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Abstract

Starting from the non-BPS D(p + 1)-brane action, we derive an effective action in(p + 1) space dimensions by studying th
fluctuations of various bosonic fields around the time-like tachyonic kink solution (obtained by Wick rotation of the spa
tachyonic kink solution) of the non-BPS brane. In real time this describes the dynamics of a space-like or Euclidea
in (p + 1) dimensions containing a Dirac–Born–Infeld (DBI) part and an Wess–Zumino (WZ) part. The WZ part is
imaginary and so the action is complex if it represents the source of the time-dependent background of type II strin
i.e., S-brane. On the other hand, the WZ part as well as the action is real if it represents the source in type II∗ string theory,
i.e., E-brane. The DBI part is the same as obtained before using different method. This is then further illustrated by co
brane probe in space-like brane background.
 2004 Elsevier B.V.Open access under CC BY license.
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Non-BPS D(p + 1)-branes exist in both type IIA
(for p = even) and type IIB (forp = odd) string theory
and are unstable due to the presence of open s
tachyon in their world-volume [1]. The dynamics
the non-BPS branes can be described by an effe
tachyon field theory [2–5] and if the tachyon depen
on one of the space-like coordinates (xp+1 ≡ x (say))
of the brane, it has an infinitely thin but finite tensi
kink solution [6]. It has been shown that for th
solution the total energy of the brane is localiz
aroundx = 0 with the tensionTp = ∫

V (T ) dT , T

being the tachyon. Sen has shown [7] that even tho
the tachyon effective action is valid (where high
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(� 2) derivatives of tachyon are neglected) for largeT ,
the fluctuations of massless modes on the kink solu
interpolating between the two vacua atT = −∞ and
T = ∞, passing throughT = 0, correctly reproduce
the DBI action of the BPS Dp-brane without any
higher derivative corrections. Also, the fluctuatio
are not assumed to be small in this derivation. T
minimum of the potentialV (T ) has been argued t
describe the closed string vacuum [1].

In order to understand the decay of the no
BPS D(p + 1)-brane, one should really consider t
tachyon to be time dependent [8]. Thus the rolling
the tachyon is responsible for the decay of the n
BPS D(p + 1)-brane to the closed string vacuum [9
On the other hand, by a similar reasoning as give
the previous paragraph, the rolling of the tachyon
also be seen to be responsible for the appearanc

http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


164 S. Bhattacharya et al. / Physics Letters B 584 (2004) 163–170

o-
-

ring

on

the
o-

he
ing

S
n.
n-

chy-
en
the
on
ent
e-

n.
nic
so-
is

lds
he
es
nt

a
g

e-

so-
tion

re is
xis
r-

is
n
the
sid-

we
obe
ke

ave

n

ve
rse

m
n is

on
ng

ty

by
one
ink
te
space-likep-branes [10] (Sp-branes or Ep-branes) at
the maximum of the tachyon potentialV (T ) where
T → 0. Sp-branes (Ep-branes) are space-like top
logical defects localized in(p+1)-dimensional space
like hypersurface in type II (type II∗)1 string theory
and appears when finely tuned incoming closed st
radiation pushes the tachyon (atx0 = −∞) to the top
of the potential from one side and then the tachy
rolls down to the other side (atx0 = ∞) dissipating
its energy back to radiation [12]. In this process,
space-likep-brane appears and exists only for a m
ment in time atx0 = 0. These are the sources for t
classical time-dependent solutions [13–16] of str
effective action.2

In this Letter, we give a simple derivation of Sp-
brane (or Ep-brane) action starting from the non-BP
D(p + 1)-brane action with time-dependent tachyo
Here we make use of Sen’s derivation [7] of codime
sion one BPS D-brane action as the space-like ta
onic kink solution of non-BPS D-brane action. Wh
the tachyon is time dependent, the solution of
equation of motion can be obtained by Wick rotati
of the corresponding solution with space-depend
tachyon. This solution may be regarded as the tim
like tachyonic kink of the non-BPS D-brane actio
We then study the fluctuations of various boso
fields on the Euclidean world-volume around this
lution and obtain an effective action. In real time, th
effective action represents the Sp-brane (or Ep-brane)
action describing the dynamics of the various fie
living on the brane. We derive both the DBI and t
WZ parts of the action, where the DBI part match
with the results obtained earlier [19] using differe

1 Type II∗ string theory is related to type II string theory by
time-like T-duality [11]. So, for example, type IIA (type IIB) strin
theory compactified on a time-like circle of radiusR is dual to
type IIB∗ (type IIA∗) string theory compactified on a dual tim
like circle of radius 1/R. Space-likep-branes in type II theory are
the Sp-branes and the space-like branes in type II∗ theory are the
Ep-branes.

