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ABSTRACT

We compute here the maximum value of the modulus of the determinant of an
m X m nonprincipal submatrix of an n X n positive semidefinite matrix A, in terms of
m, the eigenvalues of A, and cardinality k of the set of common row and column
indices of this submatrix.

1. INTRODUCTION

The purpose of this paper is to find out how large a determinant of an
m X m nonprincipal submatrix of an n X n positive semidefinite matrix A can
get in terms of m, the eigenvalues of A, and the cardinality k of the set of
common row and column indices of this submatrix. Clearly k gives some
measure of how far the nonprincipal submatrix is from a principal submatrix.
We assume throughout that A is an n X n self-adjoint, hermitian or real
symmetric matrix with eigenvalues A, 2 A, > -+ > A, > 0. Forany l<m <
n —1, denote by Q,, , the set of all sequences of length m with strictly
increasing integer components taken from (1,2,...,n}. Given a, € Q,, ., we
write [a N B] = k if Ka(1), a(2),...,a(m)N{B(L), BE),...,B(m)) = k.
If A is hermitian we define, following Marcus and Moore [3],
Pk,m.c(A)= max a’ﬁrréagmldet U*AU[alB]].
lanBl=k
Here, as usual, A{a| 8] denotes the submatrix of A based on row indices in «
and column indices in 8; U, denotes the group of n X n unitary matrices.
If A is real symmetric, we may define similarly
Pi.mr(A)= max max |detP‘AP[«|B]

PEO" a’BEQm,n
lanBl=k

>

where O, denotes the group of n X n real orthogonal matrices.
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2 R. LOEWY

Marcus and Moore [3] conjectured that p; ,, is a monotone nondecreasing
function of k. This conjecture was proved in [2]. The present paper may be
viewed as a continuation of [2]. Here we compute the p, ,, explicitly. Note
(cf. [2]) that in the definition of p, ,, one may choose a fixed pair o, 8 € Q,,, ,;;
for example one may choose the sequences o, = (1,2,...,k, k+1,...,m) and
Bo=01,2,....,k,m+1,....2m — k).

In Section 2 we give some preliminary results. In Section 3 we consider
the special case k =0, namely the case where the sets of row indices and
column indices of the nonprincipal submatrix are disjoint. Finally in Section 4
we consider the case 0 <k <m.

2. PRELIMINARY RESULTS

In this section we prove some results that are required in subsequent
sections for the computation of the p, ,. We denote by S, the symmetric
group on r letters.

LemMma 1. Suppose that m is a positive integer and Ay > Xy > -+ > X,
>ANpi1> 0 > Ay, > 0. Then, for any 6 €8S,,,, we have

l:[l()\i ~Nim) > .]:[1(>\a(2i—1)_xa(2i)) (1)

Proof. It suffices to consider o €8,,, such that o(2i — 1)< 0(2i) for
i=1,2,...,m, and then the absolute value is not needed on the right hand
side of (1). Moreover, it is clear that we may consider only ¢ € S,,, such that
6(2i—1)=1,i=1,2,...,m. The proof is by induction on m. For m =1 there
is nothing to prove. We also need the case m = 2 for the induction step, so
assume now m = 2. We only have to show that (A, — A} A,—A) > (A, —
A (Ag— Aj). This is true because (A} — A ))Ag — A ) — (A=A A, —Ay)
=(A1=A)A3—2,)>0.

Now suppose m > 2 and that the result is true for m — 1. Let 0 € S,,, and
such that 6(2i —1)=14, i =1,2,...,m. Suppose first that 0(2)=m + 1. Then,
by the induction hypothesis, IT/_o(A; = A, ) =TT oA p2i—1) = Aggaiy)> 80
(1) holds. Hence it remains to consider the case 0(2)= m + 1. Let j= 0(2), so
j=m+2, by assumption on ¢. Then there exists a positive integer i,
2 < iy <m, such that 0(2iy)=m +1. Let I=0(2i;,—1), so we have, by
assumption on ¢, 1 <l < m. By the case of m =2, we have (A; — A }A, -
M) S(A;= Ay ), — A)). Define now 7 €S, by m(2)=m +1, m(2i,)
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= j, and (i) = o(i) for every i such that i = 2 and i = 2i,. We now have, by
the first case,

m m m
1_[1 A—An)= 111 (Aw(%’—l) - )\w(zi)) = 1_[1 (>‘o(2i—1) - }‘u(zi)) u
1= 1= i=

The next lemma is a special case of a more general result due to Mirsky

[4).

