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ABSTRACT 

We compute here the maximum value of the modulus of the determinant of an 
m x m nonprincipal submatrix of an n X n positive semidefiuite matrix A, in terms of 
m, the eigenvalues of A, and cardinality k of the set of common row and column 
indices of this submatrix. 

1. INTRODUCTION 

The purpose of this paper is to find out how large a determinant of an 
m x m nonprincipal submatrix of an n X n positive semidefinite matrix A can 
get in terms of m, the eigenvalues of A, and the cardinality k of the set of 
common row and column indices of this submatrix. Clearly k gives some 
measure of how far the nonprincipal submatrix is from a principal submatrix. 

We assume throughout that A is an n X n self-adjoint, hermitian or real 
symmetric matrix with eigenvalues A, > X, > . . * > h, > 0. For any 1 Q m < 
n - 1, denote by Q,,,, n the set of all sequences of length m with strictly 
increasing integer components taken from (1,2,. . . , n}. Given (Y, p E Q,, n, we 
write Ian PI = k if Ka(l), a(2), . . . ,cw(m)}n{p(l), /3(Z), . . . ,/3(m)}l = k. 

If A is hermitian we define, following Marcus and Moore [3], 

Pk,m,CW = I-l-Klx max ldetU*AU[cw(P]I. 
u=V, a.B~Qm.n 

lanb[=k 

Here, as usual, A[ (~1 /?I denotes the submatrix of A based on row indices in a 
and column indices in /3; U, denotes the group of n X n unitary matrices. 

If A is real symmetric, we may define similarly 

Pk,m,dAb max max ldetPAP[clll/3][, 
PEO, a.P=Q,,n 

Ian,9l=k 

where 0, denotes the group of n x n real orthogonal matrices. 
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Marcus and Moore [3] conjectured that pk, m is a monotone nondecreasing 
function of k. This conjecture was proved in [2]. The present paper may be 
viewed as a continuation of [2]. Here we compute the pk.,, explicitly. Note 
(cf. [2]) that in the definition of pk, m one may choose a fixed pair (Y, /3 E Q,,,, ,,; 
for example one may choose the sequences (me = (1,2,. . . , k, k + 1,. . . ,m) and 
&,=(1,2 ,..., k,m+l,..., 2m-k). 

In Section 2 we give some preliminary results. In Section 3 we consider 
the special case k = 0, namely the case where the sets of row indices and 
column indices of the nonprincipal submatrix are disjoint. Finally in Section 4 
we consider the case 0 -C k c m. 

2. PRELIMINARY RESULTS 

In this section we prove some results that are required in subsequent 
sections for the computation of the pk,,,. We denote by S, the symmetric 
group on r letters. 

LEMMA 1. Suppose that m is a positive integer and A, > A, > . . . > A, 

>A >*-->A m+l 2m > 0. Then, jii any (I E Ssm, we have 

Proof. It suffices to consider u E S,, such that a(2i - 1) Q a(2i) for 
i=12 , , . . . , m, and then the absolute value is not needed on the right hand 
side of (1). Moreover, it is clear that we may consider only u E S,, such that 
u(2i-l)=i,i=1,2 )..., m. The proof is by induction on m. For m = 1 there 
is nothing to prove. We also need the case m = 2 for the induction step, so 
assume now m = 2. We only have to show that (A, - &)(X2 - A,)> (A, - 
h4)(X2 - A,). This is true because (A, - h&A, - h4)- (A, - A,)(A, - ha) 
= (A, - A,)& - h4) > 0. 

