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Abstract

There have been two main approaches to feature detection in human and computer vision––based either on the luminance dis-

tribution and its spatial derivatives, or on the spatial distribution of local contrast energy. Thus, bars and edges might arise from

peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local

phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models

and interpretations of early vision. Which approach better describes the perceived positions of features in images? We used the class

of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square-wave and all

Fourier components have a common phase. Observers used a cursor to mark where bars and edges were seen for different test phases

(Experiment 1) or judged the spatial alignment of contours that had different phases (e.g. 0� and 45�; Experiment 2). The feature

positions defined by both tasks shifted systematically to the left or right according to the sign of the phase offset, increasing with

the degree of blur. These shifts were well predicted by the location of luminance peaks (bars) and gradient peaks (edges), but

not by energy peaks which (by design) predicted no shift at all. These results encourage models based on a Gaussian-derivative

framework, but do not support the idea that human vision uses points of phase alignment to find local, first-order features. Nev-

ertheless, we argue that both approaches are presently incomplete and a better understanding of early vision may combine insights

from both.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Luminance contours and their definition

For more than four decades since the pioneering

studies of Hubel and Wiesel (1959, 1962) vision

researchers have sought to understand the relationship

between the response characteristics of visual cortical

cells and the perceived structure of images. It is widely

accepted that much of the key information in images lies

in the spatial structure of contours, and it is now clear

that visible contours can be defined by spatial transi-
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tions in many different kinds of image property, such

as luminance and chromaticity (the so-called first-order

properties) as well as higher-order properties such as lo-

cal contrast, texture, motion and binocular disparity (for
references and review see Regan (2000)). Our interest in

this paper lies in what defines first-order, luminance con-

tours for human observers.

Knowing what aspects of luminance variations in

images gave rise to perceived contours would usefully

constrain our computational models and our interpreta-

tion of physiological findings. Recent computational

analyses have confirmed the importance of local, ori-
ented edge- and bar-like structures in natural images

(Bell & Sejnowski, 1997; Field & Brady, 1997; Olshau-

sen & Field, 1996; van Hateren & van der Schaaf,
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1998) and have studied how perceptual grouping rules

are related to the statistics of contours in natural images

(Elder & Goldberg, 2002; Geisler, Perry, Super, & Gal-

logly, 2001). Importantly, and despite earlier claims to

the contrary, Elder (1999) showed that sparse edge maps

can contain all the information needed for a fairly faith-
ful re-construction of the original image. He thus

showed that the edge map can be a �perceptually lossless�
representation of the image––provided that the local

edge descriptions carry information about location, ori-

entation, contrast and blur.

Surprisingly, however, with respect to human vision

there is still much uncertainty over the most appropriate

psychophysical definition for simple luminance contours
such as edges and bars. That is the question that we

tackle experimentally in this paper. Previous thinking

has centred on two main ideas: that edges and bars

might correspond to (1) specific locations (peaks or

zero-crossings) in the luminance profile or its spatial

derivatives, after some degree of spatial smoothing, or

(2) specific locations (peaks) in the local contrast energy

profile of the image, after bandpass spatial filtering.
Very briefly, in the first approach bars might correspond

to peaks in the smoothed luminance profile and/or to se-

lected peaks in the second derivative, while edges might

correspond to peaks of gradient (first derivative) magni-

tude which can be also be found as zero-crossings in the

second derivative. The local energy approach is moti-

vated by the idea that image features correspond to loca-

tions where there is maximum similarity (�congruence�)
in local phase across a range of spatial frequencies. Such

points of phase congruence give rise to peaks in a local

energy measure that is computed by taking the quad-

ratic sum (square-root of the sum-of-squares) of the out-

puts of even- and odd-symmetric bandpass filters that

have matched spatial frequency tuning curves. The

derivative-based approach in computer vision and hu-

man vision is represented in the work of Boie and Cox
(1987), Canny (1986), Elder (1999), Elder and Zucker

(1998), Georgeson (1994), Georgeson and Freeman

(1997), Lindeberg (1998), Marr and Hildreth (1980),

Watt (1988), Watt and Morgan (1985), Zhang and Berg-

holm (1997), while the local energy model was pioneered

by Burr and Morrone (1992), Burr and Morrone (1994),

Burr, Morrone, and Spinelli (1989), Morrone and Burr

(1993), Morrone and Burr (1988), Morrone, Navangi-
one, and Burr (1995), Morrone and Owens (1987), Ross,

Morrone, and Burr (1989), with further theoretical

developments for machine vision by Kube and Perona

(1996), Kovesi (2000), van Deemter and du Buf (2000).

The two approaches have much in common, both in

the general aim of producing a feature description of the

image, and more specifically in the use of even- and odd-

symmetric bandpass filters to do so. Derivative opera-
tors of odd order (first, third, etc.) have receptive fields

with odd symmetry, while those of even order
(0,2,4, . . .) have even symmetry. There is some psycho-

physical and physiological evidence that vision might

specifically employ even and odd filters (Burr et al.,

1989; Field & Nachmias, 1984; Kulikowski & King-

Smith, 1973; Ringach, 2002; Shapley & Tolhurst,

1973), rather than a range of filters with arbitrary or
random phases (DeAngelis, Ohzawa, & Freeman,

1993; Field & Tolhurst, 1986), but this evidence does

not distinguish the two approaches.

1.2. Distinguishing the two approaches

It is possible, however, to create images for which the

two approaches make very different predictions about
where edges and bars will be seen. Georgeson and Free-

man (1997), for example, used compound gratings con-

taining just two sinusoidal components (f + 3f) and had

observers mark where they saw bars and edges in these

1-D images, across a range of phase relationships be-

tween the f and 3f components. The number and type

of features seen, and the systematic way that their posi-

tions varied with relative phase of f and 3f components,
were in good agreement with the derivative-based ap-

proach, but were poorly predicted by the peaks of local

energy. This evidence clearly favoured the derivative-

based approach but was not entirely convincing. Burr

and Morrone (1994) suggested that the energy model

is particularly successful with broad-band images con-

taining many Fourier harmonics, because these create

strong peaks in local energy (cf. Kovesi, 2000). The
images used by Georgeson and Freeman were very

blurred, and contained only two, low-frequency, Fourier

components. These images may have been too restricted

to serve as a fair test of the energy model, and so we

need a more systematic study of human feature percep-

tion using broad-band images that sample widely across

three important image parameters: phase, blur and

contrast.
The images necessary for such a study were devised

by Morrone and Burr (1988). The amplitude spectrum

is that of a partially blurred square-wave grating, but

with all Fourier components shifted by a constant phase

angle (/). Fig. 1 illustrates the family of waveforms cre-

ated by different degrees of phase shift. Blur, contrast

and phase can be independently varied. Note that the

luminance waveform varies markedly with the phase
parameter, but (by design) the energy peak location re-

mains fixed at the point where all the component phases

coincide (at x = 0 in Fig. 1). Formal definition of this

class of images is given in Section 2.1. It is also impor-

tant to note that the images have a broad-band spec-

trum similar to that of natural images. The amplitude

spectrum of the original square-wave has the 1/f form

that is typical of natural images (Field & Brady, 1997;
Ruderman, 1997), except that in the square-wave case

the spatial frequencies are discrete odd harmonics,



Fig. 1. Luminance profiles of the test images, for medium blur (rb = 4c/deg). Each image in the set has the amplitude spectrum of a blurred square-

wave, with a phase shift / applied to each Fourier component (Eq. (1)). Images were 1 period (2�) wide; the central 1.5� are shown here.
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f = h Æ f0, where h = 1,3,5, . . . , and f0 is the fundamental

spatial frequency. The bandwidth of the test images also

depends on the degree of blur imposed on them, but for

small or moderate blurs the images can be considered

spectrally broadband.
Our study thus aims to find out where people see bars

and edges in this class of images, and to determine

whether there is any simple stimulus-based rule that

can account for their judgements. We used a feature

marking method (Experiment 1) and a contour align-

ment task (Experiments 2 and 3) to provide converging

evidence about human perception of edges and bars.
2. Experiment 1––Feature marking