LemMA 2. Suppose S is a 2X2 real symmetric matrix with eigenvalues
A=Ay Then
>‘1 — Ay

5 -

t =
P“éagz |(P SP)lzl

ReMark. A similar result holds if S is replaced by a 2X2 hermitian
matrix and P by an arbitrary 2 X2 unitary matrix.

As a consequence of Lemma 2, we get the following result.

LemMMa 3. Let k, m, n be nonnegative integers, and suppose that 0 < k <m
and 2m — k < n. Let I = m — k. Suppose that A = diag(A}, A,,...,A,), where
A2 Ay= - =2 A, > 0. Then there exists a real symmetric matrix E which is
orthogonally similar to A and such that

idet E[(1,3,...,21 - 1,21 +1,21 +2,...,2] + k)|
(2,4,...,21,21+ 1,21 +2,....2l + k)]|

1 1 k
= E 1_[ (>‘i - )\n+i—l) n )\l+j’
i=1 i=1

where the last product on the right hand side is understood to be 1 if k = 0.

Proof. The diagonal matrix
D= diag(Ay, Apsy Ags Apsgotseeeshs A Ay 1reeeshar)

is orthogonally similar to A, and we look on it as the direct sum D = D,®D,
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® .- @D,@diag(A;,y,...,A,_;), where D, = diag(A;, A,,,_ ), i=12,...,1L
By Lemma 2, D, is orthogonally similar to a matrix E; such that |(E, )| = $(A;

- }\n+i—l)’ 1:= 1,2,...,l. Let E = E1®E2€3 T @El®diag(}\l+l,...,)\n_l).
Then E is orthogonally similar to A and satisfies the required result. |

3. COMPUTATION OF p, ., c(A) AND p, .. a(A)

We first compute these quantities in case n = 2m. We want to show that
if A is a 2m X2m self-adjoint matrix with eigenvalues A, > A, > - > A, >
0, then

l m
pO,m,C(A)=2_m .I:Il(}\i_}\i+m) (2)
in case A is hermitian, while
1 m
pO,m,R(A)=—2; l_Il(Ai—AH—m) (3)
i=

in case A is real symmetric. In particular, if A is real symmetric, the same
maximum value of the modulus of the determinant of an m X m submatrix
(with no common row and column indices) is attained if we allow unitary
similarities or only real orthogonal similarities. The same phenomenon will
occur in the general case. Note also that by Lemma 3 it suffices to show that
the right hand sides of (2), (3) provide upper bounds for p, ,,, c(A), Py 1 r(A),
respectively.
The next lemma deals with the case m =2, n = 2m = 4.

LemMa 4. Suppose A is a 4X4 hermitian matrix, or real symmetric
matrix, with eigenvalues X\, > Ay > A3 > X, > 0. Suppose B is a 4 X4 hermi-
tian matrix (real symmetric if A is) which is unitarily similar to A (orthogo-
nally similar if A is real symmetric) and such that |det B[(12)(34)]| = py o c(A)
or |det B[(12)(34)]| = py o g(A) in the complex or real case, respectively.
Suppose moreover that B looks like

by by m

B= by by 0 p,
B 0 by by |
0 2 _34 by
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where p,, p.o are nonnegative real numbers. Then

(a) In the real symmetric case
biopy = byyp, (4)
and
biay = baspts. (5)

In particular, by, = 0 if and only if by, = 0; and if p, = py then by = by, = 0.
(b) In the complex hermitian case we have

poReby, =, Re by, (6)
and

pRe b, = pyRe by,. (7
Moreover, by, =0 if and only if by, = 0; and if p, * ., then by = by, = 0.

Proof. The proof will start in a unified way for both cases and then split
into the two. It is clear from Lemma 3 and the assumptions on A and B that

#,>0 and p,>0.