Now suppose m > 2 and that the result is true for m - 1. Let u E S,, and 
such that u(2i - 1) = i, i = 1,2,. . . , m. Suppose first that u(2) = m + 1. Then, 
by the induction hypothesis, I’ly_“,,(Ai - A,+,)>, 17~_s(hoCsi_1J- X0&, so 
(1) holds. Hence it remains to consider the case u(2) * m + 1. Let j= u(2), so 
j>, m + 2, by assumption on (I. Then there exists a positive integer i,, 
2 Q i, < m, such that u(2ia)= m + 1. Let Z= u(2i, - l), so we have, by 
assumption on u, 1 -C 1~ m. By the case of m = 2, we have (A, - X$(X, - 
A m+l)‘< (A, - h,+,)(XI - hi). Define now r E Ss, by s(2)= m + 1, Ir(2i,) 



DETERMINANTS OF PRINCIPAL SUBMATBICES 3 

= j, and a(i) = a(i) for every i such that i * 2 and i * 2i,. We now have, by 
the first case, 

The next lemma is a special case of a more general result due to Mirsky 

[41- 

LEMMA 2. Suppose S is a 2 X 2 real symmetric matrix with eigenvalues 
A, >, A,. Then 

REMARK. A similar result holds if S is replaced by a 2 X2 hermitian 
matrix and P by an arbitrary 2 X 2 unitary matrix. 

As a consequence of Lemma 2, we get the following result. 

LEMMA 3. Let k, m, n be nonnegative integers, and suppose that 0 G k < m 
and 2m - k 6 n. Let 1= m - k. Suppose that A = diag(h,, h,,. . .,A,), where 
X,>A,>,*** >/ A, z 0. Then there exists a real symmetric matrix E which is 
orthogonally similar to A and such that 

(detE[(1,3,..., 2Z-1,21+1,21+2 ,..., 2Z+k)l 

(2/L.., 22,21+1,22+2 ,..., 2Z+ k)]l 

where the lust product on the right hund side is understood to be 1 if k = 0. 

Proof. The diagonal matrix 

D= diag(h,, &,+l_l, A,, h,,+s_r,...,A~~ A,,, A~+IY...PA~--I) 

is orthogonally similar to A, and we look on it as the direct sum D = D,@ D, 
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--- @D@diag(A,+,,..., A,_I), where D. = diag(X. h,+,_,), i = 1,2 1. 
:y Lemma 2, D. is orthogonally similar to a ‘matrix E. kch that I( Ei)lz 1 I’; i;\. 
-h,+i_l), i=‘l,2,...,1. Let E=E,@E,@ ... @&@diag(hl,, ,..., A:_,): 
Then E is orthogonally similar to A and satisfies the required result. W 

3. COMPUTATION OF ,eo,&A) AND p,,,,,(A) 

We first compute these quantities in case n = 2m. We want to show that 
if A is a 2m x 2m self-adjoint matrix with eigenvalues A, > X, > * - * > A,, > 

0, then 

in case A is hermitian, while 

(2) 

(3) 

in case A is real symmetric. In particular, if A is real symmetric, the same 
maximum value of the modulus of the determinant of an m x m submatrix 
(with no common row and column indices) is attained if we allow unitary 
similarities or only real orthogonal similarities. The same phenomenon will 
occur in the general case. Note also that by Lemma 3 it suffices to show that 
the right hand sides of (2), (3) provide upper bounds for po, m, &A), po, m, R(A), 
respectively. 

The next lemma deals with the case m = 2, n = 2m = 4. 

LEMMA 4. Suppose A is a 4x4 hermitian matrix, OT real symmetric 
matrix, with eigenvalues A, > A, > A, > A, > 0. Suppose B is a 4x4 hermi- 
tian matrix (real symmetric if A is) which is unitarily similar to A (or&g@ 
nully similar if A i.s real symmetric) and such that ldet B[(12)@4)]) = P~,~, &A) 

M Vet BKWW11= P o,2, R(A) in the complex or real case, respectively. 
Suppose moreover thut B looks like 

b bl2 Pl 0 
B= 6:: b, 0 ~2 

IL1 0 b3 b= ’ 

0 P2 634 h4_ 
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where pl, pL2 are nonnegative real numbers. Then 

(a) In the real symmetric case 

b12P2 = &cl1 (4) 

and 

In particular, b,, = 0 if and only if bM = 0; and if CL1 * pL2 then b,, = b, = 0. 
(II) In the complex hermitian case we have 

p2Reb12 = Oeb, (6) 

and 

(7) 

Moreover, b,, = 0 if and only if b, = 0; and if PI * ,u2 then b12 = b, = 0. 