2.1. Stimuli

We used 1-D vertical images equivalent to those de-

fined by Morrone and Burr (1988). Each image had

the amplitude spectrum of a blurred square wave with
all Fourier components shifted by a constant phase (/).
The luminance at each horizontal pixel location x, is de-

fined by:
Lðx; rb;/Þ ¼ L0 þ
4a
p

Xh<T=2

h¼1;odd

1

h
Gðhf 0; rbÞ

� cosð2phf 0ðx� dxÞ � /Þ ð1Þ

where T is the image width in pixels (T was fixed at 256

pixels, subtending 2�), h is the harmonic number of each

Fourier component––an odd integer less than the Ny-

quist limit (T/2), L0 is the mean luminance, a is the mean

to peak amplitude of the square wave (when / = p/2)
(Morrone & Burr, 1988), / is the phase of all the cosine

Fourier components at the origin and dx is a rigid spa-

tial offset of the whole waveform (dx = 0 in Experiment

1, variable in Experiments 2 and 3). The fundamental

frequency f0 was 0.5c/deg (1c/image). The sharpness of

the stimulus is specified by rb, the standard deviation

in c/deg of a Gaussian blurring filter defined in the fre-

quency domain as Gðf ; rbÞ ¼ expð�f 2

2r2
b

Þ. When / = 0�
(or 180�) the peaks (or troughs) of all the components

coincide at the centre of the image, resulting in a trian-

gular type of waveform (Fig. 1). When / = 90� or 270�
all the components are zero valued at the centre of the

image, producing a Gaussian-blurred square-wave edge

(Fig. 1).
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A set of eight images was used for each experimental

session. All images in the set had the same sharpness (rb)
but different phase shifts (/ = 0�, 45�, 90�, 135�, 180�,
225�, 270� and 315�). Examples of the 1-D luminance

profile and corresponding grey scale image for each

phase shift when rb = 4c/deg can be seen in Fig. 1. Note
that for a given sharpness there are only three basic

wave shapes in the set of images, at phases 0�, 45� and
90�; waveforms at the other five phases are reflections

and/or inversions of the first three. As described previ-

ously, a is the mean-to-peak amplitude of the square

wave. It is also the standard deviation of the luminance

profile of the waveform. Because of Parseval�s theorem
this value does not change with phase and it can be used
to derive the root-mean-squared contrast (rms contrast)

as a/L0 which is constant within a particular image set.

2.2. Apparatus

The experimental stimuli were generated in NIH Im-

age software [http://rsb.info.nih.gov/nih-image/] using

Eq. (1). The experiment was run on a Macintosh compu-
ter with a calibrated, gamma-corrected Apple 15

00
CRT

display. Control of image contrast and linearisation of

the relationship between the digital signal and screen

luminance were achieved by manipulating the lookup ta-

bles (LUTs). The mean luminance of the screen was

60cd/m2. The experimental display was viewed binocu-

larly in a dimly lit room at a viewing distance of

2.92m. The head was restrained by a chin and forehead
rest. The width and height of each test image were 256

pixels (10.2cm) which subtended a visual angle of 2�.
One pixel subtended 0.47 0. Each image was set in a uni-

form grey (mean luminance) background (5� · 3.73�).

2.3. Procedure

Six subjects took part in the experiment using binoc-
ular viewing and normal spectacle correction where re-

quired. There were four naive observers and two

experienced observers (GSB, MAG). For each subject

the experiment consisted of 15 sessions––one for each le-

vel of stimulus sharpness (rb = 1, 2, 4, 8, 16c/deg) and

rms contrast (24%, 12%, 6%). During a session each of

the eight phases was presented five times, in random

order.
Each image was flashed repeatedly for 300ms with a

blank (mean luminance) inter-stimulus interval of

700ms. The purpose of the intermittent presentation

was to prevent the build-up of afterimages that can

cause an apparent instability (�monocular rivalry�) of

the stimuli at certain phases (45�, 135�, 225� and 315�)
(Georgeson & Freeman, 1997). A thin red vertical mar-

ker (1 · 24 pixels, 0.47 · 11.28 0) was superimposed onto
the image and the subject could move the marker hori-

zontally across the image using the mouse. When the
marker appeared to be centred over the next bar or edge

the subject would click the mouse button to report the

feature location and then select from a set of four icons

to indicate the type (bar or edge) and the polarity of the

feature seen. After selection the marker remained at the

same location. The subject would continue moving the
marker across the image in the same direction marking

other features in the same fashion. Subjects were free

to mark as many (or as few) features as they wished.

When the marker reached the end of the selection area

a new image from the set was presented. The direction

of marker movement (left to right or right to left) was

alternated between test images. For all images the selec-

tion area was limited to ±0.5� from the image centre.
This restriction did not exclude any parts of the image

from the experiment, because the parts excluded from

one trial would be those included in another trial at a

different phase. Subjects could not make selections out-

side this area and could not select the same feature twice

by making selections in the �wrong� direction. Free eye

movements were allowed.
3. Experiment 1––Results

3.1. Consistency of reported locations

The left column in Fig. 2 shows the features marked

by a single subject (NTB) across five different trials for

phases of 0� and 45� at the medium stimulus sharpness
(rb = 4c/deg) and medium rms contrast (12%). The fol-

lowing symbols are used to indicate the feature type and

polarity: filled squares are dark bars (D), open squares

are light bars (L), filled triangles are dark to light edges

(DL) and open triangles are light to dark edges (LD). It

is clear that for these images the subject consistently re-

ported the same feature type, polarity and spatial rela-

tionships of features across the five repetitions. A
single central edge was reported at phases / = 90� and

/ = 270� and a central bar flanked by two edges was re-

ported for all other phases.

