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This paper proposes mathematical programming models for machine requirements planning in a 
multiproduct, multimachine, multistage manufacturing environment. Two models are developed, a 
mixed-integer linear programming model that takes into consideration factors of production such as 
resource and budget constraints, and a goal programming model that takes conflicting goals into 
account. Validation of the models is demonstrated by way of application to a computer hard disc 
manufacturing plant. The ef$cacy of the models and their results are discussed in a comparative manner. 
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Introduction 

An important problem that confronts a manufacturing 
manager is to develop an understanding of the opera- 
tions in sufficient depth so as to make good planning and 
operating decisions. Modeling of manufacturing sys- 
tems has proven to be a valuable means for gaining this 
understanding. 

However, with the complicated nature of manufac- 
turing systems, the task of optimal planning is far more 
varied, complex, and interactive than ever before. 
There are many planning and design decisions that have 
significant effects on both the time and costs associated 
with manufacturing a product. 

Facility design is one aspect of planning that includes 
varied decision problems. Take, for instance, determin- 
ing the type of facilities to utilize (e.g., equipment 
selection), their operating characteristics (e.g., con- 
veyor speed), and their locations. One of the more 
common facility design issues, yet one which has re- 
ceived relatively little attention in research literature, is 
the question of how many machines to have on hand. 

There are a limited number of methods for analyzing 
the machine requirements problem. Shublin and 
Madeheim’ suggested the use of the relationship x = 
(t/60) * (plhu) for calculating the desired number of 
machines for a single work center with one product and 
one operation associated with the center. Here, x is the 
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desired number of machines in the production period, t 
is the standard time for the operation in minutes,p is the 
total number of production units required per day, h is 
the standard number of hours available per day per 
machine, and u is the efficiency or “use” factor for the 
center. Similar deterministic, static approaches that use 
variants of Shublin and Madeheim’s model have been 
reported by Apple,’ Ireson Muther,4 Johnson,‘Reed,” 
Moore,’ and Francis and White.’ Most of these ap- 
proaches are concerned with a single work center, 
single product, single operation situation as analyzed by 
Shublin and Madeheim. Until the late 197Os, the models 
formulated were confined to descriptive ones, not con- 
sidering any constraints. 

Later developments were of the constrained mathe- 
matical programming type. Miller and Davis” analyzed 
the machine requirements problem as a resource al- 
location model involving allocation of limited floor 
space, capital budget, and available overtime among 
various types of machines. Hayes, Davis, and Wysk” 
also addressed the problem of a serial, multistage ma- 
chining system with a different processing operation 
occurring at each machining center (or stage) using a 
dynamic programming formulation in the context of 
cost minimization following the fundamental frame- 
work employed by Davis and Miller.” Other related 
works are those of Davis and Miller” and Davis and 
Kennedy,13 both using a Markovian approach to the 
problem, and that of Nnaji and Davis.14 

In this paper, the model of Hayes, Davis, and Wysk” 
is used as the general framework. Interactions with the 
planning issues of the production environment such as 
budget, operating cost, and machine availability as 
indicated by the plant capacity are incorporated in the 
model. The model determines the number of machines 
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and the total processing time necessary to meet the 
required output in each work center. 

Development of models 

The general framework of Hayes, Davis, and Wysk” is 
used in the proposed models. In their model, a single 
product, serial, multistage machining system with a 
different processing operation occurring at each stage 
was analyzed using the dynamic programming ap- 
proach. This paper expands coverage of the problem to 
a multiproduct, multimachine, multistage manufactur- 
ing system. Mixed-integer linear programming and goal 
programming formulations are used to determine the 
optimum number of machines required in each work 
center for each type of product. 

The manufacturing system addressed in this paper 
may be characterized by the following: There are N 
products and M stages; some of the products may go 
through fewer than M stages; some machines may be 
used in different stages; a day is broken down into shifts 
of operation; there is a certain percentage of defective 
units generated by the processes at any stage of each of 
the products; and there is a given daily production 
requirement for individual products. 

Mixed-integer linear programming (MILP) model 

The mixed-integer linear programming model pre- 
sented below is valid based on the following assump- 
tions: Setup time and travel time of works-in-process 
between stages are relatively short and thus negligible; 
the sequence of operations (technological order) of all 
the products through all the stages is known; the techno- 
logical order may be different for each product; the 
processing times for each machine and for each product 
are deterministic and known; machines in each stage or 
work center are of the same type; each work center 
must have at least one machine; and demand is less than 
capacity. 