Let 8 be a real number, and let ¢ =cos#, s=sinf. Define a 4X4 real
orthogonal matrix P by

1 0 0 O
_10 ¢ —s 0
F= 0 s c 0
0O 0 0 1
It is easy to verify that
by, b By 0
chyg—sp, chy —sby;  cpy — shy,

PB=| _
sbyp+tcep; sby  cby  spg+chy,

0 B bs, b,



6 R. LOEWY

and

by Cblz — Sty Sbm + cpq 0
C = PBP' = Cb_lz — S, czbzz + szb&a Csbzz -~ c.s'b33 cpy— st
shigtopy  Csby —cshy  $byy + by spy ey, '

0 Clhy — $hy, Sty + chyy by,
(8

We now have two cases:

_ Case 1 (real symmetric). In this case B is a real matrix, so by, =b,5 and
by, = by,. The matrix C is orthogonally similar to A, and

det C[(12)|(34)] — po 2, r(A) = det C[(12)|(34)] — p1 115
= (shyg +cpy )(opy — sbyy) — gty
= S[C(blzl"z —byypy) — shigby, — 3!‘1#2]-

Since 6 is arbitrary, it is clear that we can choose 8 close enough to 0 or 7 so
that

det C[(12)|(34)] > Po,2, r(A)
unless byoptq = by pty. Hence we must have
byopy = bayp,. (4)

We now interchange the first and second rows of B and the first and
second columns of B, and do likewise with third and fourth rows and columns
of B. All this amounts to in B is switching the g, and p, in their places.
Repeating the perturbation argument leading to (4), we get now in a similar
way

biotiy = bypty. (5)

The remaining claims of part (a) follow now immediately from (4) and (5) and
the fact that g, and p, are positive.



DETERMINANTS OF PRINCIPAL SUBMATRICES 7

Case 2 (complex hermitian). In the matrix C, defined by (8), evaluate
now Re{det C[(12)l(34)] — 0y 2, c(A)}). We get

Re{(sbyg + cpy)(cpg — sbyy) — pyfia)
=s[c(psReby, — 1 Reby,) — sRe(bypbsy) — spibts]-

It is clear again that we can choose @ close enough to 0 or 7 so that
Redet C[(12){(34)] > pg ¢, c(A) unless p,Re b, =, Re by,. Hence we must
have

poReb, = p Re by, (6)

We now interchange the first and second rows of B and the first and
second columns of B, and do likewise with third and fourth rows and columns
of B. This amounts to switching the p, and p, in their places and replacing
by, by, by by, by, respectively. Repeating the perturbation argument that
leads to (6) yields now

pReby, = pyReby,. (7)

Since p, > 0 and p, > 0, (6) and (7) imply now that Re b, = 0 if and only if
Re by, = 0. Also, if p, # p, we must have Re b, = Reby, = 0.

Suppose now that b, = 0. Then Re b,, = 0, so by, = iy, for some y3, €ER.
The matrix diag(l, #,1, i)Bdiag(1, —i,1, — i) is exactly

b, 0 p O
0 bp 0 p
131 0 by ys ’
0 py yy by

and the perturbation arguments applied to B can also be applied here,
yielding ys, = 0. Hence b, =0 implies by, = 0. Similarly, by, =0 implies
b 192~ 0.

Finally, we have to show that p, = p, implies that b,, = b, = 0. We have
shown that it implies Re b,, = Re by, =0, so let b, = iyy, by, =iy, for
some y;,, Ya4 € R. Then diag(1,1,1,i)Bdiag(l, — i,1, — i) is the matrix

by Y m Y
Vg by 0 p, ,
By 0 by ysy

0 py v by
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and the equations, corresponding to (6) and (7), that must be satisfied by this
matrix are pyy;, = p Y34 and p,y;5 = KoY, Since p, * p,, we conclude that

Y12 =Y3 = 0. ]

LemMa 5. Suppose that A is a real symmetric 4 X 4 matrix with eigenval-
ues A\ 2 A, 2A;>A,2>0. Then

Po,z,n(A) = (}\l — 7\%40\2 — >\4) .

Proof. We may assume that A, > A, > A; > A, > 0, for the general case
will follow easily by the standard continuity argument. It also suffices to
prove

(}‘1 _ }‘3)0‘2 - )\4)

Po.2.r(A) < 3 ,

because of Lemma 3.
There exists a real symmetric 4 X4 matrix S which is orthogonally similar
to A and such that

|det S [(12)'(34)] |=po.2.n(A).