This pattern of results was consistent across subjects,

and across different levels of stimulus sharpness and

contrast. In particular there was little or no effect of con-

trast level. The only exceptions were for the most

blurred images (rb = 1c/deg) at the lowest contrast
(6%). Here subjects DJC and MKB reported a single

edge when / = 45�, 135�, 225� and 315�, GSB reported

a single bar when / = 315� and MAG reported a bar

and edge when / = 45� and 315�.
The right column in Fig. 2 illustrates the average

positions reported by individual subjects for phases of

0� and 45� when rb = 4c/deg and rms contrast = 12%,

along with the group mean across subjects. The stand-
ard deviation of reported locations across the five repe-

titions, averaged across subjects, stimulus sharpness and

http://rsb.info.nih.gov/nih-image/
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Fig. 2. Locations of perceived features marked for phases 0� and 45� when rb = 4c/deg and rms contrast = 12%. Filled triangles: dark-to-light edges;

open triangles: light-to-dark edges; open squares: light bars. Left column: features marked by one subject (NTB) in individual trials; bottom row in

each panel shows the mean feature location for NTB over five trials. Right column: means for individual subjects; bottom row in each panel is the

group mean. Consistency within and between individuals was very high.
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contrast was 0.90 0, and the average correlation of the re-

ported locations between all pairs of subjects was 0.98.

Because of this robust similarity of observations across

subjects all further analysis was carried out on the aver-

age feature locations taken across all six subjects. At the

lowest contrast (6%) and sharpness (1c/deg) there was

some inconsistency between subjects (described above),

so a feature was included in the average only when at
least four out of six subjects reported it.

3.2. Pattern of perceived locations across phases

Fig. 3 shows a plot of the average marked feature

locations against the spatial phase of each image for

each level of sharpness (rb) and contrast. Because there

was no systematic effect of contrast level, the symbols
for lower contrasts are mainly obscured behind those

for the highest contrast. The location of each feature

shifts with phase (/), tracing out a path which we call

a feature trajectory (Georgeson & Freeman, 1997). The

bar trajectories are centred at the image origin (x = 0)

for the triangle-wave phase condition (0�, 180�) and

move away from the centre as the phase shifts towards

90� or 270� (�90�), but the bars disappear altogether
at ±90� where only a single edge is seen. The edge trajec-

tories are centred at the image origin for the blurred

square-wave condition (±90�) and move away from cen-
tre as phase shifts toward 0� and ±180�. Note that, when

the phase is intermediate (±45�, ±135�), the reported

locations of both bars and edges are displaced systemat-

ically from the origin. As stimulus sharpness increases,

the trajectories become shallower, implying that the shift

in reported location with phase is smaller for sharper

stimuli.

3.3. A simple rule for feature locations

We explored the data in a variety of ways (discussed

in more detail later) in search of a stimulus-based defini-

tion for human feature perception. One simple rule can

account for essentially all of these data, and is easily sta-

ted as:

Rule 1. Human observers see light and dark bars at

peaks and troughs in a slightly smoothed version of

the luminance profile, and they see edges at points of

steepest gradient in that smoothed profile.

The pattern of feature trajectories predicted by Rule 1

is shown as solid lines in Fig. 3. This rule predicted the

marked locations very well at all phases, and all levels of
blur and contrast (except in those few cases of large blur

and low contrast already noted). The space constant (rx)
of the Gaussian blur kernel used to smooth the



Fig. 3. Feature trajectories for each level of sharpness (rb) and contrast (24%, 12%, 6% rms). Group mean feature locations are plotted against

component phase. Filled squares: dark bars; open squares: light bars; filled triangles: dark-to-light edges; open triangles: light-to-dark edges. Symbol

contrast represents image contrast (see top right); low contrast symbols are mainly obscured by higher ones, reflecting little or no effect of image

contrast on feature locations. Solid curves: features predicted by a simple rule (Rule 1––see text). Dotted horizontal line is the energy peak location

for all phases. Phase is a circular dimension, and so data at 180� should be envisaged as wrapping around to join those at �180�. Note change of

vertical scaling in lower row.
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luminance profile was small, 1.7 0, corresponding to a

low-pass Gaussian filter in the frequency domain with

rf = 5.5c/deg. The overall goodness-of-fit is excellent.

It is clear that the rule predicts the observed features

well for all levels of stimulus sharpness. It predicted

the correct number, type and polarity of the features
and placed each feature close to the corresponding ob-

served feature. The only exceptions were when the stim-

ulus was most blurred (rb = 1c/deg), rms contrast was

low (6%) and / = 45� or 315�. In these two conditions

the rule predicted two edges (as it did for all other levels

of blur and contrast) but most subjects reported only

one edge. Our best guess is that the unseen edge fell be-

low a local contrast threshold in this low-contrast
condition.

3.4. Evaluation of the energy model

The images in this study were designed specifically

(by Morrone & Burr, 1988) to produce a single energy

peak at the centre of the display screen. For each image,

the Fourier components of the image have a common
phase when referenced to that point, and so the predic-

tion of the energy model is a simple one: every image

should have a single salient feature at the same central

point. The feature trajectory should be a single horizon-

tal line, but it is not. There are three, almost parallel,

non-horizontal, feature trajectories representing a bar
flanked by two edges (Fig. 3). The slopes of these trajec-

tories increase as blur increases, but they are invariant

with contrast. For this image set, the energy model does

correctly predict the edge at 90� and 270�, and the bar at

0� and 180� phases. But it predicts no phase-dependent

variation in feature locations, and so it captures none
of the systematic variation observed in the data as phase

varied. Likewise, since it predicts only a single feature in

each image, it does not describe the consistent finding,

across all blurs, that every visible bar is flanked by

two edges of opposite polarity.

The relation between energy peaks and observed fea-

tures is illustrated in Fig. 4. The solid curve shows a por-

tion of the luminance profile of a medium-sharp image
(4c/deg) when / = 45�, along with the location of the

central bar and two flanking edges marked in the exper-

iment (rms contrast = 12%). The luminance profile is

skewed, and the observed light bar is shifted away from

the central location (x = 0), but sits near the luminance

peak. The energy profile (Fig. 4(A)) predicts that there

should be a single feature located at the centre of the im-

age but three features were consistently observed, none
of which was located at the centre. The arrow-plots in

Fig. 4(C) show the local phase (arrow orientation) and

amplitude (arrow length) of the Fourier components at

the observed feature locations and at the energy peak.

At the marked feature locations the component phases

vary greatly with frequency, while at the point of phase



Fig. 4. Energy and phase congruence. (A) Luminance profile, Hilbert transform and energy profile of the test image for / = 45�, rb = 4c/deg. (B)

Gradient profile (dashed curve) for the same luminance waveform (solid curve). Symbols mark the luminance peak and the points of steepest

gradient. (C) The group mean edge positions (triangles) and bar position (square) marked in the experiment (at 12% rms contrast). Arrow-plots show

phase (arrow orientation) and amplitude (arrow length) of Fourier components at the observed feature positions and at the energy peak position,

x = 0. Congruence of component phase did not predict feature locations, and perceived features did not have phase congruence.
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congruence no feature is marked. This example is repre-

sentative of the whole dataset for these critical interme-

diate phases (±45, 180 ± 45). Figs. 3 and 4 imply that the

congruence of phases at a particular location is neither

necessary nor sufficient for the perception of features.