Notations used in the model are as follows: i is 
product type or product model; j is stage of the work 
center; k is work shift, either first, second, or third; 1 is 
type of machine used in the work center; ti, j,k is number 
of machine hours of operation of product i at stage j 
during shift k; n,,i, jis number of type I machines required 
by product i at stage j; ri, jis operating rate of product i at 
stage j; b, j is percentage of defective units incurred by 
product i at stagej; CO;, j,k is the manufacturing cost for 
one hour of production of product i at stage jduring shift 
k; CF, is the fixed cost of a machine 1 per day; Si, j, is 
demand of product i at stage j (per day); Si,,,, is demand 
of product i at the last stage, M; wi, j is total available 
working hours in each shift for stagej; ej,,is efficiency of 
machine 1 at stage j; PC, is total number of machines of 
the same type 1. 

The objective to be achieved is to minimize the total 
cost of production per period. It is desired to find the 
values of tj, j,k and n,,;, j that minimize the following daily 

operating cost function: 

Minimize total cost: Processing cost + equipment cost 

Total cost = C C 2 (CO;,j,k * t;,j.k) 
1 j k 

+ x x (CF/*n,,;,j) foralll (1) 
1 j 

Subject to the restrictions stated below. 
First, the quantity of output of product (i.e., units 

started less fraction defective) from some stagej must 
be greater than or equal the quantity processed by the 
next stage (j + 1). 

(ri.j* ej./* (1 - bi,j)) * 7 t,,,,,? S,(j + 1) 

forall iandj< M (2) 

For the final stage this restriction takes the following 
form: 

(rij* ej./* (1 - bi,j)) *C ti.j.xZ S,,, 
h 

for all i and j = M (3) 

Second, the number of units assigned for processing 
in each stage cannot use more processing time than is 
available on the number of machines allocated to that 
stage. 

ti,,,rsw~i,j*n,,i,j foralli,j,k,l (4) 

Third, the total number of machines of the same type 
allotted to the different stages and products should not 
go beyond plant capacity. Because the same type of 
machine can be used by the different work centers for 
any of the products, or by any of the stages of the same 
product, the total allocation must not exceed what is 
available in the plant. 

x n ,,,, jsPC, foralli,j,l (5) 
I 

Fourth, it is desired to have integers for the number 
of machines allocated. Also, each work center should 
have at least one machine. 

n,,i,iZ 1, integers for all i, j, 1 (6) 

Last, nonnegativity constraints are included. 

tj,j,,?O foralli,j,k (7) 

The above model is fundamentally a mixed-integer 
linear program requiring an integer domain for the 
subset of variables associated with the number of ma- 
chines and allowing the other decision variables to have 
continuous solutions. 

Goal programming (GP) model 

One major assumption of the mixed-integer program- 
ming model is that demand is less than capacity. How- 
ever, in the actual environment, in solving the mixed- 
integer linear programming model, it is possible that 
there would be instances wherein the constraint on raw 
material availability or capacity limitations would be 
exceeded. It might sometimes be worthwhile or neces- 
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sary to buy extra raw materials or capacity at a high 
price. In such a case, solving the problem as a mixed- 
integer linear programming model would obviously lead 
to an infeasible result as all constraints cannot be 
satisfied simultaneously. 

Two approaches could be taken to resolve this 
infeasibility. One approach is to increase the upper 
bound on raw materials and capacity constraints; an- 
other is to use the goal programming technique. 

Increasing the upper bound on capacity and raw 
materials would require a posteriori calculations to 
determine the added amount necessary to fulfill the 
constraints. Another shortcoming of this approach is 
that one might not be definite about the logical amount 
by which the capacity or raw materials could be in- 
creased. Incrementing the limit by trial and error would 
ultimately lead to a feasible result; however, this would 
not be efficient. 

Another approach is to use “soft” constraints. That 
is, the constraint can be violated at a certain cost. Add 
deviational surplus and slack variables to make an 
equality constraint. By using these deviational vari- 
ables, it is possible to allow the right-hand side 
coefficient to be overachieved or underachieved by the 
amount assumed by the deviational variables. The ob- 
jective in this situation is to satisfy all the constraints as 
closely as possible. Such is the technique of goal pro- 
gramming (see e.g., Tabucanon15). 

Whereas linear programming deals with minimiza- 
tion or maximization of objective functions, goal pro- 
gramming is concerned with the condition of achieving 
prespecified targets or goals. 