2 Actually here we are considering space-likep-brane solutions
without a time reversal symmetry. It is also possible to consider
lutions having a time reversal symmetry. A world-sheet construc
for a particular boundary interaction (corresponding toλ = 1/2) [8]
describing the tachyon on an unstable D-brane reveals that the
an array of space-likep-branes situated on the imaginary time a
at x0 = imπ , for odd integersm. In real time this has been inte
preted as closed string radiation [12,17,18].
method. We will point out in what sense we call th
an Sp-brane or an Ep-brane action. We also give a
alternative argument to further support the form of
action that we have obtained. This is done by con
ering the brane probe in a non-extremalp-brane back-
ground. Thep-branes turn into space-like branes as
consider the region beyond their horizons. The pr
action, continued beyond the horizon, is found to ta
the form of the space-like brane action that we h
been discussing so far.

The dynamics of the non-BPS D(p + 1)-brane is
governed by the following tachyon effective actio3

[2–5],

(1)S = −
∫

dp+2x V (T )
√−det(ηµν + ∂µT ∂νT ),

whereT is the tachyon field andV (T ) is its potential,
with V (−T ) = V (T ) and V (T ) has a maximum
at T = 0, while V (T ) → 0 as T → ±∞. µ,ν =
0,1, . . . , p + 1 are the world-volume indices. We ha
set the world-volume gauge fields and the transve
scalars to zero for simplicity and will include the
later. Also, we assume that classically the tachyo
dependent on the time coordinatex0. The equation of
motion following from (1) is,

(2)∂0

[
V (T )∂0T√
1− (∂0T )2

]
+ V ′(T )

√
1− (∂0T )2 = 0.

Here ‘prime’ denotes the derivative of the functi
with respect to its argument. Now instead of solvi
this equation directly if we Wick rotatex0 → iτ , then
in terms ofτ coordinate (2) can be rewritten as

(3)∂τ

[
V (T )∂τ T√
1+ (∂τ T )2

]
− V ′(T )

√
1+ (∂τ T )2 = 0.

The solution for this equation has the formT = f (aτ),
wherea is a parameter which will be taken to infini
at the end. The functionf satisfiesf (−u) = −f (u),
f (±∞) = ±∞ andf ′(u) > 0 for all u, otherwise it
is an arbitrary function. This solution is obtained
Sen [7] and is used to derive the codimension
BPS D-brane action as the space-like tachyonic k
solution of non-BPS D-brane action. Now we no
that if f (aτ) is a solution to Eq. (3), thenf (−iax0)

3 We are using the convention whereηµν = diag(−1,1, . . . ,1)
andα′ = 1.
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is a solution to Eq. (2). We point out that for re
x0 althoughf (−iax0) is a solution to Eq. (2), it is
unphysical as it does not satisfy the proper bound
condition of the time-dependent tachyon. Name
from the conservation of energy momentum ten
following from (1),∂0T00 = 0, where

(4)T00 = V (T )√
1− (∂0T )2

we find∂0T → 1 asx0 → ±∞ and∂0T = 0 atx0 = 0,
i.e., at the top of the potential where the tachyon st
rolling. However, we can still formally use the solutio
T = f (−iax0) and mention how we can finally obta
the action in real time.

Now we consider the dynamics of the translatio
zero mode alongx0 direction and it corresponds to th
fluctuation of the tachyon as,

(5)T
(
x0, ξα

) = f
(−ia

(
x0 − X0(ξα

)))
,

whereξα , with α = 1, . . . , p+1 are the world-volume
coordinates excluding time andX0(ξα) is a scalar
living in (p+1)-dimensional Euclidean world-volum
associated with the translational zero mode of
time-like kink alongx0. Using (5) we find,
√−det(ηµν + ∂µT ∂νT )

= √
1+ ηµν∂µT ∂νT

(6)= [
1+ a2f ′2(1− δαβ∂αX

0∂βX
0)]1/2

.

Now substituting (6) into (1) we find fora → ∞,

S = −
∫

dx0
∫

dp+1ξ V (f )af ′

× [
1− δαβ∂αX

0∂βX
0]1/2

(7)

= −i

∫
V (y) dy

∫
dp+1ξ

√
det

(
δαβ − ∂0X0∂βX0

)
.