It appears that the inability of the energy model to pre-

dict these marked features is not restricted to blurred or

narrow-band images (see Section 1), but is more general.
4. Experiment 2––Contour alignment

Burr and Morrone (1994, p. 139) argued that the

perceived structure of images is determined to a large
extent by the visually salient features formed where

the harmonics come into phase with each other. In

Experiment 1 observers had to locate bars and edges,

but they did not have to judge shape or spatial rela-

tionships. An interesting possibility, therefore, is that

when asked to identify local features explicitly, observ-

ers mark luminance peaks and gradient maxima (they

follow Rule 1), but if we had asked them to make
some more global judgement about shape or form

we would have found that energy peaks were key fea-

tures for such perception of structure. An important

aspect of perceived structure, much studied in recent

years, is the perception of collinearity––the alignment

(or misalignment) of contours extended across
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space––and so perhaps the alignment of energy peaks

would determine this kind of perceived structure. This

was tested in Experiment 2, using a 3-element align-

ment task with the same family of spatial waveforms

as Experiment 1.

The logic was straightforward, and is illustrated in
Fig. 5(A) and (B). A pair of outer contour segments

had either 0� or 180� phase (light or dark bars), while

the centre element was phase shifted by ±45� from

the outer elements. If perceived alignment is deter-

mined by energy peaks, then the three elements

should appear aligned, because the phase shift of

the centre segment does not displace the energy peak.

However, if luminance peaks (and/or gradient peaks)
determine perceived alignment, then the phase shift

in the centre will induce misalignment. This can be

quantified by finding the spatial offset dx of the cen-

tre segment that is required to restore perceived

alignment.
Fig. 5. Experiment 2. (A, B) Arrangement of images used in the contour alig

(B; dark bars). Phase of the test contour (centre) was shifted ±45� from the

trial. These images (for rb = 4c/deg) show dx = 0, where the energy peaks are

left (A) and right (B). (C, D) Mean values of perceived offset from three obs

Experiment 2) or binary noise strips (triangles; Experiment 3).
4.1. Stimuli and procedure

Images were generated in Matlab software on a Mac-

intosh G4 computer, and displayed on an Iiyama

Pro454 19
00
monitor at a framerate of 85Hz, using the

Pelli–Brainard PsychToolbox software (Brainard, 1997)
[http://psychtoolbox.org/]. The display was carefully

gamma-corrected, and had a mean luminance of 77cd/

m2. Where possible, the stimulus conditions were the

same as in Experiment 1: luminance profiles were de-

fined by Eq. (1), the image width was 2�, fundamental

frequency was 0.5c/deg. Only the highest rms contrast

(24%) was tested. The remainder of the screen surround-

ing the test image subtended 8.9� · 6.5�, and was held at
mean luminance throughout the session. In different

blocks of trials the sharpness parameter (rb) was 2, 4

or 8c/deg and the outer elements (Fig. 5(A) and (B))

had phases of 0� or 180�, with dx = 0. The uniform grey

(mean luminance) strips between the three contour seg-
nment task. Phases of the outer contours were 0 (A; light bars) or 180�
outer ones. Spatial displacement (dx) of the centre varied from trial to

aligned, but the reader may observe that the centre appears offset to the

ervers for the contour alignment task with grey dividing strips (circles;

http://psychtoolbox.org/
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ments were 8.4 0 high. The centre segment had its phase

shifted by +45� or �45� relative to the outer segments.

This meant that the polarity and perceived features of

the centre and outer elements were similar (see Fig.

5(A) and (B)) but the energy peak and luminance peak

could be dissociated. The phase offset (±45�) of the cen-
tre element switched at random from trial to trial, as did

its spatial offset dx. Values of dx were drawn at random

from sets of seven that were chosen for each level of blur

and direction of phase offset, on the basis of pilot data.
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Fig. 6. Experiment 2. Data and fitted psychometric functions for one ob

alignment [where p(rightward response) = 0.5] when the test (centre) phase is

flanking contours. Sharpness (2, 4, 8c/deg) increases from bottom to top row.

phase 180�).
Within a trial, images were presented once for 0.5 s.

The observer was asked to fixate centrally (without a

fixation point) and had to indicate with a key press

whether ‘‘a salient feature roughly in the middle was

to the right or left of the outer pair’’. The nature of

the feature was left undefined, and no feedback was gi-
ven. Twenty trials were run for each offset dx, and the

six blocks of 280 trials were run in random order. Thus

1680 trials were run for each of three observers in single

sessions lasting about 1h. Viewing was binocular from
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server (KAM), illustrating the large difference in point of subjective

shifted by +45� (open circles) versus �45� (filled circles), relative to the

Left column: light bars (flank phase 0�). Right column: dark bars (flank
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a distance of 229cm. Subjects were author MAG, an

experienced but uninformed observer (KAM) and a

naı̈ve observer (CXP). Prior practice varied from sev-

eral hours (MAG), through 1h (KAM) to about

5min (CXP).

4.2. Experiment 2––Results

Data were plotted as the proportion of rightward re-

sponses for each blur and centre phase as a function of

the centre offset dx. Maximum-likelihood psychometric

functions (logistics) were fitted to each subset of data,

using the Psignifit software (Wichmann & Hill, 2001)

[www.bootstrap-software.com/psignifit] as shown for
KAM in Fig. 6. The pattern of data was very similar

for the other two subjects, but with shallower psycho-

metric functions for the naı̈ve subject. Fig. 6 (open sym-

bols) shows that when the centre element phases were

shifted to the right (centre phase 45�, or 225�), the whole
waveform had to be shifted to the left (dx < 0) to

achieve subjective alignment with the outer elements,

and vice-versa (filled symbols). This implies that right-
ward (or leftward) phase shift led to a perceived posi-

tional shift to the right (or left) respectively. The

reader may be able to see this in the illustrations of

Fig. 5(A) and (B). The degree of positional shift in-

creased with the level of blur.

The steepness of the psychometric functions illus-

trates the finding that, on average, the positional shift

was 3–5 times greater than the just-noticeable differ-
ence (JND) in centre element position (see Table 1).

JNDs also increased with blur (Table 1), and JNDs

for individual Ss were associated with the observer�s
level of practice (MAG: 0.25; KAM: 0.52; CXP:

1.1 0, geometric means over blur and phase). The preci-

sion of these positional judgements confirms our sub-

jective impressions that the task was natural and

unambiguous.
To summarize the results, the positional shifts (50%

points on the fitted psychometric functions) were aver-

aged across subjects, and plotted against the image

sharpness (Fig. 5(C) and (D), circles). Dashed curves

in Fig. 5(C) and (D) show that for both the light bars

(C) and the dark bars (D) the perceived offsets fell fairly

close to those predicted by the positions of luminance
Table 1

Experiment 2. Group mean positional shift for 45� phase shift (PSE)

and position discrimination (JND)

Sharpness rb,
c/deg

Mean shift in

PSE (min

arc)

GeoMean

JND (min

arc)

Ratio PSE/

JND

8 1.04 0.80 0.39 0.58 2.71 1.38

4 1.81 1.83 0.47 0.68 3.83 2.70

2 3.99 3.94 0.79 1.17 5.05 3.37

Corresponding values for Experiment 3 are in italics.
peaks (or troughs) in the displayed image. However,

the solid curves reveal that the perceived offsets were

even closer to the positions defined by the midpoint be-

tween pairs of gradient peaks that flanked the luminance

peak (cf. Fig. 4(B)). Taking the findings of Experiments

1 and 2 together, we conclude that each bar has two
edges located very close to gradient peaks, and that per-

ceived alignment is closely associated with the average

alignment of these edges.
5. Experiment 3––A control experiment

Up to this point, we followed Morrone and Burr
(1988) in calculating 1-D energy profiles from horizon-

tal cross-sections of the luminance profile. This seems

appropriate for Experiment 1, where the images were

genuinely 1-D, with no modulation on the vertical axis.