Once individual goals have been stated, the objective 
of goal programming is to achieve the goal portfolio as 
closely as possible, i.e., to minimize the set of 
deviations or “distances” from the goals. All goals can 
be considered simultaneously or they can be taken one 
by one according to the priority structure. 

All notations previously defined in the mixed-integer 
linear programming model are used in this goal pro- 
gramming formulation, with additional deviational vari- 
ables denoted as d- (for underachievement) and d’ (for 
overachievement). 

For the machine requirements planning model, the 
goals are established as follows: (1) Demand should be 
met at all times; (2) Time employed in each shift should 
be utilized as fully as possible; (3) Production cost 
should not exceed allotted operating expenses; and (4) 
Total machines allocated should not exceed plant ca- 
pacity. These goals may be associated with first to 
fourth priorities, respectively. It is desired to achieve 
these goals as fully as possible. 

Meeting the demand, as dictated by the mother com- 

pany is the primary objective of the machine require- 
ments planner. Thus, the production goal can be ex- 
pressed as follows: 

ri,j, * (I - bi,j,) * ej,/ * Cti,j,k + d<i - d[; = SM 

for all i and j = M (8) 

The objective is to minimize underachievement of the 
production goals d6, for all product types. 

A certain number of machines are allocated to each 
stage per shift and it is desired to utilize these machines 
fully. Hence, the goal that the units being processed at a 
stage must use all the processing time available on the 
number of machines allocated to that stage can be writ- 
ten as: 

ti.j.kfdLi.j.k-d~i,j.k= Wi,j”*/ij 

‘foralli,j,k,/ (9) 

The objective is to minimize both underachievement 
and overachievement of time utilization goals in all 
shifts. 

Two factors comprise the cost function-the operat- 
ing cost and the fixed cost incurred by the machines 
used. An operating budget (Y) is set as the allotted daily 
expense, and this should not be exceeded unnecessar- 
ily. Thus, it is desired to achieve the following: 

7 7 F ccoi, j.k * fi, j,k) + c 2 ccFl * n,,i, j) 

i 

+ d;- di= Y forall (10) 

The objective is to minimize the excess expense of the 
cost goal, d:. Y is the budget for daily operating ex- 
penses. 

A specific number of machines are available in the 
plant. Additional machines may be acquired from facili- 
ties of sister companies. Hence, it is desired to minimize 
exceeding plant capacity. This is expressed as: 

7 Il/,i,j + d<, = d:/ = PC, for all i,j, I (11) 

The objective is the minimization of exceeding plant 
capacity, d&, for all types of machines. 

Production of each product goes through a series of 
fixed stages. The output at one stage serves as the input 
to the succeeding stage. This structural constraint is 
expressed as: 

ri,j*(l - bi,j)*ei,j*C f; jk= Si.(j + 1) . , 
k 

foralli,j<M (12) 

If the goals are prioritized according to the structure 
set forth earlier, then the objective function is ex- 
pressed as follows: 

The highest priority is given to minimize all dLi, 
which is to ensure that demand for all products is met. 
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tive and negative deviations are included in the objec- 
tive function at second priority, as the exact utilization 
of time available based on the number of machines 
allocated is desired. Only dc is included in the third 
priority because management would be more than 
happy if cost could be reduced. The last goal is to ensure 
that production is within the capacity of the plant. 
Hence, only d&is included in the objective function- 
the idea being to minimize the excess capacity that 
would be required to meet demand. All decision and 
deviational variables are restricted to be nonnegative. A 
change in the priority structure would require corre- 
sponding changes in equation (4). 

The case study 

The company under consideration manufactures com- 
puter hard discs. Its production system is divided into 
six main sections: Subassembly, Clean Room, Final 
Assembly I (FAI), Final Assembly II (FAII), Final Test 
(FT), and Button-Up (BU). 

The Subassembly area prepares the different compo- 
nents for the Clean Room. It also includes some minor 
operations such as base casting and bar code labeling. It 
is here that the disc head is assembled. After process- 
ing, the units are transported by conveyor to the major 
assembly and test sections (FAI, FAII, and FT) and 
finally to the BU section. This study considers only 
these last four sections, as these are the stages where 
major machines are used. Other stages consist mostly of 
manual assembly operations. 