By the singular value decomposition, there exist real orthogonal 2 X 2 matrices
P,, P, such that

,S[(12)((34)] B = diag(ey, 15),

where p; >0, py >0, and pp, =pg o g(A). Let P=P &P, and B = PSP".
The matrix B satisfies the conditions of Lemma 4, and it is easy to check that
B[(12)/(34)] = diag(p;, o). We now have two cases.

Case 1. Suppose that p; = p,. Lemma 4 implies that b;, = by, =0, so
b, 0 0

0 by 0
g, 0 by O

—
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and it is the direct sum of

[bu 131 } and [bzz l‘z]

B by po byl

Denote the eigenvalues of the first matrix by «;, a, and of the second matrix
by a3, @, Then there exists a permutation 7 €S, such that a; =2,
i=1,2,3,4. The result now follows immediately from Lemma 1, Lemma 2
and the fact that p;p, = pg 5 g(A).

Case 2. It remains to consider the case u, =p, There exists a real
orthogonal 2 X2 matrix V; such that

b, by .
Vl[blz by vi

is a diagonal matrix. Define V =V,®V, and C = VBV". It is easy to see that C
looks like

ecw 0 p O
0 ¢ 0
R Y
0 ny oy cy

C=

The matrix C satisfies the conditions of Lemma 4, so we must have ¢y, = 0.
The proof proceeds now as in case 1. n

LemMa 6. Suppose that A is a 4 X4 hermitian matrix with eigenvalues
A2 A2 A52A,20. Then

Po,z,c(A)= (}\I_AS)‘l(}\2—>\4) .

Proof. The proof is completely analogous to the proof of Lemma 5. [ ]

THEOREM 1. Let m be a positive integer. Suppose A is a real symmetric
2m X 2m matrix with eigenvalues A\, 2 Ay > -+ > A,,, 2 0. Then

1 m
Po,m,r(A)= om .I:.[l(}‘i ~Nism)
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Proof. The result is true for m =1 and m = 2 by Lemma 2 and Lemma
5. We may also assume A, > Ay > -+ - > A, > 0, for the general case follows
by a standard continuity argument. Also, by Lemma 3, it suffices to prove

1 m
Po,m,r(A) < om I_-[l()\.‘ ~Niim)-

By an argument similar to the one given at the beginning of the proof of
Lemma 5, there exists a 2m X 2m real symmetric matrix B which is orthogo-
nally similar to A and satisfies

B[ (L,2,....m)|{(m+1,m +2,...,2m)] = diag(py, Bosr---slp)

with
m
p,>0, i=12,...,m, and l—Ilp.‘-=p0,m,R(A).
i

Suppose that the number of distinct p’s is k. We may further assume that
{1,2,...,m} is partitioned into k nonempty subsets I, ={1,2,...,n,}, I, = {r, +
1,...,n+n)..., [ ={rn+n+---+r_,+1,...,m} such that if i and jare
any elements of {1,2,...,m}, then p,= b if and only if there exists s,
1 < s <k, such that I, contains i and j.

We now form the following partition of B into blocks:

r g 81 T2 %
-
B, By toe By I"llr1 0 T 0
By, By T By 0 ""r1+1112 T 0
B By, B, T By 0 0 to I‘mlfk
P‘lIrl 0 T Y Biiixer Birirs2 0 Brapske
0 Hf1+11r2 te 0 Biioke1 Brizk+z 7 Bragax
i 0 0 ce p‘mIrk Bok k+1 By kve - By ok ]

For any [, 1 <1<k, there exists an r; X r; orthogonal matrix P, such that
P,B,, P} is a diagonal matrix. Let P be the 2m X2m real orthogonal matrix

n

T2

Tk
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defined by

P=PoPo - -- OP,0P,0P,0 --- ®F,,

and let E = PBP*. If we partition E conformably with B we get

n Tq % r g "
Ey, Ey T Ey wl, 0 T Y
E, Eq T Eq 0 #r,+11f2 T 0
E— Ey E,, Tt Eyy 0 0 T #mIfk
I"1Ifl 0 U 0 Eiivker Exvrpra - Ep i1 0k
0 Hr1+1lfz te 0 Epioxr1r Exisres Ey 9,0k
| 0 0 T p’mIrk Ezk,k+1 E2k,k+2 T E2k,2k

where E, |, Ey,, ..., E;; are diagonal matrices. Let

E,=E[(1,2,...,m)|(m+1,m+2,...,2m)]
and

Epn=E[ (m+1,m+2,....2m)|(1,2,...,m)].