However, it may not be appropriate for the images of

Experiment 2 which had 2-D variations in luminance.

Specifically, the grey strips that separate the three ver-

tical contour segments created horizontal edges, and
the local contrast of these edges depends on the adja-

cent luminance profile. When phase (and hence lumi-

nance peak) shifts to the left (centre of Fig. 7(C)) so

the point of maximum contrast on the abutting hori-

zontal edges also shifts in the same direction. This pro-

duces a cue in the output of horizontally oriented

energy mechanisms, as illustrated in Fig. 7(D). Bright

peaks of energy at the ends of the central test contour
are shifted to the left, relative to those created by the

outer contours. This was evident at all spatial scales

for horizontal mechanisms, and so for brevity we sum-

marized this pattern in Fig. 7 by the sum across all

scales. Note that in Fig. 7(D) the (fainter) vertical

ridges of energy, arising from vertical mechanisms

responding to the body of each test contour, remain

perfectly aligned––unaffected by phase shifts, just as
in the 1-D analysis.

In short, then, a 2-D energy model might account

for the perceived offsets of Experiment 2 if observers

based their alignment judgements on those cues that

arise from horizontal mechanisms. We tested this in a

replication of Experiment 2, but with the addition of

binary noise to the grey separating strips (Fig. 7(E)).

At all spatial scales, noise of this size and contrast
scrambled the offset cue described above (see Fig.

7(F)). We confirmed by computation with many differ-

ent noise samples that this scrambling was effective at

all scales even when four oriented energy mechanisms

were considered (0�, 45�, 90�, 135�). So, for an en-

ergy-based observer, this noise should eliminate the

perceived offset associated with phase shifts. The only

alignment cue is now the ridge of energy from vertical
mechanisms, and this, as we have seen, is phase-invar-

iant and predicts no perceived offset.

http://www.bootstrap-software.com/psignifit


Fig. 7. 2-D energy maps. (A, B) Examples of the filter kernels used to compute energy maps at different scales and orientations. Filters had the log

Gabor form defined in the Fourier domain by Burr and Morrone (1992). At each scale and orientation, a pair of odd and even filters was used to

compute energy maps (the quadratic sum of the pair of filtered output images) in the usual way. Peak sensitivity and octave bandwidth were the same

for all filters. (C) Test image like Fig. 5(A), where the centre contour has �45� phase shift. (D) Energy maps summarized as the sum over three scales

(8, 16, 32; centre frequencies 16, 8, 4c/image) and two orientations (0�, 90�). Note the offset in energy peaks where the test contour meets the grey

dividing strip. This offset cue arises in the horizontal filters at all scales (see text). (E) As (C), but with binary noise added to the grey dividing strips.

(F) Note how the offset cue in the energy map is completely scrambled by the addition of this noise.
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5.1. Display and procedure

Display parameters and experimental procedures
were the same as Experiment 2, except that (i) the dis-

play screen was an Eizo 6500 greyscale monitor with a

mean luminance of 51cd/m2, viewed from 259cm; (ii)

binary noise, with square elements 4.2 0 wide and con-

trast 0.5, was added to the grey separating strips (Fig.
7(E)), with new noise samples on every trial; (iii) subjects

were author MAG and KAM as before, with a different

naı̈ve observer (RJS).

5.2. Results

Results were strikingly similar to those of Experiment

2, in both the individual psychometric functions (not
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shown) and the mean perceived offsets (Fig. 5(C) and

(D), triangles). Clearly, the noise had no effect on the

observers� mean judgements of alignment, and so we

can be confident that peaks of contrast along the hori-

zontal edges were not the cue used to judge alignment

in this task.
6. Discussion

6.1. A simple rule for edge and bar locations

For the class of images studied here, we found that a

very simple rule (Rule 1) provides a good account of
marked feature locations, as well as feature type and

polarity, across all phases and for all degrees of blur.

After a small amount of spatial smoothing, bars were lo-

cated at peaks and troughs in the (smoothed) luminance

profile while edges were located at points where the

luminance was changing most steeply across space

(peaks in gradient magnitude). The latter has been the

underlying assumption of many edge-finding techniques
in machine vision (Canny, 1986; Marr, 1982; Marr &

Hildreth, 1980). Our results and analysis provide strong

evidence that this assumption also holds for the human

visual system.

In Marr�s (1982) terms, these findings tell us some-

thing about human vision at the level of computational

theory (what is to be computed), rather than how it is

computed. For example, the luminance peaks and
troughs could be found directly by searching over an

internal representation of the luminance profile, but

equivalently they could be found as zero-crossings in

the output of a gradient (first-derivative) operator. Sim-

ilarly, edges could be found as peaks in the output of the

gradient operator (Canny, 1986) or by finding zero-

crossings in the second-derivative output (Marr & Hild-

reth, 1980). Many models have implemented such ideas
using derivative filters at multiple scales (e.g. Watt &

Morgan, 1985) or with local, adaptive selection of the

filter scale (e.g. Elder & Zucker, 1998; Lindeberg,

1998). Our results do not bear directly on the merits of

these various implementations (they are not �analyzer-
revealing�) (Graham, 1989), but they do impose con-

straints on what any model intended to account for hu-

man vision must produce as output. In particular the
results suggest that peaks of local contrast energy are

not what the human observer uses to locate luminance

features. At the critical intermediate phases (±45,

180 ± 45), energy peaks do not predict the correct num-

ber or position of features. This conclusion echoes and

strengthens our earlier one (Georgeson & Freeman,

1997) because the stimulus set in the present study was

designed to be a fairer, more complete test of the energy
approach. Of course, this conclusion is limited to the

class of smooth, noise-free, 1-D images used in these
experiments, and we re-emphasize that Rule 1 does no

more than describe succinctly the features that are re-

ported for this class of images.
6.2. Is there a better rule?

It is reasonable to ask whether other rules could work

as well as Rule 1, or perhaps better. To explore this sys-

tematically, we took Rule 1 to be a special case of a

more general scheme for potential feature descriptions

(cf. Georgeson & Freeman, 1997). We consider first

bars, then edges. In general, bars might correspond to

peaks and troughs in the output of an even-symmetric

filter applied to the luminance profile, with the filter�s
amplitude spectrum F defined by:

F ðf Þ ¼ f p exp
�f 2

2r2
f

� �
ð2Þ

In terms of Eq. (2), Rule 1 asserts that p = 0 (i.e. sim-
ple smoothing by a Gaussian filter) but when p > 0, this

function combines high-pass filtering and Gaussian

smoothing. Second-derivative (Laplacian of Gaussian)

filtering (Marr & Hildreth, 1980) is given by p = 2.