In writing the second line in (7), we have made
change of variablef (−ia(x0 − X0(ξα))) = y. We
notice that the integral−i

∫
V (y) dy is nothing but

the actionS per unit (p + 1)-dimensional Euclidean
world-volume with the tachyon taking its classic
value Tcl = f (−iax0). However, in real time the
integral does not make sense as we have mentio
before and we have to really ‘undo’ the effect of Wi
rotation of x0 coordinate by replacingf (−iax0) →
Tcl(x
0). So, we have to replace,

−i

∫
V (y) dy = −

∫
dx0V (f )af ′

= −
∫

dx0V (f )

√
1− (−ia)2f ′2

(8)

→ −
∫

dx0V (Tcl)
√

1− (∂0Tcl)2 ≡ S0.

So, in real time the action would take the form,

(9)S = S0

∫
dp+1ξ

√
det

(
δαβ − ∂αX0∂βX0

)
,

whereS0 = − ∫
dx0V (Tcl)

√
1− (∂0Tcl)2. Since the

expression inside the square root in (9) is alre
expressed in real scalarX0, this is the DBI action of
the space-likep-brane. Note that the kinetic term o
the scalarX0 has a wrong sign since this is the ze
mode associated with the time translation.

Following Sen [7], it is not difficult to include
world-volume gauge fields and other transverse sca
into the action and we will use the same procedur
discussed above. The action now takes the form,

(10)S = −
∫

dp+2x V (T )
√−det(aµν),

where

aµν = ηµν + ∂µT ∂νT + ∂µx
I ∂νx

I + fµν with

(11)fµν = ∂µaν − ∂νaµ.

Here,µ,ν = 0,1, . . . , p + 1 are the world-volume in
dices of non-BPS D(p+1)-brane andI = p+2, . . . ,9
are the transverse space indices.aµ is the world-
volume gauge field andxI are the scalars correspon
ing to the transverse coordinates. We assume for
plicity that classically both the gauge fields and
scalars on the world volume vanish and the fluct
tions of various fields take the forms,

T
(
x0, ξα

) = f
(−ia

(
x0 − X0(ξα

)))
,

a0
(
x0, ξα

) = 0, aα

(
x0, ξα

) = Aα

(
ξα

)
,

(12)xI
(
x0, ξα

) = XI
(
ξα

)
.

Note from above that we are assuming that
(p + 2)-dimensional fieldsaµ andxI do not depend
on timex0 and the fluctuations away from the tim
like tachyonic kink are arbitrary. This makes sen
for the Wick rotated (or Euclideanized) theory and
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justification can be found in Ref. [7]. Now for this fie
configuration we can compute various component
aµν as

a00 = −1− a2f ′2, a0α = aα0 = a2f ′2∂αX0,

aαβ = (
1− a2f ′2)∂αX0∂βX

0 + Aαβ, where

(13)Aαβ = δαβ − ∂αX
0∂βX

0 + ∂αX
I ∂βX

I + Fαβ

with Fαβ = ∂αAβ − ∂βAα . Now using (13) we find,

(14)
√−det(aµν) = af ′

√
det(Aαβ) for a → ∞.

Substituting (14) into the action (10) we get,

S = −
∫

dx0
∫

dp+1ξ V (f )af ′
√

det(Aαβ)

(15)= −i

∫
V (y) dy

∫
dp+1ξ

√
det(Aαβ),

where Aαβ is given in Eq. (13). Again in the las
line we have introduced the variabley = f (−ia(x0 −
X0(ξα))). As before we can write the action in re
time by replacing

−i

∫
V (y) dy

(16)→ −
∫

dx0V (Tcl)
√

1− (∂0Tcl)2 ≡ S0,

whereS0 is the action per unit(p + 1)-dimensional
Euclidean volume evaluated with the classical val
of the fields. Therefore, we get

(17)S = S0

∫
dp+1ξ

√
det(Aαβ).

This is the form of the DBI part of the space-likep-
brane action. We note that the first three terms inAαβ

given in (13), i.e.,δαβ − ∂αX
0∂βX

0 + ∂αX
I ∂βX

I is
the pull-back of the space–time metric on the(p + 1)-
dimensional Euclidean world-volume of the space-l
p-brane in the static gauge and so, the DBI act
really has the form

(18)S = S0

∫
dp+1ξ

√
det(gαβ + Fαβ).

