is, by its very definition, the classifying topos of a
discrete groupoid, and this groupoid can be explicitly constructed as the free category over the Cech nerve of the covering.
The assignment of this groupoid is functorial on the filtered poset of covering sieves and determines the fundamental
progroupoid of the space.

We now describe briefly all this. Given a topological space B, when B is not locally connected, covering projections cannot
be considered as local homeomorphisms of a particular type, but should be considered as local homeomorphisms with an
added structure. This is reflected by the fact that not all continuous maps between the underlying sheaves are admitted,
but only those that preserve the trivialization structure. This determines a category (topos) PU, a geometric morphism
Sh(B)→ PU, with faithful but not full inverse imagePU → ShB) (where Sh(B) is the topos of sheaves over B), and a surjective
point S/I → PU, which is not (contrary to the case of a locally connected space) of effective descent.

Not all locally constant sheaves over B should be admitted as covering projections. Consider a sheaf X → B split by a
cover U = {Ui}i∈I , Ui ⊂ B, by means of homeomorphisms Si × Ui

θi
−→ X|Ui . Given i, j, Ui ∩ Uj 6= ∅, there is an induced

homeomorphism Si × (Ui ∩ Uj)
θi
−→ X|Ui∩Uj

θ−1j
−→ Sj × (Ui ∩ Uj) over Ui ∩ Uj. The following definition is essentially Definition

2.1 in [8].

Definition A.1. A covering projection split (or trivialized) byU is a locally constant sheaf X such that the bijections between
the fibers Si × {x} → Sj × {x} are given by the same function for all the points x ∈ Ui ∩ Uj. That is, ∀x, y ∈ Ui ∩ Uj,
θ−1j ◦ θi(−, x) = θ−1j ◦ θi(−, y).

Covering projections X → B trivialized by U define a full subcategory DU ⊂ PU, DU is a topos, and there is a (connected)
geometric morphismPU → DU with inverse image given by the full inclusion. ThusDU is equippedwith a surjective point
S/I → PU → DU which is of effective descent. In fact, the collection of homeomorphisms θ−1j ◦θi : Si×(Ui∩Uj)→ Sj×(Uj∩Ui)
defines a situation of classical (topological) descent [7, Expose VI]. The condition in Definition A.1 means that there are
bijections λj i : Si → Sj which induce the composite homeomorphisms θ−1j ◦ θi. The sheaf X together with the trivialization
{θi}i∈I can be recovered by descent from the family of topological spaces Xi = Si×Ui and the bijections λj i : Si → Sj. The cover
U determines a simplicial setU• (the Cech nerve)whose n-simplexes are given byUn = {(i0, i1, . . . in) | Ui0∩Ui1 · · ·∩Uin 6= ∅}

(notice thatU0 = I). In turn, this determines a simplicial topos S/U• by slicing. The family of bijections λj i is exactly a descent
datum on the object S → I in the topos S/I . The topos DU is (equivalent to) the descent topos SU• −→ DU, and as such,
the morphism S/I → DU is of effective descent. In this case, the topos DU is just the descent topos in the bottom row of
diagram (1.6). As such, it is the classifying topos of a discrete groupoid πU (whose objects are the index set of the cover).
Furthermore, this groupoid can be explicitly constructed as the free category over the nerve of the covering.

In particular, the topos DU is locally connected, so even though covering projections are not locally connected topological
spaces, their set of connected components (relative to a trivialization) can be constructed.
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The collection of faithful functors DU → Sh(B) form a cone over the category of refinements, and this allows the
construction of the category of all covering projections Cp(B) → Sh(B) as the colimit of the system of categories DU [8]
(compare with the construction cG(E) in Section 4). The system of groupoids πU, with U running over the filtered poset of
covering sieves, determines a progroupoid, whose category of actions (as defined in [8]) is equivalent to Cp(B).

When the space B is locally connected, the condition on Definition A.1 is vacuous, PU = DU, and this theory yields the
classical Galois theory of locally connected topological spaces.
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