Extensive numerical computations showed that p = 0

gave the best fit to the feature-marking data for two rea-

sons: (i) when p > 0 there were too many peaks and

troughs in the filter output, and (ii) when p < 0 the num-
ber of peaks and troughs matched the observed bars but

the positions were less accurate than when p = 0. Fig.

8(B) shows that when p was set to 0, and rf varied, there
was usually no optimum filter scale for predicting bar

locations, but the rms positional error was large when

too much smoothing was applied, and approached a

lower bound when rf was greater than 5–8c/deg. Thus

slight, or no, smoothing gave similarly good predictions
for bar locations, provided p = 0. That is the first part of

Rule 1.

To conduct a similar analysis for edges, we applied

Eq. (2) as an odd-symmetric filter instead of an even

one, and searched for peaks in the magnitude of the fil-

ter output (i.e. rejecting peaks and troughs that are mini-

ma in magnitude (Clark, 1989)). Rule 1 now asserts that

p = 1 (the Gaussian derivative operator). The outcome
of this analysis was very like that for bars. When p > 1

too many edges were produced, and when p < 1 the cor-

rect number of edges was produced but the positional

error was greater than for p = 1. Hence within this sim-

ple peak-finding scheme the Gaussian derivative opera-

tor was uniquely the best filter for predicting the

observed edge locations. Fig. 8(A) shows that in this

case the data for the sharper images (rb = 4, 8, 16c/
deg) yielded a minimum of positional error when the

smoothing filter had rf = 5.5c/deg, corresponding to a

Gaussian blur space constant rx = 1.7 0. For this reason

we chose rx = 1.7 0 as a single figure-of-merit for Rule



0
(A) (B)

10 20
0.1

1

10

100

filter scale (c/deg)

rm
s 

er
ro

r 
(m

in
 a

rc
)

edges

1 c/deg
2 c/deg
4 c/deg
8 c/deg
16 c/deg

0 10 20
0.1

1

10

100

filter scale (c/deg)

bars

1 c/deg
2 c/deg
4 c/deg
8 c/deg
16 c/deg

Fig. 8. Positional accuracy of Rule 1 (goodness of fit expressed as rms error, min arc) for different degrees of spatial smoothing, for (A) edges and (B)

bars. Image contrast was 12% rms; image sharpness (rb) is shown in the key. Sudden rise in error measure for edges (1c/deg) occurs because a fixed

high penalty value was added to the error measure when an observed feature was not predicted. Vertical dotted line marks the degree of smoothing

used in Fig. 3.

G.S. Hesse, M.A. Georgeson / Vision Research 45 (2005) 507–525 519
1, but any value from 0 to 2 0 would serve almost equally
well for the dataset as a whole.

Compressive non-linearity in the response to lumi-

nance can shift the perceived location of high contrast,

blurred edges towards the darker side (Georgeson &

Freeman, 1997; Mather & Morgan, 1986). There is a

hint of that in the present data since, in Fig. 3, light-

to-dark edges (open triangles) tended to lie a little above

the fitted line, implying a rightward shift, with the re-
verse for dark-to-light edges. However, the effect was

small and incorporation of a luminance non-linearity

did not improve the overall fit of Rule 1 to the data,

and so for simplicity we do not consider it further.

In summary, this more general analysis adds consid-

erably to the value of Rule 1. We assumed that features

are found locally as peaks in the output of some spatial

filter. In a broad search of even and odd filter parame-
ters, we did not find any better rule to describe the per-

ceived features for this set of images. We had anticipated

that there might be a different optimum spatial scale of

smoothing for each level of image blur, but this was not

so. Even for the most blurred images, a small amount of

smoothing, or none at all, was still best. This in no way

excludes multi-scale models of spatial vision, because

Rule 1 is not intended as a model of visual mechanisms.
But it does imply that any adequate model should pro-

duce behaviour consistent with Rule 1.

What is a bar? The analysis so far suggests that per-

ceived bars are close to luminance peaks, but if the local-

peak-finding assumption is dropped, we can see that

there is another way in which bars may be found.

Inspection of Fig. 3 shows that each observed bar lay al-

most exactly half-way between the pair of observed
edges flanking the bar. In fact, the midpoint between ob-

served edges was an almost perfect predictor of judged
bar location, as the linear relation between observed
bar locations (y) and the mid-point of observed edge

locations (x) was y = 1.0458x + 0.0035, with a correla-

tion of 0.995 (n = 88; data from Fig. 3). Thus, while

the observed bars could be based on luminance peaks,

edge computation (followed by some form of bisection

judgement) is also sufficient to account accurately for

the bar-marking data as well as the alignment data (dis-

cussed later in Section 6.5). On this view, a bar is the re-
gion between two edges of opposite polarity. Neither of

these rules fully explains bars, however, because neither

predicts Mach Bands, discussed next.

6.3. Mach Bands

Mach Bands are bars perceived where there is a fairly

sharp transition between two different luminance gradi-
ents. An increase in gradient yields a dark bar, while a

decrease gives a light bar (Ratliff, 1965). In general,

Mach Bands do not correspond to peaks in the lumi-

nance or gradient profiles. Mach Bands do, however,

coincide with energy peaks measured at relatively small

spatial scales, and the measured contrast sensitivity for

seeing the bands is well predicted by the energy model

(Ross et al., 1989). That notable success must be
weighed up against the present finding that energy peaks

are, in general, inadequate predictors of feature identity

and location.

Mach Bands also coincide with peaks in the second

derivative, as Mach himself observed, but here any ade-

quate model must also account for the absence of Mach

Bands in various images where second-derivative peaks

are prominent. It has often been noted that Mach Bands
are not seen on sharp step edges (Ratliff, 1984; Ross,

Holt, & Johnstone, 1981; Thomas, 1965). Our data
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(Fig. 3) show that this absence is more general than pre-

viously realized. At phases of ±90�, the luminance pro-

file is a Gaussian-blurred step edge, with prominent

peaks in the second-derivative, but observers never

marked bars on these images for any degree of blur.

Only a single isolated edge was reported. Thus Mach
Bands are absent not only from sharp edges but from

all Gaussian-blurred edges. The energy model readily

predicts this absence, but it poses a strong challenge to

simple derivative-based models for the perception of

bars. We note, however, that the parsing rules in the MI-

RAGE model, discussed next, were structured to accom-

modate this finding.

6.4. MIRAGE

MIRAGE (Watt, 1988; Watt & Morgan, 1985) is a

model of the mechanisms that lead to a feature descrip-

tion, and is based on second-derivative filtering at mul-

tiple spatial scales. Although model implementations

were not our main concern here, it was of interest to

compare the performance of Rule 1 with an elaborated
model such as MIRAGE. First the signal was filtered

by a set of Laplacian-of-Gaussian ($2G) filters of differ-

ent scales. Specifically we used five channels at octave

intervals, the space constant of the smallest being 0.35 0

(Watt, 1988), equivalent to a filter scale (rf) of 27c/

deg. The outputs from the different channels were then

combined so that all the positive responses were added

together to give a single positive stream and all the neg-
ative responses were added together to give a single neg-

ative stream. The separation of the negative and positive

portions of the filter outputs is an important feature of

the MIRAGE model. The pattern of zero-bounded re-
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and positive zero-bounded regions that have no activity
on the other sides. A bar can be located either at the cen-

tre of mass of an isolated zero-bounded region or at the

centre of mass of a zero-bounded region flanked by two

zero-bounded regions of the opposite polarity.

