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A B S T R A C T  

Classically, whether to effect inference, one uses a small set of  axioms and modus 
ponens, or a set of  rules of  inference including modus ponens, one is going beyond what 
can be derived with the explicit operations of  logic alone. Carrying this concept over to 
fuzzy logic we construct a fuzzy modus ponens and other rules of  inference that include 
modus tollens and reductio ad absurdum. These in turn are based on (and greatly 
facilitated by) a choice for the operation of  implication that preserves the (logic) 
symmetry implicit in its definition. Extensions including conditional quantification, cut 
rules (single, multiple, and implicitory), and fuzzy mathematical induction are sketched. 
As an example, a fuzzy-logic treatment of  the Yale shooting problem is discussed. The 
results suggest that the implicit processes of  inference, as distinct from the explicit 
processes of  decision (control) theory and systems theory, can be effected in fuzzy logic 
if, as in classical logic, one ventures outside the scope of  (fuzzy) logic operations. 

K E Y W O R D S :  f u z ~  modus ponens / toilens / reductio ad absurdum, fuzzy  
rules o f  inference / cut rules, fuzzy  conditional quantification, fuzzy  math- 
ematical induction, Yale shooting problem 

I .  I N T R O D U C T I O N  

T h e  o b j e c t i v e  o f  f u z z y - l o g i c  i n f e r e n c e  is to  o b t a i n  s o m e  p r o p e r t i e s  o f  

t h e  fuzzy  se t s  I B 1 , B  2 . . . .  f r o m  s i m i l a r  p r o p e r t i e s  o f  t h e  fuzzy  se t s  
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a Notation here is a bit problematic. Because membership functions are used so extensively 
and their combinations are so closely tied to the corresponding logic operations, Goguen's [2] 
definition of a fuzzy set as a function A:X ---, [0, 1] was utilized, X being the universe. Those 
preferring the "ordered-pair" notation, or the "fraction" (/xA(x)/x) notation, which as fuzzy 
sets are also called A [3] can read the results presented here as fuzzy sets in which for each 
x ~ X the value of the grade of membership of the resulting set is determined by the 
indicated operations being taken between the grades of membership of the sets indicated as 
variables. 
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A1,A 2 . . . .  when these sets can be related according to an inference 
scheme 

A 1, A 2 , . . .  ---) B1, B2 . . . .  (1) 

governed by a collection of rules of inference. In classical logic this can be 
accomplished in a variety of equivalent procedures based on combinations 
of both logic operations and modus ponens. Extensions of these proce- 
dures to fuzzy logic have been less successful: many lack contraposition 
( A  ~ B)  = (B '  ~ A'); none reproduce reductio ad absurdum (rada) ( A  
=, B, A =, B')  ---, A'. There are, of course, applications where such prop- 
erties may be inappropriate, even undesirable; however, even the lack of a 
law of excluded middle should not prevent the formulation of a method of 
fuzzy-logic inference that captures these fundamentally essential features 
of classical logic. (As this is in sharp contrast to methods of fuzzy inference 
developed for the control of fuzzy systems, the reader must keep in mind 
that even though some of our terminology is similar, our concepts, motiva- 
tion, and goals are very different.) 

In approaching inference it is natural to try do derive conclusions from 
premises using logic operations. For example, to construct a modus ponens 
(ie, assuming the major premise A =, B and the minor premise A are valid 
to conclude B is valid) 

(A ,  A ~ B) ---) B (2) 

one could try 

A A (A ~ B) (3) 

or even 

(A A (A ~ B ) )  =~B (4) 