Proof. The proof will start in a unified way for both cases and then split 
into the two. It is clear from Lemma 3 and the assumptions on A and B that 

/.L~> 0 and p2>0. 

Let 0 be a real number, and let c = cos 8, s = sine. Define a 4 x 4 real 
orthogonal matrix P by 

10 0 0 

p= 1 0 c --s 0 
0 s 

G 
0 

0 0 1 1 * 

It is easy to verify that 

b 11 b 12 CL1 0 

PB = 
~6~~ - spl cb, - sb, c~2 - sb, 

61, + cpl sbzz cb% ~112 + cb 

0 CL2 L b44 _ 
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C=Plwf= 

b 11 cb,, - VI 4, + WI 0 

42 - Vl c2b, + s2ba csbzz - csb3 ~1.42 - %i 

42 + VI csbzz - csbS s2bB + c2bS +2 + ha 

0 c/k2 - sba sp2 + &a b44 

We now have two cases: 

Case 1 (real symmetric). In this case B is a real matrix, so &, = bIZ and 

G4 = b=. The matrix C is orthogonally similar to A, and 

detC[(l2)1(34)1 -~~,~,~(A)=detC[(12)1(34)1 -PA 

= (42 + w&+2 - ha) - ~1~2 

= +h2~2 - bd - sh2h.a - ~~21. 

Since 8 is arbitrary, it is clear that we can choose 8 close enough to 0 or T so 
that 

unless blZp2 = bMpl. Hence we must have 

We now interchange the first and second rows of B and the first and 
second columns of B, and do likewise with third and fourth rows and columns 
of B. All this amounts to in B is switching the pi and p2 in their places. 
Repeating the perturbation argument leading to (4), we get now in a similar 

way 

The remaining claims of part (a) follow now immediately from (4) and (5) and 
the fact that pi and p2 are positive. 
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Case 2 (complex hermitiun). In the matrix C, defined by (8), evaluate 

now Re(detC [(12)l(34)1-po,,,(A)~. We get 

It is clear again that we can choose 0 close enough to 0 or v SO that 

Re det C KWlW)1> ~0.2, c (A) unless peReb,, = plReb,. Hence we must 
have 

~sReb,,=~rReb,. (6) 

We now interchange the first and second rows of I? and the first and 
second columns of B, and do likewise with third and fourth rows and columns 
of B. This amounts to switching the pr and pe in their places and replacing 
b,,, ba by &a, b%, respectively. Repeating the perturbation argument that 
leads to (6) yields now 

plReb,,=pzReb,. (7) 

Since ~1~ > 0 and p2 > 0, (6) and (7) imply now that Re b,, = 0 if ad only if 
Reb,=O.Als~,if~,*~~wemusthaveReb,~=Reb,=O. 

Suppose now that b,, = 0. Then Re b, = 0, so b, = iy, for some yM E W. 
The matrix diag(1, i, 1, i)Bdiag(l, - i, 1, - i) is exactly 

0 b, 0 1-12 

and the perturbation arguments applied to B can also be applied here, 
yielding y3 = 0. Hence b,, = 0 implies bM = 0. Similarly, b, = 0 implies 

b,, = 0. 
Finally, we have to show that p1 * p2 implies that b,, = b, = 0. We have 

shown that it implies Re b,, = Re b, = 0, so let b,, = iy,,, b3 = iy,, for 
some y,,, y, E BP. Then diag(1, i, 1, i)Bdiag(l, - i, 1, - i) is the matrix 

b 11 Yl2 c11 0 

Yl2 b22 0 k2 

Pl 0 ba Y, 

0 CL2 Y34 b4 

1 
I’ 
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and the equations, corresponding to (6) and (7), that must be satisfied by this 
matrix are psy,, = plyM and plYi = ~sy~. Since pi * ps, we conclude that 