Fig. 9(A) compares the feature trajectories predicted

by MIRAGE and by Rule 1 for stimulus sharpness of

4c/deg and rms contrast 12%. Both predict the correct

number, type and polarity of features. Both perform
well for bars, but for edges the location errors of MI-

RAGE are worse as / moves away from the �pure� edge
conditions (90� and �90�), while the predictions of Rule

1 remained close to the observed locations.

A defining feature of the MIRAGE implementation

is that the outputs from filters at multiple scales are

combined after half-wave rectification, but before any

local primitives are extracted. Fig. 9(B) shows the
RMS error for edge locations generated by Rule 1 and

by two versions of MIRAGE––one using five channels

as described above, the other using a single channel with

the same filter scale as Rule 1. There are two important

points to note. Firstly, Rule 1 has about three times bet-

ter positional accuracy over all levels of stimulus sharp-

ness. Secondly, there is little difference in performance

between the MIRAGE implementation using a single fil-
ter and the version using multiple filters. This suggests

that the combination of different channels prior to prim-

itive extraction has little influence on the model�s local-
isation of features in these stimuli, even though image
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blur varied over a large range (rb from 1c/deg to 16c/

deg). Note, however, that these findings do not bear

on issues about discriminability of edge location when

signals are corrupted by noise.

6.5. Contour alignment––A crucial test

In this paper we addressed feature detection through

two perceptual tasks––feature marking and contour

alignment. To allow a more direct comparison, Fig. 10

shows the locations of bars and midpoints of the pairs

of flanking edges from Experiment 1, re-plotted in the

format used for Experiments 2 and 3 (Fig. 5). Though

conducted on different hardware, with different tasks,
in different labs, several years apart––the two sets of

findings agreed remarkably closely. Phase shifts in these

phase–coherent waveforms (Fig. 1) caused perceived

features to translate in the direction of the phase shift,

to an extent that depended on the blur, or bandwidth,

of the image profile. Marked features and points of sub-

jective alignment were offset in the same way, and to a

very similar extent. Importantly, this implies that the
features explicitly identified by observers in the marking

task are closely related to those used in the alignment
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Fig. 10. Feature-marking results (Experiment 1) re-plotted in the same

format as the contour alignment data (Fig. 5(C) and (D)). Group mean

marked positions for bars (squares) and edges (triangles) are shown

averaged across the 45�, 225� test phases (upper symbols) and across

the �45�, 135� test phases (lower symbols). Results are shown

separately for two contrast levels (open and filled symbols). Edge

data are plotted as the mean (midpoint) position of the pair of edges

that flank a bar, to enable direct comparison with the average gradient

peak position (solid curve; see Fig. 4(B)).

as the shift in perceived position caused by a 90� phase shift in the test

contour. Data are averaged over three subjects, and over light vs dark

bar conditions. Error bars show ±2 s.e. (n = 6). Curves show the shifts

expected from four different rules––see Section 6.5.
task where specific identification of feature type and

polarity was not required. Fig. 11 shows that gradient

peaks (edges) appear to be the most important align-

ment cue for these images. This figure plots the differ-

ence between perceived offsets (measured by the

separation between pairs of psychometric functions;
Fig. 6) for pairs of test conditions that differ by 90� of

phase. This plot therefore represents the shift in per-

ceived position induced by a 90� phase shift (e.g. from

�45 to +45). The differencing operation eliminates any

response bias (e.g. to select rightward responses more of-

ten than leftward) and so offers a more sensitive compar-

ison of different potential cues. Three derivative-based

cues predicted the right sort of trend, but gradient peaks
(solid curve) were the most accurate. The position of the

luminance peak (dashed curve) over-estimated the per-

ceived shift, while the second-derivative peak (D2; dot-

ted curve) under-estimated it. We can be also be fairly

sure that peaks of local energy from vertical filters did

not determine feature-marking or contour alignment,

since the feature positions should then have been invar-

iant with phase, but they clearly were not (Figs. 3 and 5).
The control study (Experiment 3) ruled out the possibil-

ity that energy peaks from horizontal filters served to

cue the perceived offsets. This cue is scrambled by insert-

ing spatial noise between the centre and outer contours,

but the observers� behaviour was unchanged. It seems
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reasonable to conclude that salient peaks of local energy

in 1-D or 2-D did not control judgements of contour

alignment or feature-marking.

Fig. 12(A)–(C) summarize graphically the way in

which the pairs of peaks in the output of a Gaussian

derivative (gradient) operator become misaligned by a
45� leftward shift in the central test contour, in a similar
Fig. 12. Summary and comparison of the gradient- and energy-based approa

0; centre contour, phase �45, displacement 0. Inset, Gaussian derivative o

obtained when the smoothed gradient operator and image were convolved. (C

(dashed curve) and through the centre section (solid curve). Leftward displa

shift, is clear in (B) and (C). (D) Same test image as (A), but with a quadratur

to compute the energy map shown in (E). Note that the response peaks are ali

defined bars. (H) Energy responses from quadrature mechanisms (like panel

three scales (peak SF 8, 16, 32c/image). (I) Profiles of the summed energy resp

major contribution to each response peak. See Section 6.5.
way to the experimentally observed shift, while Fig.

12(D)–(F) show that the output of a vertical energy oper-

ator does not shift. Fig. 12(G)–(I) remind us that energy

operators can be important in other contexts: they re-

spond well to second-order structure (here, the spatial

structure of contrast modulation) that is not made expli-
cit by linear spatial filters. But it is that sensitivity to the
ches. (A) Example image from Experiment 2. Flanking contours, phase

perator, scale r = 4 pixels. (B) Response image (unsigned magnitude)

) Response profiles taken through the upper (or lower) sections of (B)

cement of the central pair of gradient peaks, accompanying the phase

e pair of vertically oriented, log Gabor filters (peak SF 8c/image), used

gned, unaffected by phase. (G) Luminance bar (left) and three contrast-

s (D) and (E)) but summed over four orientations (0, 45, 90, 135) and

onses shown in (H), indicating which filter orientation and SF made the
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contrast envelope that causes the energy profile to omit

some features that people see, such as the flanking edges

on bars (Fig. 3) and the local structure of the carrier in

contrast-modulated sine-waves (Fig. 12(G) and (H)).

6.6. Luminance centroids

Some previous studies have suggested that the lumi-

nance centroid is a good predictor of perceived align-

ment. In an experiment directly analogous to our

Experiment 2, Whitaker, McGraw, Pacey, and Barrett

(1996) examined the perceived alignment of asymmetric

Gaussian blobs, and found that the centroid (defined as

the centre of gravity of the luminance distribution
L(x,y) of a blob, after subtraction of the background

luminance) was a good predictor of alignment, and

was rather better than the prediction made by alignment

of zero-crossings (ZCs) in the second derivative o2L
ox2 . The

asymmetry in a blob was defined by the difference in the

horizontal spread coefficients (r1,r2) defining the right

and left halves of the blob, and the centre and outer

blobs had opposite asymmetries. The centroid rule pre-
dicted a perceived shift in alignment of 1.6* (r1 � r2),
while the ZC rule predicted a shift equal to (r1 � r2).
Data were clearly closer to the centroid rule.