Then E,, = E,, is a diagonal matrix.

We want to show now that the only nonzero entries of E off the main
diagonal are the main diagonal elements of E,, and E,,. For that purpose pick
any two indices i and jsuch that 1 <i < j< m. Let F be the 4X 4 principal
submatrix of E based on indices i, j, i + m, j+ m. Then F looks like

€ € by Y

Gj G 0 i
F=

B 0 €ipmiim Civm,j+m

0 Bj Cim jrm  Cjtm,j+m

n

T2

T
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We note also that
;=0 it p=p; 9

because E,}, Ey,...,E,; are diagonal matrices.

Let 8 be an arbitrary real number; let ¢ = cos f and s = sin 8. Define now
a 2m X 2m real orthogonal matrix Q as follows: its rows are the rows of the
identity matrix I,,,, except row j which has ¢ in the jth place and — s in the
(i + m)th place, and row i + m, which has s in the jth place and ¢ in the
(i + m)th place. Let G = QEQ?, and denote G, = G[(1,2,...,m)(m +1,m
+2,...,2m)]. Because E, is a diagonal matrix and because of the way Q is
defined, the only places where nonzero off diagonal elements of G,, can
possibly occur are in row jand in column i. Hence, because m > 3, det G, is
still the product of its entries on the main diagonal. But the elements on the
maijn diagonal of G,, coincide with those of E, (in the same positions, of
course), except the jth and ith main diagonal entries. The jth and ith entries
on the main diagonal of G,, are exactly the elements in (1,3) and (2,4)
position, respectively, in the matrix

1 0 O 0 1 0 0 0
0 ¢ -5 O F 0 c s O
0 s ¢ O 0 —-s ¢ 0OF
0O 0 O 1 o 0 o0 1

Now, exactly as in the proof of Lemma 4 (the real case), this fact and the
fact that det G}, < p ,, g(A) for any real 6 imply

€= Civm, jrmbi-

Similarly (interchange rows ¢ and j of E, and columns ¢ and j of E; also
interchange rows i + m and j+ m of E, and columns i + m and j+ m of E),
one gets

Gl = Ciam, jrmbj

The conclusions are now exactly as in Lemma 4; namely, if u, = p; then
€;j= €ism, j+m = 0. But the same result holds true also if p, =, for then we
have in addition (9), which implies now ¢; ,,, ;.., = 0.

Since i and jare arbitrary, we have shown that the only nonzero entries of
E outside the main diagonal are the main diagonal entries of E, and E,,.

Hence E is the direct sum of the m 2 X2 matrices

€5 By €99 Ko Cm,m Mo, ]
nu'l em+1,m+l ’ “2 em+2,m+2 2 p‘m e2m,2m )
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Denote the eigenvalues of the first, second,...,mth matrix by a;,a,;
Oy, 0. v 3 Ogp 1, Aoy Tespectively. Then there exists a permutation 7 €S,
such that a;=A_ ). The result now follows immediately from Lemma 1,
Lemma 2, and the fact that TT[2 1, = py , g(A). [ |

THEOREM 2. Let m be a positive integer. Suppose that A is a 2m X2m
hermitian matrix with eigenvalues A, > X, > -+ - > Ay, > 0. Then

1 m
pO,m,C(A)__m 1:[ t+m

Proof. The proof is analogous to the proof of Theorem 1, except that the
hermitian part of the proof of Lemma 4 is used here. [ ]

We finish this section by computing p; ,, g(A) and py ,, ¢(A) for an
n X n matrix A, where, of course, n > 2m.

THEOREM 3. Suppose m and n are positive integers, and n > 2m. Let A
be an n X n real symmetric matrix with eigenvalues A\ = Ay 2--- 2 A, =2 0.
Then

pom 0(4)= 5 TT = A, (10)

Proof. By Lemma 3, it suffices to show that the right hand side of (10) is
an upper bound for p; ,, g(A). So suppose

Po,mn(A)=|det B[(1,2,...,m)|(m+1,m +2,....2m)]|,

where B is orthogonally similar to A. Let C be the 2m X2m principal
submatrix of B based on indices 1,2,...,2m.