Yl, = Y, = 0. n 

LEMMA 5. Suppose that A is a real symmetric 4 x 4 matrix with eigenval- 
u-es h, 2 X, > h, > A, > 0. Then 

po 2 R(A) = (4 - MO2 - h4) 
I 3 4 

Proof. We may assume that X, > X, > A, > A, > 0, for the general case 
will follow easily by the standard continuity argument. It also suffices to 

prove 

because of Lemma 3. 
There exists a real symmetric 4 x 4 matrix S which is orthogonally similar 

to A and such that 

By the singular value decomposition, there exist real orthogonal 2 X 2 matrices 

PI, Pz such that 

where pi>O, ps>O, and pips=p e,s,n(A). Let P = PlePz and B = PSP’. 
The matrix B satisfies the conditions of Lemma 4, and it is easy to check that 
B[(12)](34)] = diag&, ps). We now have two cases. 

Case 1. Suppose that pi * /.+ Lemma 4 implies that b,, = bM = 0, so 
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and it is the direct sum of 

Denote the eigenvalues of the first matrix by q, (~a and of the second matrix 
by (~a, q. Then there exists a permutation n E S, such that ai = ii,,(,), 
i = L2.3.4. The result now follows immediately from Lemma 1, Lemma 2 
and the fact that pips = nc,a,n(A). 

Case 2. It remains to consider 
orthogonal 2 X 2 matrix Vi such that 

the case p1 = p2. There exists a real 

is a diagonal matrix. Define V = VieV, and C = VBW. It is easy to see that C 
looks like 

I Cl1 0 CL1 0 
0 

C= 522 

0 

Pl 111 0 cm f& 1 ’ 

0 CL1 %4 f-44 

The matrix C satisfies the conditions of Lemma 4, so we must have c, = 0. 
The proof proceeds now as in case 1. W 

LEMMA 6. Suppose that A is a 4 x 4 hermitian matrix with eigenualues 
x,>~2~~x,>x,>,o. Then 

Po,2,c(+ (h,-hd(X2-hd 
4 

Proof. The proof is completely analogous to the proof of Lemma 5. n 

THEOREM 1. Let m be a positive integer. Suppose A is a real synmetrlc 
2m X 2m matrix with eigenvalues X, >, h, > * * - >, h,, 2 0. Then 
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Proof. The result is true for m = 1 and m = 2 by Lemma 2 and Lemma 
5. We may also assume X, > X, > - * * > X,, > 0, for the general case follows 

by a standard continuity argument. Also, by Lemma 3, it suffices to prove 

By an argument similar to the one given at the beginning of the proof of 
Lemma 5, there exists a 2m X2m real symmetric matrix B which is orthogo 
nally similar to A and satisfies 

E[ (192 ,..., m)((m+l,m+2,...,2m)]=diag(~.,,Clz,...,~Lm) 

with 

m 

pi>02 i = 1,2 ,...,m, and n~i=oe,~,n(A)* 
i-l 

Suppose that the number of distinct p’s is k. We may further assume that 

(1,2,..., m} is partitioned into k nonempty subsets I, = {1,2,. . . , rl}, I, = {r, + 
1 ,..., rr+ra} ,..., Z,={rr+rs+ --- +rk_r+l,...,m}suchthatifiandjare 

any elements of (1,2,. .., m}, then pi = pi if and only if there exists s, 

1 d s d k, such that I, contains i and j. 
We now form the following partition of B into blocks: 

B= 

II r!2 

B 11 B 12 

B 21 42 

B;, B;2 

c11q 0 

0 Pq+1&, 

‘1 

. . . B lk PA, 

. . . B 2k 0 

. . . 
Bkk 

. . . 
o Bk+l,k+l 

. . . 
o Bk+2,k+l 

. . . hnz, ‘2k, k+l 

12 % 

0 . . , 0 

Pq+lZr, . . . 0 

6 ... p,z,k 
B k+l,k+2 *-* B ki 1,2k 

B ki2, k+2 . * . B k+2.2k 

B * 2k,k+2 ’ * * B’ 2k,2k 

For any 1, 1~ I < k, there exists an rl X rl orthogonal matrix P, such that 
P,B,, P/ is a diagonal matrix. Let P be the 2m X 2m real orthogonal matrix 
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defined by 