However, in classical logic (A A (A ~ B)) = (A A B) 4: B, while ((A A 
(A ~ B)) =, B) = 1. Thus, while both expressions are understandable, 
(the first saying that to obtain B, we must have a valid A, the second 
indicating that this expression is a tautology, valid even if A = B'), neither 
can really be said to represent the heart of modus ponens. On the other 
hand, the classical statement, " I f  A is true and if A implies B is true, then 
B is true," is simple, direct, and, if B can be extracted (detached) from 
A ~ B, effective. But, most importantly, it involves an operation outside of 
the logic operations (and ( A ), or ( V ), negation ('), etc.), but of course, not 
outside of logic. Let us now capture this important aspect in fuzzy logic. 
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2. MODUS PONENS 

To achieve modus ponens for fuzzy logic, we must be able to derive the 
fuzzy set 2 B from the fuzzy sets A and A ~ B. (In other words, we are not 
given B initially.) The logic operation A ~ B we represent as A'  v B, 
because this form preserves the meaning of implication: when true, if A is 
true then B is true. (See Appendix A for a discussion of this point.) For 
A v B we choose max (A, B), for A A B we choose min (A, B), for A'  we 
choose 1 - A, a common choice since the beginning of fuzzy logic [1-3], 
and one that satisfies all the standard properties of logic connectives 
except the laws of excluded middle and noncontradiction. In what follows 
A v B means the logic OR if reference is to logic, set union if reference is 
to set theory and max(A, B) if reference is to fuzzy logic. Similarly A A B: 
AND, intersection, min(A, B); A': negation, complement, 1 - A. 

Returning finally to modus ponens, given (A ~ B) = max(A', B), clearly 
if (A ~ B) > A'  then B = (A ~ B). Thus if we know (A ~ B) and A, we 
calculate A'  = 1 - A and compare (A ~ B) with A'. If the former is 
strictly larger, than we infer that B = (A ~ B). We write this as follows: 

( A , A  ~ B) ~ B = ( A  ~ B) >w A' (s) 

where the ">w " symbol (as in X >w Y) reminds us that the preceeding 
equality is valid whenever X > Y. Note that for (A ~ B) = A',  B(_< A')  is 
(otherwise) undeterminate. (The case (A ~ B) < A' is impossible.) Put 
another way, for B > A', which includes all the most useful region ( 1 / 2  < 
(A,B) < 1), and in fact half of all possible values for (A,B), 0 < A'  < B < 1, 
B can be readily extracted from A ~ B. In other words this has a strong 
intuitive ring: the larger A, the smaller A ~ B need be to trigger infer- 
ence, or the smaller A, the larger A ~ B must be to permit inference: 
B = (A ~ B) >w A' captures this inverse relationship. 

The advantages of the above procedure include retaining contraposition 
( ( A ~ B ) = ( B '  ~ A ' ) ) ,  due to retention of ( A ~ B ) = ( A '  v B ) ,  the 
dependence of the result on the nature of A as well as A ~ B (see modus 
tollens below), and the retention of reductio ad absurdum. Concerning the 
latter, consider the case where we are given A ~ B and A ~ B'. We find 

2All fuzzy sets are, of  course, functions of e lements  that need not be the same when taken in 
combination. For example, we can have A ( x ) =  B(x) or A ( x ) ~  B(y) depending on the 
problem of interest. In the former case the fuzzy set A ~ B is a function which takes 
X ---, [0, 1], in the latter it is a function which takes X, Y ---, [0, 1]. None of the results 
presented depend on this difference. For sake of brevity we occasionally write A x for A(x), 
etc. to indicate the variable while simplifying the notation. Subscripts normally associated 
with indices, eg, A l, A ~ ,  A k,  A t refer to different fuzzy sets. 
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at once that 

A' = m i n ( A  ~ B , A  ~ B')  >w min( (A  ~ B ) ' , ( A  =* B ' ) ' ) ,  (6) 

a statement of rada. One can derive this result by recognizing that (6) has 
the form 

A' -= (A ~ B) A (A =, B ' )  (7a) 

that expands into 

A' = (A ~ (B A B ' ) )  = (A '  v (B A B ' ) )  (7b) 

so that for A' > min(B, B') one obtains rada. (The whenever inequality in 
(6) ensures that A'  > min(B, B'). Thus the crisper (ie, closer to 1) B or B' 
becomes, the wider the range of A' (min(B, B') < A' < 1) that can be 
inferred using proof by contradiction (rada) (6). (Note that (7a) also 
follows from taking the conjunction of the given quantities. Recalling (3) 
we remember that this is not always a useful procedure.) 