Taking into account the closed string background
the NSNS sector the action would take the form,

(19)S = S0

∫
dp+1ξ e−φ

√
det(gαβ + Bαβ + Fαβ),
whereφ is the dilaton,gαβ andBαβ are respectively
the pull-backs of the space–time metric and the a
symmetric tensor to the world-volume of the spa
like p-brane.

Apart from the DBI part the Sp-brane (or Ep-
brane) action should also contain a Wess–Zum
term. The Wess–Zumino term of a non-BPS D(p+1)-
brane has the form,

(20)SWZ =
∫

W(T )dT ∧ c ∧ ef ,

whereW(T ) is an even function ofT , which van-
ishes asT → ±∞. f = fµν dxµ ∧ dxν and c =∑

q�0 c
(p+1−2q), where c(p+1−2q) are the pull-backs

of the RR(p + 1 − 2q)-form fields on to the world-
volume. Note that here we are considering only
bosonic sector and in the absence of the RR ba
ground the WZ term would vanish.4 Now to evaluate
(20) we first find,

f = fµν dxµ ∧ dxν

(21)= 2f0α dx0 ∧ dξα + Fαβ dξα ∧ dξβ.

For the fluctuation (12) the above simply reduces toF .
Now sincedT = −iaf ′ du, whereu = x0 − X0(ξα),
we can write

c =
∑
m

c(m)

=
∑
m

(
mc

(m)
0α2···αm

∂α1X
0 + c(m)

α1···αm

)

(22)× dξα1 ∧ · · · ∧ dξαm.

The term in the r.h.s. of (22) is the pull-back of anm-
form onto the(p + 1)-dimensional Euclidean world
volume of the space-likep-brane and can be identifie
with C(m). Using these relations the WZ term in (2
simplifies to

SWZ =
∫

W(f )(−iaf ′) du ∧ C ∧ eF

(23)=
∫

W(y)dy

∫
C ∧ eF ,

where in writing the last expression we have int
duced a new variabley = f (−iau). If we now identify

4 In fact if we include the fermionic sectorc also has a
contribution from the fermions and so the WZ term would be n
vanishing even if the RR background is zero [4].
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∫
W(y)dy = ∫

V (y) dy in analogy with the space-lik
tachyonic kink solution then

(24)SWZ = i

(
−i

∫
V (y) dy

)∫
C ∧ eF .

Now as argued before the integral in the parenth
makes sense only in the Wick rotated theory, i.e., w
x0 is imaginary. However, if we want to write it in rea
x0 the integral−i

∫
V (y) dy should be replaced b

S0 = − ∫
dx0V (Tcl)

√
1− (∂0Tcl)2. Also if we include

the closed string NSNS fieldB, then F should be
replaced byF + B, whereBαβ should be the pull-
back of the space–time field onto the world-volum
of space-likep-brane. So, the full space-likep-brane
action containing the DBI part and the WZ part
given by

SDBI + SWZ

= S0

∫
dp+1ξ e−φ

√
det(gαβ + Bαβ + Fαβ)

(25)+ iS0

∫
C ∧ eF+B.

Thus we find that in type II theory where the RR for
fields Cs are real, the above action is complex. S
the Sp-brane action obtained this way has a comp
structure. Note that the action in (25) differs from t
usual BPS D-brane action by an overall factor ofi and
therefore the equations of motion remain the sa
This is important for their solutions to give a consiste
background preserving the conformal symmetry of
open string world-sheet. On the other hand, if
interpret the action (25) as that of an Ep-brane in
type II∗ theory then the RR form fieldsC is replaced
by C → C′ = −iC [11] and the action is real. Th
DBI part of the above action matches exactly with
Sp-brane action obtained earlier [19] using differe
method. However, since in that derivation the clos
string background was not taken into account, the
term was absent and it was not clear whether the ac
really corresponded to an Sp-brane or an Ep-brane
action. Here, we observe that if we insist on the rea
of the full action, then the action in Ref. [19] shou
be considered as an Ep-brane action.

To further illustrate the possible nature of t
world-volume action of the previously discussed tim
dependent configurations, let us consider the follow
scenario. Consider the static blackp-brane solutions
of type II supergravities. These solutions are typica
singular and the singularity is hidden behind the ho
zon. Due to the presence of the horizon, one can a
ciate a non-zero temperature with these solutions
a result, they completely break the original supersy
metry of the type II theories. It is well known [20] tha
as one crosses the horizon of such a solution, the
of time and space gets interchanged. Conseque
a static metric turns into a time-dependent metric
long as we restrict our attention inside the horiz
This time-dependent metric is typically the S-bra
metric that we have been discussing so far. In the
lowing, we would like to consider Dp-brane probes in
such ap-brane background. As we will see, the pro
brane action can be interpreted as a space-likep-brane
action once it crosses the horizon of the backgro
geometry. However, the action turns out to be co
plex as before. To get a real action, one needs to m
the corresponding RR form of the corresponding Dp-
brane purely imaginary. This, in turn, turns the ba
ground to a solution of a type II∗ theory along with
the probe action to the one of Ep-brane action. In the
following, we discuss this in some detail.