and let E = Z’BP’. If we partition E conformably with B we get 

E= 

fl *a 

E 11 E 12 

E 21 42 

EL, EL2 

ELlZr, 0 

0 Pq+l&Z 

il ;, 

. TIC r1 

. . . E lk c11q 

. . . E 2k 0 

. . . EAk 6 

. . . ’ Ek+l,k+l 

. . . 
’ Ek+2,k+l 

. . . 
hnzr, E2k,k+l 

11 

72 ‘k 

0 . . . 0 

p z *** r,+l r2 0 

6 *-* p,I, 

E k+l,k+2 . . . E k+ 1,2k 

E k+2,k+2 *-* E k+2,2k 

E * 2k,k+2 -*- E’ 2k,2k 

where E,,, E,,...,E,, are diagonal matrices. Let 

E,, = E[ (1,s ,..., m)j(m +1,m +2 )...) 241 
and 

E,,=E[ (m+l,m+2 ,..., 2m)1(1,2 ,..., m)]. 

Then E,, = E,, is a diagonal matrix. 
We want to show now that the only nonzero entries of E off the main 

diagonal are the main diagonal elements of E,, and E,,. For that purpose pick 
anytwoindicesiandjsuchthat l<i<j(m.LetFbethe4X4principal 
submatrix of E based on indices i, j, i + m, j+ m. Then F looks like 
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We note also that 

ejj= 0 if Pi=Pj, (9) 

because E,,, E,, . . . , E,, are diagonal matrices. 
Let e be an arbitrary real number; let c = cos 8 and s = sine. Define now 

a 2m X 2m real orthogonal matrix Q as follows: its rows are the rows of the 
identity matrix Zsm, except row j, which has c in the jtb place and - s in the 
(i + m)th place, and row i + m, which has s in the jth place and c in the 
(i + m)th place. Let G = QEQt, and denote G,, = G[(1,2,. . . ,m)l(m + 1, m 
+2 , . . . ,2m)]. Because E,, is a diagonal matrix and because of the way Q is 
defined, the only places where nonzero off diagonal elements of G,, can 
possibly occur are in row j and in column i. Hence, because m > 3, det G,, is 
still the product of its entries on the main diagonal. But the elements on the 
main diagonal of G,, coincide with those of E,, (in the same positions, of 
course), except the jth and ith main diagonal entries. The jth and ith entries 
on the main diagonal of G,, are exactly the elements in (1,3) and (2,4) 
position, respectively, in the matrix 

Now, exactly as in the proof of Lemma 4 (the real case), this fact and the 
fact that det G,, < o,,_, n(A) for any real 8 imply 

Similarly (interchange rows i and j of E, and columns i and j of E; also 
interchange rows i + m and j+ m of E, and columns i + m and j+ m of E), 
one gets 

The conclusions are now exactly as in Lemma 4; namely, if pLi * pj then 

eii= e. = 0. But the same result holds true also if Z.L~ = pi, for then we 
have k+a”;l’gon (9), which implies now e,+,,,, j+n = 0. 

Since i and jare arbitrary, we have shown that the only nonzero entries of 
E outside the main diagonal are the main diagonal entries of E,, and E,,. 
Hence E is the direct sum of the m 2 X 2 matrices 

[ 

e11 Pl I [ 522 CL2 I [ e m,m EL* 
pL1 em+l,m+l ’ P2 %+z,~+z ‘**.’ h 1 e2m,2m * 
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Denote the eigenvalues of the first, second,. . . ,mth matrix by ai, as; 
a3, a4;. . . ; aZm- 1, aZm respectively. Then there exists a permutation s E S,, 
such that ai = XnCij. The result now follows immediately from Lemma 1, 
Lemma 2, and the fact that Ily=i/.ri = p,,,,,(A). n 

THEOREM 2. Let m be a positive integer. Suppose that A is a 2m X2m 
hermitian matrix with eigenvalues X, > X2 > - - * > X2, > 0. Then 

Proof. The proof is analogous to the proof of Theorem 1, except that the 
hermitian part of the proof of Lemma 4 is used here. n 

We finish this section by computing pe, m, n(A) and pa,,, c(A) for an 
n x n matrix A, where, of course, n > 2m. 