There are, of course, occasions where A =~ B and B' are known. By 
analogy to modus ponens above, we can construct modus tollens 

( B ' , A  ~ B )  ~ A '  = ( A  J R )  >w B (8) 

While (A =~ B) > 1 /2  and B' > 1 /2  yield A' = (A ~ B), in fact (8) can 
be used to recover A' from the region 0 < B < A' < 1 complementary to 
that covered by modus ponens. 

3. RULES OF INFERENCE 

In logic inference can be formulated either in the form of axioms plus 
modus ponens or in the form of a set of rules of inference including modus 
ponens. For fuzzy logic, the latter are much more useful, as we shall see 
when we apply the rules to derive the standard axioms in fuzzy form. 
Thomason [4], as well as other authors [5-7], label each rule of inference 
in symbolic logic by a logic operation and either the word "introduction" 
or "elimination," or with quantifiers "instantiation" or "generalization." 
Extending these fuzzy logic, McCawley [8] changed "elimination" to "ex- 
ploitation." Our rules differ significantly from his, however, because he 
chose to interpret A ~ B as A a B. Here we shall simply use the symbol 
for the operator and the first letter of the appropriate noun. 

E: (implication elimination) This is simply our modus ponens ((5) 
above). 

I: (implication introduction) Here we taken what we know about A 
and B to construct (A ~ B) = (A' V B). (This, of course, is not the 
only source of fuzzy functions of the form A ~ B). 
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~ E:  (negation elimination) A" = 1 - A'  = 1 - (1 - A) = A. 

~ I: (negation introduction) This is rada (6), ie, reductio ad absurdum 
or proof  by contradiction, or modulus tollens (8), whichever is appro- 
priate. 

A E: (conjunction elimination) In logic given that A kAk is true (1), one 
infers that A k is true (1) for each k. In fuzzy logic one is given 
mink(A k) = Ami n and infers A k > Ami n for each k. However, by 
analogy with v E (see below), based on modus ponens, we can infer 

( V k( Ak ~ M ) ,  A tAt )  ~ M = V k( Ak ~ M )  >w ( A tA t ) ' ,  (9) 

while based on modus tollens we can infer 

( V k ( M ~ B k ) , A t B I ' )  ~ M ' =  V k ( M ~ B k )  > w ( A t B t ' ) ' .  (10) 

(Here  A k(V k) means minimum (max) over the index k: 

A1, Az ,  A 2 . . . )  

A I: (conjunction introduction) Here  we take (AI ,A 2 . . . )  and form 
A,, i ,  = min(A1,A 2 . . . .  ) = A kAk . 

V E: (disjunction elimination) In logic this is one of the more interesting 
rules of inference. Using modus ponens/tollens it is readily extended 
to fuzzy logic: 

( A k ( A  k ~ M ) ,  V t A t )  ~ M =  A k ( A  k ~ M )  > w ( V t A t ) ' ,  (11) 

( A k( M=~ Bk),  V tB[) ~ M'  = A k( M ~ Bk) >~ ( V tB/) ' .  (12) 

V I: (disjunction introduction) Here we take (A1,A 2 . . . .  ) and form 
Ama x = max(Al ,A 2 . . . .  ) = V k A  k. 