We claim that p, ,, g(C)=py ,, r(A). Indeed, we just showed that
0, m.r(C) > Py m.r(A). Now, let P be any 2m X 2m real orthogonal matrix.
Define Q=Pe®I,_,,. It is clear that PCP![(1,2,...,m)[(m+1,m+2,...,
2m)] = QOBO*[(1,2,...,m)(m +1,m +2,...,2m)]. Hence p; , g(C)<
Po.m,r(A), and we can conclude that p; ,, g(A)=p, ,, g(C). Denote the
eigenvalues of C by a; > a, > --- > a,,, > 0. Since C is a 2m X2m positive
semidefinite matrix, Theorem 1 implies now

1™
Po,m, R(C)__m ].:[ z+m
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The interlacing inequalities for C and A imply that

Ai>ai>}\i+n—2m’ i=1,2,...,2m.
Hence,
1 m
Po,m,R(A)=Po,m,n(C)<2_m lj[l(}‘i—}\n-ﬂ‘-—m)' u

THEOREM 4. Suppose m and n are positive integers and n > 2m. Let A
be an n X n hermitian matrix with eigenvalues A; > A, > - > A, > 0; then

1™
pO,m,C(A) = z_m I;Il(}\' - }\n+i—m)'

Proof. Exactly like the proof of Theorem 3. [ |

4. COMPUTATION OF p; ,, a(A) AND p, . c(A) FORO <k <m

We now turn to the computation of p; ,, R(A) (in the real symmetric
case) and p; , c(A) (in the hermitian case) for 0 <k <m. It is quite
remarkable that this computation depends at a crucial point on the case k = 0.
This point was observed in [2], and will be discussed in the proof.

TueoreMm 5. Let k, m, n be positive integers, and suppose that 0 <k <m
and 2m — k < n. Suppose A is a real n X n symmetric matrix with eigenval-
ues A\ 2A,2--- 27, 20. Then

1 m—k k
pk,m,R(A)= om—k Hl ()‘i_)\n-fi—(m—k)) qu—k+j‘ (11)
j=

i=

Proof. We may assume that A, > A, > -+ = A, > 0, for the general case
follows by the usual continuity argument. Also, by Lemma 3, it suffices to
show that the right hand side of (11) is an upper bound for p; ,, gr(A). We
use here the following observation, which is proved as part of the proof of
Theorem 2 in [2] (note that we assumed there that k <m — 2, but the
following observation is true also for k =m — 1; also, the hermitian case is
discussed there, but the real symmetric analogue holds as well): Suppose that

Pk.m.r(A)=|det B[(1,2,...,m)|(1,2,....k,m +1,....2m — k)]|,
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where B is a matrix which is orthogonally similar to A. Let C be the

(@m — k)X (2m — k) principal submatrix of B based on the indices 1,2,...,
m,m+1,...,2m — k. Then

1 Prmel(4)
pO,m—k,R(C 1)=Ld§“‘(‘;—-

Denote the eigenvalues of C by
aGZayz--zay, >0

We write [ = m — k. It follows now from Theorem 3 (with n = 2m — k) that

€= (A L)L L) (L 1)

2\ Qgm0 J\ g1 @, Aom—k—1+1 Qg
Since
2m—k
pk,m,R(A)=pO,m—k,R(C—l)detc=pO,m—k,R(C_l) 1—11 a;,
iz
we get
1 l m
pk,m,R(A) =7 Il (aj_ a2m—k—l+j) Q;.
2" j=1 i=1+1

The interlacing inequalities for C and A imply that
NzaZ2 A emoky

Since Il =m — k, we get

1_k 3

l
pk,m,l‘(“‘)< om j=1

k
(A]'_ An'*'j‘(m‘k)) il:-[lx'”_k‘“"

completing the proof. |

THEOREM 6. Let k, m, n be positive integers, and suppose that 0 <k <m
and 2m — k < n. Suppose A is an n X n hermitian matrix with eigenvalues
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Ai2Ag>- 27,20 Then

1 m—k k
pk,m,C(A)= gm—Fk H (N“Anu—(m—k))j_r[l}‘m—kﬂ-

i=1

Proof. Same as Theorem 5. [ ]
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