Initially, the approach taken to analyze the machine 
requirements problem was by the mixed-integer linear 
programming method. However, certain difficulties 
were encountered. Initially, because of the assumption 
that demand is less than capacity, infeasibility of solu- 
tion results when this constraint is violated. This limits 
the model to a narrow application because in the actual 
manufacturing environment, the competition for scarce 
resources is normally involved. To resolve the 
infeasibility, the upper bounds of the plant capacity 
were increased. Note that this would require a poste- 
viori calculations in order to determine the number of 
machines needed that are in excess of plant capacity. 

Second, although integer solutions were obtained, 
sensitivity analysis could not be performed without 
resolving the whole problem. Integer programming 
models have no shadow prices or dual variables with an 
interpretation comparable to linear programming. 

The system manufactures 12 different product types In the algorithm used to evaluate integer program- 
(A to L, in capital alphabetic coding) and 15 different ming models, neither the optimal value nor the optimal 
machine types (a to o, in lower case alphabetic coding). solution need be continuous as a function of the 
Each product would require a certain combination of coefficients defining the constraints. As such, integer 
machines. These are given in Table 1. The problem then programming models can behave in an erratic manner 
is to decide on the number of machines of each type to because of the presence of multiple discontinuities 
be allocated to a particular production stage whenever a caused by (necessary discrete) changes of the value for 
certain product type is manufactured. the integer variables. Ergo, dual variables of the mixed- 

Application of the models 

The two models were applied to the case study pre- 
sented to test their validity. The company’s existing 
approach in solving the machine requirements problem 
gives little consideration to the interrelationships be- 
tween the number of machines used and such system 
components as in-process inventories, scheduling 
rules, product quality, available space, and production 
time. Another shortcoming of the existing description 
model is the lack of consideration of scarce resources 
involved in the manufacturing system as well as of the 
competition among various work centers for these re- 
sources. These create interdependence among the work 
centers that should necessarily be accounted for. 

Table 1. Machine-type (coded )* requirements of products in various production stages. 

Production staae 

Product 
type 

A 
B 
C 
D 
E 
F 
G 
H 
I 

J 
K 
L 

1 

d 
d 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

2 

n 
n 
e 

: 
d 
C 

0 

d 
C 

: 

3 

g 
g 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 

4 

f 
f 
f 
f 
f 
f 
f 

f 
f 
f 
f 

5 

I 
I 
k 
k 
I 
h 
h 
m 
I 

h 
h 
I 

6 

e 
e 
e 

: 
I 

I 

m 
d 
I 

I 

d 

7 

I 
I 
e 
e 
I 
e 
e 
0 

i 

: 
d 

8 

0 

0 

0 

0 

0 

e 
e 

0 

: 
0 

* Data are coded to maintain confidentiality. 
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integer linear programming models could not be inter- As a result of these limitations, another approach 
preted in the same manner as linear programming was used to address the machine requirements prob- 
models. lem-goal programming. 

To determine the influence of varying a resource 
level on the optimal solution, in general, one must 
resolve the mixed-integer linear programming problem 
with alternate resource levels. This is allowable in the 
model analyzed, because the average time to obtain 
results is only about 24 sec. 

Comparing the two cases of the mixed-integer linear 
programming formulation, wherein one yielded an inte- 
ger solution while the other case did not, it was ob- 
served that the continuous solution does not differ 
much from the integer end results. Rounding up or down 
would yield almost similar results. However, such sub- 
jective rounding off of solutions is not always practical. 
Rounding up has the consequence of creating excess or 
idle machine capacity and its associated opportunity 
cost. Rounding down creates the necessity for sub- 
contracting or overtime, which normally incurs a pen- 
alty cost above routine operations. Moreover, simple 
rounding of a fractional number of machines at each 
work center can lead to an infeasible solution when the 
actual production system is considered with its inherent 
limited resources and other pragmatic constraints. This 
is especially true when the decision variables involve 
small values; in such cases adding or decreasing a unit 
by rounding up or down has a significant effect. 

When a problem involves a number of constraints, 
not all of which can be satisfied simultaneously, a con- 
ventional model would obviously be infeasible. In such 
a case, it is better to restrict our aim to satisfying all the 
constraints as closely as possible. This is one of the 
advantages of goal programming. 

What the mixed-integer linear programming model 
cannot handle, i.e., when demand exceeds capacity, 
goal programming solves through the use of deviational 
variables incorporated in the constraints. How many 
more machines are needed (in excess of plant capacity) 
can readily be seen in the positive deviational variables. 
The number of machines not being used are reflected in 
the negative deviational variables. The types of prod- 
ucts that cannot be satisfied are also indicated. In 
addition, one can perform sensitivity analysis by re- 
structuring the goals or changing the parameters. 