- E: (equivalence elimination) 

( V k( Ak -- B) ,  V tAt ,  A 

(vtAt) 

( A k( Ak = B) ,  v tAt ,  A 

tAt)  

>wB = V k( Ak =- B ) > ~ (  A tA t ) '  

tA t )  

(13a) 

( A t A t ) > w B  = Ak(  A k - B )>w(  V tAt ) '  (13b) 

( V k( Ak =-- B) ,  A tAl ,  V tAt)  

( A / A t ) ' > w B '  = V k ( A  k - B ) > w ( V t A I )  (14a) 

( A k (Ak  -- B) ,  A tAt ,  V t A t )  

( V  t A t ) ' > ~ B '  = A k ( A  k - B ) > w (  A t A t )  (14b) 
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- I: (equivalence introduction) With the choice of (min, max) for ( A ,  V ) 

as above, we find that 

( A - B )  = (A A B )  V (A'  A B ' )  = (A V B ' )  A (A'  V B )  (15) 

¢ E: (exclusive-OR elimination) We include this for the sake of com- 
pleteness. They are -= E with (B ~ B'). 

(V k(Ak ¢ B),  A tAt, VtA)  --* 

( A t A t ) ' > w B = V k ( A  k C B ) > ~ ( v t A l )  (16a) 

(A k(Ak ¢ B),  A tAl, VtA)  

( V t A t ) ' > w B = A k ( A  k C B ) > , , ( A t A t )  (16b) 

( V ,~(A k • B) ,  V tAt ,  A tAt)  --* 

( V l A t ) > w B '  = V k ( A  k C B ) > w ( A t A t ) '  (17a) 

( A k ( A  k e B ) ,  v t A t ,  AtAt)  -~ 

( A t A t ) > w B '  = A k ( A  k C B ) > w ( V  tA t ) ' ,  (17b) 

I: ( e x c l u s i v e  O R  introduction) As with - I, we find that 

(A C B )  = (A A B ' )  V (A'  A B )  = (A V B )  A (A'  V B ' ) .  (18) 

4. E X T E N S I O N S  

These rules can be extended in a number of ways. If we interpret (VxA x) 
as (A xA x) and (3yBy) as ( v  yBy) then VE, VI, 3E, 3I follow at once by 
analogy with A E, A I, V E, v I above. (As explained, 2 the x and y here 
refer to elements of the universe; A x = A(x).) 

Thus 

VE: (3x (A  x =~ M ) , V y A y )  ~ M =  3x(A  x =~ M )  >w(VyAy)' (19) 

t t (3x(M B ),VyBy) -,  M' = 3x(M Bx) > .  (VyBy)' (20) 

3E: (V~(A x ~ M ) ,  EtyAy) ~ M = Vx(A x =~ M )  >w (3yAy) '  (21) 

(Vx(M = B x ) , 3 y n y )  --> M '  = Vx(m=~ nx) >w (3yBy)' (22) 

Of greater interest are the representations of the conditional quanti- 
tiers. If we interpret Vxfx, gx ie, for all elements x such that fx is satisfied 
in a fuzzy sense, then gx is also satisfied, as A x(fx ~ gx) = A x(f~ V gx), 



A Key to Fuzzy-Logic Inference 111 

and 3xfx, gx as V x(fx A gx), and noting that 

(Vxfx, gx)' = 3xfx, g" (23) 

we obtain at once the following conditional quantifier inferences: 

VcE: (3xfx, (gx ~ B) ,  ~ f y ,  gy) ---4 

3xf~>wB = 3 x L , ( g  ~ ~ B)>w(Vyfy,gy )' ( 2 4 )  

(3xf~, (A ~ g x ) , V y f y , g y )  

3Jx>wA'  = 3 x f x , ( A  ~ g x ) > w ( V y f y , g y ) '  (25) 

=ICE: (Vxfx, (gx =~ B), 3yfy, gy) ~ B = V x L ,  (gx = B)  >w(3yfy, gy)'  

(26) 

(Vxfx,(A =~gx),3yfy,gy)' ~ A '  = V x f x , ( A  =~ gx) >w(3yfy,gy')' (27) 

As in (19)-(22), (24) and (26) generalize modus ponens, (25) and (27) 
modus tollens. 