THEOREM 3. Suppose m and n are positive integers, and n > 2m. Let A 
be an n x n real symmetric matrix with eigenvalues X, > h, > * * * > A, a 0. 

Then 

00) 

Proof. By Lemma 3, it suffices to show that the right hand side of (10) is 
an upper bound for pa,&A). So suppose 

where B is orthogonally similar to A. Let C be the 2m X2m principal 
submatrix of B based on indices 1 2 > ,***, 2m. 

We claim that P~,~,~(C)=P~,~,~ (A). Indeed, we just showed that 

PO,m,R(C)~ PO,m,R (A). Now, let P be any 2m X2m real orthogonal matrix. 
Define Q = P@Z,_,,. It is clear that PCZ” [(1,2,. . . ,m)l(m + 1, m +2,. . , , 
2m)] = QBQ’[(1,2,. . . , m)l(m + 1, m + 2,. . . ,2m)]. Hence po, m, n(C) G 
po,,JA), and we can conclude that po,m,R(A)=po,m,R(C). Denote the 
eigenvahres of C by ai >/ a2 > . . . > a2,,, 2 0. Since C is a 2m X2m positive 
semidefinite matrix, Theorem 1 implies now 
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The interlacing inequalities for C and A imply that 

Hence, 

Ai Z ai 2 hi+n-2m* i = 1,2 ,...,2m. 

!%,,,,(A) = PO,m,R n 

THEOREM 4. Suppose m and n are positive integers and n 2 2m. Let A 

beannxnhennitianmatrixwitheigenvaluRsh,>,X,~... >AA,>o; then 

Proof. Exactly like the proof of Theorem 3. n 

4. COMPUTATION OF ok, m, n( A) AND pk, m, c( A) FOR 0 < k < m 

We now turn to the computation of &,,n(A) (in the real symmetric 

case) and Pk,m,C (A) (in the hermitian case) for 0 < k < m. It is quite 
remarkable that this computation depends at a crucial point on the case k = 0. 
This point was observed in [2], and will be discussed in the proof. 

THEOREM 5. Let k, m, n be positive integers, and suppose that 0 < k c m 
and 2m - k Q n. Suppose A is a real n x n symmetric matrix with eigenvab 
l&?sA,>,A,>*** >h,ZO. Th43n 

Proof, WemayassumethatX,~A,~... >X,>O,forthegeneralcase 
follows by the usual continuity argument. Also, by Lemma 3, it suffices to 
show that the right hand side of (11) is an upper bound for pk,m,n(A). We 
use here the following observation, which is proved as part of the proof of 
Theorem 2 in [2] (note that we assumed there that k =G m - 2, but the 
following observation is true also for k = m - 1; also, the hermitian case is 
discussed there, but the real symmetric analogue holds as well): Suppose that 

pk,m,R(A)=ldetB[(1,2 ,..., m)](1,2 ,..., k,m+I,...,2m-k)]l, 
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where B is a matrix which is orthogonally similar to A. Let C be the 
(2m - k)x(2m - k) principal submatrix of B based on the indices 1,2,. . . , 
?n,m+l,..., 2m - k. Then 

Denote the eigenvalues of C by 

a1 >, a2 >, . . ’ 2 a2,,-k > 0. 

We write 1= m - k. It follows now from Theorem 3 (with n = 2m - k) that 

Since 

we get 

The interlacing inequalities for C and A imply that 

Aj > ai >, hj+n_(2m_k)’ 

Sincel=m-k, weget 

Pk,m,RcAJd & j(hj-h.+j-,,,,)~~~'~-k+i, 
j-l 

completing the proof. 

THEOREM 6. Let k, m, n be positive integers, and suppose that 0 c k < m 
and 2m - k < n. Suppose A is an n x n hermitian matrix with eigenvalues 
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~k,m,dA) = & 

m-k 

n (‘i - h.+,-i,_k))f~~‘,_k+j. 
i-l 

Proof. Same as Theorem 5. 
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