However, if instead of the 1-D operator ðo2L
ox2Þ we apply

a 2-D circular Laplacian operator ðo2L
ox2 þ o2L

oy2Þ to these 2-D

blobs, in the manner of Marr and Hildreth (1980), we

find that the ZC rule (at the centre line of the blob, where

y = 0) now predicts greater shifts, close to Whitaker et
al.�s data (their Fig. 4). To see why, consider a blob with

horizontal spreads r1 (right half) and r2 (left half), with
fixed vertical spread (r1), and r2 6 r1. With the 1-D

operator (assuming its scale is small) it is simple to show

(as Whitaker et al. did) that the ZCs lie at x = �r2 and
x = +r1, leading to the predicted shift (r1 � r2). With

the 2-D operator it is straightforward to show that the

ZCs (at y = 0) lie at x ¼ �r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

2

r2
1

r
and x ¼ r1

ffiffiffi
2

p
, giving

a predicted shift of r1

ffiffiffi
2

p
� r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

2

r2
1

r
. When plotted as a

function of (r1 � r2), this function lies close to the cent-

roid rule and to the data. For example, when

(r1 � r2) = 8 pixels, the centroid rule predicted an align-

ment shift of 1.6*8 = 12.8 pixels, the 2-D ZC rule gave

12.9 pixels, and the observed shifts were 13–15 pixels.

We confirmed the mathematical derivation of this ZC

rule by checking it against a 2-D image-processing simu-

lation in Matlab. The two agreed well.
This analysis shows that at least one form of edge-

alignment rule––based on ZCs of the circular Laplacian

operator––is quite consistent with previous data on

alignment of asymmetric luminance blobs (Whitaker

et al., 1996). This ZC rule therefore stands as an alterna-

tive to the centroid rule. Conversely, we can ask how

well luminance centroids might account for our align-

ment data. If we delimit light (or dark) regions as con-
nected sets of pixels that lie above (or below) the mean

luminance, and then compute their centroids, we find

that a 45� phase shift produces a centroid shift of about

15.7 0 for all three levels of sharpness used. This is 4–15

times larger than the perceptual shifts observed in

Experiment 2. It is therefore likely that computation
of luminance centroids does not contribute to perceived

alignment for the class of stimuli we used.

6.7. A way forward

The two broad approaches contrasted in this paper

have much in common, notably in the use of even and

odd filter responses to find bars and edges respectively.
But both are also incomplete. The energy model finds

edges and bars correctly when phase alignment is 0� or
90�, and gives a good account of Mach Bands, but it

underestimates the number of identified features, and

it mislocates them when the luminance waveform is

asymmetric (phase intermediate between 0 and 90). On

the other hand, Rule 1 (based on luminance peaks and

gradient peaks) describes the pattern of our results very
well, but it fails to describe Mach Bands, where there are

neither peaks of luminance nor gradient. Mach Bands

occur at fairly abrupt changes in gradient, where there

are peaks in the second derivative, but if we supposed

that all such peaks were bars we should find far too

many––flanking all edges (phase 90), where Fig. 3

clearly tells us that people do not see bars. We conjecture

that a better account may be found by combining ele-
ments of these two approaches, and we sketch a possible

avenue in Fig. 13.

The outputs of even and odd filters constitute spatial

distributions of evidence about the presence of bars and

edges respectively. A key insight from the energy model

is that these two streams of evidence are not analyzed

independently, but conjointly, to prevent irrelevant

peaks being selected as features. Bandpass filtering nec-
essarily introduces extra peaks and troughs into the re-

sponse waveform and some of these must be rejected

because they do not correspond to significant events in

the image. Our results show, however, that using energy

peaks as a selection rule rejects too many features, and

misplaces them. Let us consider a revised selection rule:

where the response of the even filter has a spatial maxi-

mum, and is greater than the odd response at that point,
then we may assert a bar, and vice-versa to assert an

edge. For example, Fig. 13(B) uses Gaussian first and

second derivative operators as the odd and even filters.

The peak and trough in the even response (dashed

curve) near an edge (about x = 100) are not selected as

bars because they do not exceed the odd response at

those points. Meanwhile, similar (but larger) peaks

and troughs on the Mach ramp (near x = 400) are
accepted as bar features because they do exceed the

odd response. Thus, while the energy model uses the
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Fig. 13. How the visual system might use an envelope (max) operator to select filter response peaks as features. (A) Input waveform contains a

blurred edge, a blurred bar, and a Mach ramp. (B) Thin black curve shows the output g1(x) from a Gaussian derivative (gradient) operator (scale

r = 8 pixels). Thin dashed curve shows the (inverted) output g2(x) from a Gaussian second derivative operator (scale r = 2 pixels). Thick grey curve

shows the envelope e(x), where e(x) = max{jg1(x)j, jg2(x)j}. Symbols in (A) represent the edges (E) and bars (B) found at spatial peaks in the envelope

e(x). See Section 6.6.
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sum-of-squares envelope function to select feature

points, we here envisage a max operator. The two are

related via the Minkowski sum formula:

envðxÞ ¼ fj f1ðxÞjmþ j f2ðxÞjmg1=m

where env(x) is the envelope function, f1, f2 are the even

and odd filter responses and m is a parameter. When

m = 2, env(x) is the quadratic sum used in the local en-

ergy formula, but when m is large (say, >10) env(x) effec-

tively picks the greater of the two responses at each

point. Thus by using the latter envelope function (Fig.

13(B)), we can accept some peaks in the second deriva-
tive as bars (and Mach Bands), while rejecting others

where the edge-evidence is greater (Fig. 13(A)). Interest-

ingly, for a sine-wave grating, themax operator finds two

bars and two edges per period, which is more consistent

with human perception (Georgeson, 1994, 1998) than the

featureless prediction made by the quadratic sum.

Fig. 13 does no more than illustrate a possible way

forward, based on a combination of ideas from the
two approaches. The success or otherwise of the max

rule will no doubt depend crucially on the type of odd

and even filters adopted. A major challenge is to develop

a multi-scale system based on this scheme that will work

gracefully at all spatial scales, and predict features in ac-

cord with human perception. We are now developing
these ideas drawn from the Gaussian-derivative scale-

space literature (e.g. Lindeberg, 1998) and plan to de-

scribe them more fully in a future paper.

6.8. Conclusions

We tested two broad approaches to feature analysis

in human vision––gradient-based and energy-based

(see Section 1). The results were consistent with the idea

that features judged in both a local and a more global

task are located at peaks in the luminance profile (bars)

and its first-derivative (gradient) profile (edges), but not

specifically located at points of phase coherence that are
peaks of local energy. Alignment of bars appeared to be

determined more by the alignment of their edges than

their luminance peaks. Taking a broader view, however,

we have seen that both approaches are incomplete. We

conjecture that computational models combining in-

sights from the two approaches may offer more com-

plete accounts of human feature detection.
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