In symbolic logic one often expresses hypotheses in the following form 
[6] 

H = ( ( A  1 A A 2 A . . .  A An)  ~ B ) ,  (28a) 

the negation of which is 

H'  = A 1 A A 2 A . . .  A A n A B'  (28b) 

If H '  is true (the set (A t ,  A 2 , . . . ,  An,  B ' )  consistent), then H is false (not 
valid); if H'  is false (the set inconsistent), then H is true (valid). With our 
intepretation of the operation of fuzzy implication, we can manipulate 
(28ab) much as is done in logic to obtain analogous results. 

Examples of this include the following. If 

HI2 = ( (A 1 A A2) ~ (B 1 V B2)), (29a) 

then by a straightforward manipulation 

H12 = ( ( A  1 A B~) ~ ( B  1 V A ~ ) )  (29b) 

In this manner, one obtains a number of implications having the same 
(known) fuzzy truth value. Of particular interest is to write (28a) as 

H = ((A 2 A . . .  A A n A B ' )  ~ A'a) (30) 



112 K.K. Thornber 

In logic, if one also has A 2 A . . .  A A ,  =* A l, then using modus  tollens it 
follows from (30) that 

H = ( A  2 A . . .  A A ,  ~ B )  (31) 

Hence, within a set propositions implied by other propositions can be 
omitted in hypotheses such as (28a). In fuzzy logic, owing to the continuous 
nature of the operations, it is necessary that ((A 2 A ... A A n) ~ B )  > 

( ( A  2 A . . .  A A n) ~ A '  1) Expression (31) then remains valid since from 
(30) 

H = (.zT 2 :=~ ( B  V A' I )  ) = (,,z~ 2 =* B )  V ("42 =~' A'I) 
= (2z~ 2 =:~ B)  > w ( Z 2  :=~ A'I) , (32) 

where A 2 = A 2 A . . .  A A n. 

In proving theorems, more easily proved lemmas are often used in order 
to shorten the proof. This technique can be formalized using the cut rule 
[9] 

(A l =, (B 1 V R I 2 ) , ( A 2  AR12)  ~ B 2 )  --~ ( ( A  1 A A 2 )  ~ (B l V B 2 ) )  

(33) 

where R12 is the cut formula (lemma of A 1) of this inference, the 
conclusion (result) of which does not involve R12 explicitly. Longer chains 
of reasoning are readily envisioned 

( A  1 ~ ( B  1 A RIE),R12 A A  2 ~ B E , A  2 ~ B  2 V RE3,R23 A A 3  ~ B 3 )  

(A 1 A A 2 A A 3 ~ B 1 V B 2 V B3) (34) 

Note that even in fuzzy logic the two intermediate terms can be combined 
as 

(R12 A A 2 ~ B2) V ( A  2 ~ B 2 V R23 ) = (R12 A A 2 ~ B 2 V R23), (35) 

which has the same structure as (33). 
In order to determine the nature of the inference (33) in fuzzy logic, we 

consider the simpler (actually equivalent) inference 

( u  V v , u '  V w )  -~ (vvw)  (36) 

Clearly ( v v w )  < max(  u v v, u ' v w)  = m a x ( u ,  v, u ', w ). If (u v v) > u 
> (u' V w)' then we would have equality. However, merely from (u v v) 
and (u' v w), we cannot guarantee both these strict inequalities. Now, so 
long as (u v v) > (u' v w)', it follows that 

m i n ( u  V v , u '  V w )  <_ ( v  V w )  <_ m a x ( u  V v , u '  V w ) .  (37) 
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This is appropriate, as the conjunction of the antecedent implications in 
(36) would be expected to play a key role here. If, in addition to (36), we 
also have 

(t v v , t '  v w) ~ (v v w), (38) 

with (t v v) > ( t '  v w)', then the limits in (37) can be tightened to 

max(min (u  v v, u' v w) ,  min( t  x/ v, t '  v w))  

<_ (v  v w) <_ max( (u  /x t) v v , ( u  v t) '  v w) (39) 

These results, (37) and (39), differ from our previous results in that here 
we have not explicitly identified the consequent of the inference in terms 
of the antecedent, we have only bounded it. Because this is indeed a fuzzy 
logic, this limitation should not seem too unnatural. 