The static non-extremalp-brane solutions of ou
interest are given in [21]. InD space–time dimension
they have the form

ds2 = e2A(−e2f (
dx0)2 + dxi dxi

)
(26)+ e2B(

e−2f dr2 + r2dΩ2),
where (x0, xi) parametrize the(p + 1)-dimensional
world-volume of thep-brane. The coordinates tran
verse to the brane arer and the(D − p − 2) coor-
dinates on the unit spheredΩ . The functional form
of A, B and f can be found in [22]. For our pur
pose, we only need to know that they depend so
on the radial coordinater. This solution has a singu
larity at r = 0. Furthermore,e2f becomes zero at fi
nite non-zero value ofr. The location represents th
horizon. Beside the metric, there is a non-trivial di
ton φ which also is a function ofr. The other non-
trivial field is a form field whose field strength is give
by F = λεD−p−2. HereεD−p−2 is the volume form
on the unit spheredΩ . The solution (26) then corre
sponds to a solitonicp-brane with magnetic chargeλ.

As discussed in [22], the metric in (26) becom
a time-dependent one once we consider interior
gion of thep-brane. Inside the horizon, the functio
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e2f → −e2f . Consequently, as can be seen from (2
the time-like coordinatex0 becomes space-like an
the radial coordinater acquires a new interpretatio
as the time-like coordinate. Renaming, therefore,
new space-like coordinatex0 as z and the time-like
coordinater asτ , we get the metric as

ds2 = e2A(
e2f dz2 + dxi dxi

) − e2B−2f dτ2

(27)+ e2Bτ2dΩ2,

whereA,B and f are all now functions of timeτ .
The functional form of the dilaton fieldφ remains
the same as before except that it now acquires a
dependence due to the replacement ofr by τ . The
above configuration can be identified as a space-
brane configuration with(p + 1)-dimensional world-
volume parametrized by(z, xi). However, this brane i
anisotropic on the world-volume due to the appeara
of e2f only infront of z coordinate. However, thi
will not be of importance on what we discuss in t
following.

Let us now consider a probe brane of(p + 1)-
dimensional world-volume in the background geo
etry given in (26). The action of the probe brane w
have a DBI part and the WZ part given by

S = −Tp+1

∫
dp+1ξ e−φ

√−det(gµν)

(28)+ Tp+1

∫
Mp+1

Cp+1,

where µ,ν run over thep + 1 world-volume co-
ordinatesξ0, ξ1, . . . , ξp and Cp+1 is the usual RR-
form associated with the brane. In the above, the
form is integrated over the(p+1)-dimensional world-
volume.Tp+1 is related to the tension of the bran
We will now explicitly evaluate the probe action (2
in thep-brane background given in (26). We will fir
consider the DBI part and later focus on the WZ p
of the action. In the static gauge

(29)ξ0 = x0 and ξ i = xi,

the components of the induced metricgµν take the
form

g00 = −e2A+2f + e2B−2f
(

∂r

∂ξ0

)2

+ r2e2B ∂θa

∂ξ0

∂θa

∂ξ0 ,

g0i = e2B−2f ∂r

∂ξ0

∂r

∂ξ i
+ r2e2B ∂θa

∂ξ0

∂θa

∂ξ i
,

gii = e2A + e2B−2f
(

∂r

∂ξ i

)2

+ r2e2B ∂θa

∂ξ i

∂θa

∂ξ i
,

(30)gij = e2B−2f ∂r

∂ξ i

∂r

∂ξj
+ r2e2B ∂θa

∂ξ i

∂θa

∂ξj
,

whereθa are the coordinates ondΩ . Now, we would
like to continue the probe action beyond the horiz
which occurs at the point wheree2f = 0. As discussed
earlier, this is done by substituting

(31)e2f → −e2f , x0 → z and r → τ

in (26). However, in order to maintain the previo
gauge choice (29), we now need to have the follow
identifications of world-volume coordinates:

(32)ξ0 → ξp+1, with ξp+1 = z, ξ i = xi,

so that the induced metric components on the wo
volume are now

gp+1,p+1 = e2A+2f − e2B−2f
(

∂τ

∂ξp+1

)2

+ τ2e2B ∂θa

∂ξp+1

∂θa

∂ξp+1 ,

gp+1,i = −e2B−2f ∂τ

∂ξp+1

∂τ

∂ξ i
+ τ2e2B ∂θa

∂ξp+1

∂θa

∂ξ i
,

gii = e2A − e2B−2f
(

∂τ

∂ξ i

)2

+ τ2e2B ∂θa

∂ξ i

∂θa

∂ξ i
,

(33)gij = −e2B−2f ∂τ

∂ξ i

∂τ

∂ξj
+ τ2e2B ∂θa

∂ξ i

∂θa

∂ξj
.

It can now easily be checked that the above com
nents follow from the probe action

(34)−iTp+1

∫
dp+1ξ e−φ

√
det(gαβ)

when evaluated on the background (27). Here,
indices α,β run over the Euclidean world-volum
coordinatesξ1, . . . , ξp+1. This is precisely the form
of space-like brane action as obtained before and
suggested in [19] if we identify−iTp+1 = S0, where
S0 is the action given before in (8). Note that with th
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3.

p-

ep-
identification we encounter two puzzles. First of a
S0 as given in (8) is real, whereas−iTp+1 appears
to be purely imaginary5 sinceTp+1 is related to the
tension of the brane given in (28). Secondly,S0 is the
action per unit(p+1)-dimensional Euclidean volum
of a non-BPS brane with the tachyon and other fie
taking their classical values, but in this derivati
tachyon does not appear explicitly. The resolution
the puzzles can be understood as follows. Note
the action (28) can also be regarded as a non-
D(p+1)-brane action on its space-like tachyonic ki
where the tachyon as well as the other backgrou
depend only on the brane directionxp+1 = x (say).
So, Tp+1 = ∫

V (y) dy (as mentioned before) wit
y = T = f (ax), with a → ∞ and the functionf
is as defined after Eq. (3). Now as the probe br
is taken inside the horizon,x → τ and x0 → z, i.e.,
the space-like coordinatex becomes time-like and so
f (ax) → f (aτ), but it is no longer a solution to th
tachyon equation of motion. It will be a solution
we Euclideanizeτ , i.e., f (−iaτ ) will be a solution.
This is exactly the solution we used before. So,
factor in front of the DBI part of the action becom
−iTp+1 = −i

∫
V (y) dy and this when continued t

the real time givesS0 (see Eq. (8)).
Let us now look at the WZ part. We note that und

(31) and (32), the WZ term in (28) takes the followi
form

(35)Tp+1

∫
Mp+1

Cp+1 → Tp+1

∫

M̃p+1

Cp+1.

Here,Mp+1 is the world-volume of the static bran
with coordinatesξ0, ξ1, . . . , ξp where asM̃p+1 is the
world-volume of the space-like brane with coordina
ξ1, . . . , ξp, ξp+1. Here again we identifyTp+1 = iS0
and consequently, the total world-volume action of
time-dependent configuration given in (27) is the s
of (34) and (35) exactly the same form as obtain
earlier in (25). The action is clearly complex unle
we make the RR field imaginaryCp+1 → −iCp+1.
As discussed before, under such a transformat
the solution (27) really corresponds to an Ep-brane
solution of type II∗ theory.

5 We would like to point out that here we are assuming thatTp+1

will remain real as we interchanger → τ andx0 → z, but this is not
really true as we have seen in our earlier discussion.
To conclude, we have given a simple derivation
a space-like brane action including the DBI and
WZ parts starting from the non-BPS D-brane acti
We have used the time-like tachyonic kink solution
the tachyon effective action describing the dynam
of the non-BPS D-brane by Wick rotation of th
space-like tachyonic kink solution. The fluctuations
various bosonic fields on the Euclidean world-volu
around this solution produce an effective action.
real time, this describes the low energy effective act
of a space-like brane. We notice that if we start fr
type II theory where the closed string background
real RR form fields then the action is complex a
it is the action of an Sp-brane. But, if we start from
type II∗ theory where the RR form is still real bu
differ from those of type II theory by a factor ofi
then the action is real and it represents the actio
an Ep-brane. We pointed out that by just studying t
DBI part we can not conclude whether it represe
the action of an Sp-brane or an Ep-brane. To further
support the correctness of the form of the action
have also given an alternative argument.
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