In terms of computation time, the goal programming 
method consumed less time in obtaining its solution. 
The mixed-integer linear programming method requires 
a longer time because of its branch and bound algo- 
rithm. It is possible to encounter prohibition computa- 
tion time for very large problems using the mixed- 
integer linear programming method. In the model stud- 
ied, the goal-programming approach used about 8% of 

Table 2. Comparison of results in terms of number of machines for each type using the base demand for a particular period.* 

Product 
tvw 

Production stage 

(Model) 1 2 3 4 5 6 7 8 9 

A 

B 

C 
D 

E 

F 

G 
H 

J 
K 

L 

(I) 
(II’ 
(III’ 
(I’ 
(II) 
(III) 

(1) 
(II) 
(111) 
(1) 
(II) 
(Ill) 
(1) 
(II) 
(Ill) 

(I’ 
(II) 

II’ 
(II) 
(Ill) 

(I) 
(II) 
(Ill) 
(1) 
(II) 
(III) 

7 
4 
4 

7 

1 

1 

1 

77 
77 
77 
21 
21 
21 

12 
13 
13 

4 
4 
5 

1 

2 

3 11 10 20 9 
2 12 11 24 9 
2 15 13 24 9 
1 3 3 8 2 
1 3 3 8 2 
1 
(No produc?ion during:he period ~ksidered) 

2 

18 3 8 12 2 
17 2 9 12 1 
17 3 14 12 1 

163 38 32 97 31 
163 43 36 103 35 
164 50 40 104 35 

9 5 2 2 5 
9 5 2 2 5 
9 3 2 2 5 
(No production during the period considered) 

22 16 15 2 1 
21 18 16 2 1 
21 22 13 2 1 

3 1 1 2 1 
2 1 1 1 1 
2 1 
(No production during:he period cksidered ) ’ 

13 1 2 2 5 
12 1 2 2 5 
12 1 3 3 5 
8 1 2 3 1 
8 1 2 3 1 
8 1 2 3 1 

4 - 
4 - 
4 - 

2 1 
2 1 
2 1 

3 - 
2 - 
2 - 
7 - 
8 - 
8 - 

1 1 
1 1 
1 1 

- - 
- - 
- - 
1 - 
1 - 
1 - 

1 1 
1 1 
1 1 
1 - 
1 - 
1 - 

+ I = MIP model; II = GP models; Ill = existing procedure. 
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the time required by the mixed-integer linear program- 
ming approach. 

A summary of comparative results using mixed-inte- 
ger programming (MIP), goal programming (GP), and 
the existing procedure for a given set of demand data is 
shown in Table 2. It shows that the goal programming 
results are closely in agreement with the results based 
on the existing heuristics. 

Concluding remarks 

The advantage of using mathematical programming 
models over descriptive computation is that it seeks to 
optimize or at least satisfy management goals and pro- 
duction process limitations. Descriptive models detine 
what is needed; mathematical programming models 
incorporate the “what if” options. In particular, goal 
programming models, through the restructuring of goal 
priorities and changes in the parameters, can perform 
experiments to evaluate different options. At the same 
time, goal programming gives the planner a better un- 
derstanding of the relationships of his or her decisions to 
other planning and production decisions. 

Both mathematical models have their advantages 
and are preferred over the descriptive model for the 
primary reason that the latter does not consider the 
limitations inherent in any production system. Further- 
more, it does not provide the information regarding 
slack or surplus attainable by using mathematical 
models. As to choosing between the two mathematical 
models, mixed-integer linear programming models are 
preferred in situations where restrictions on capacity 
and raw materials are unlikely to be violated. Dealing 
with small units, e.g., choice of one or two machines 
and where integer end results are desired, mixed-inte- 
ger linear programming is ideal. 

Goal programming models answer the solution of 
infeasibility caused by violation of constraints in linear 
programming. It aims to satisfy the goals as much as 
possible and shows their underachievement or over- 
achievement through its deviational variables. It is flex- 
ible, and provides the “satisficing” solution under 
varying inputs and goal structures. Furthermore, as a 
solution method, goal programming is simple and easy 
to understand. 

Other than the advantages stated above, the goal 
programming method is preferred in this case study 
because it answers the question of the excess plant 
capacity needed, a drawback that the mixed-integer 
linear programming method cannot handle. 
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