However, if (u v v) > (t v v) and (u '  v w) < (t '  v w), then 3 v = (t v 
v) and w = (u '  v w), and inequalities in (v v w) can be avoided alto- 
gether. Alternatively, v = (u v v) <w (t v v) and w = (t '  v w) <w (u '  v 
w). (The other two choices of inequalities are not possible.) If both pairs 
are equal, then, of course, nothing is gained. If say (u v v) = (t v v) while 
(u '  v w) >< ( t '  v w), then v = (u v v) while w cannot be uniquely ascer- 
tained; similarly w = ( u '  v w ) < ~ ( t '  v w ) ,  (u V v ) ~ ( t V v ) . ) .  In this 
manner, the existence of a second (and different) inner structure (a second 
cut) significantly sharpens our results for cut rules. For the present we 
shall consider only a single cut. 

We can now return to the cut rule (33). If we identify A'  1 w B~ with v, 
A~ v B E with w, and R12 with u, then v v w = (A 1 /~ A 2) ~ (B~ v B2) , 
and with these entries (37) yields 

m i n ( A  1 ~ (B  1 v R 1 2 ) , ( A  2 A R 2 ) ~ B 2 ) < ( A  , A A z ) ~ ( B  I v B2)_< 

< m a x ( A  1 = (B  1 V R12),  (A 2 A RI2 ) ~ B2) (40) 

so long as (A 1 = (B t V R12)) > (A 2 A RI2 ~ B2) ' .  Similarly (34) works 
out to be 

m i n ( A  1 ~ ( B  1 A R I 2 ) ,  R12 A A 2 ~ B 2 v R23 , R23 A A 3 ~ B3) 

< ( A  1 A A 2  A A 3 ~ B  1 V B  2 V B 3 ) <  

m a x ( A  1 ~ B 1 A RI2, R12 A A 2 ~ B 2 V R23 , R23 A A 3 ~ B3) 

(41) 

3The proof is straightforward, but several alternative cases must be considered and systemati- 
cally rejected. 
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provided (A 1 =* (B l v Rl2)) > ((R12 A A 2) =* (B 2 V R23))' and ((R12 A 
A 2) ~ (B 2 V R23)) > ((R23 A A 3) ~ n3)' .  (The inequalities in (40) and 
(41) are sharp, however many A and B are considered). Longer chains can 
be similarly analyzed and the bounds tightened with alternative lemmas. 

A common variant of the cut rule (33) is the following minor extension: 

( A  1 ~ B 1  V R I , R  2 A A 2 ~ B 2 )  

( A  1 A ( R  1 =* R2) A A2) =~ ( B  1 V B2) (42) 

where, of course, R~ =* R 2 is understood to be a third antecedent. This 
can be decomposed and analyzed in much the same manner  as (34), with 
the result that 

m i n ( A  1 ~ B 1 V R1, R 1 ~ R2, R 2 A A 2 ~ B2) 

< ( A  1 A ( R 1 ~ R 2 )  A A E ) = ( B  1 VBE) 

< m a x ( A  1 ~ B 1 v g l ,  R 1 ~ RE, R E A A 2 ~ B2) (43) 

so long as (A 1 =~ B 1 v R 1) > (R 1 =* R2)' and (R 1 = R E) > (R 2 A A 2 
BE)'. Various simplifications of  (33) or (42) lead to exact results. For  
example 

( A  1 A A  2 J R  V B ,  S A A  1 A A  2 B) -~ ( A,  A ( R ~ S) A A 2 ~ B) 

(44) 

according to 

( A  1 A ( R  ~ S)  A A 2 ~ B  ) 

= m i n ( A  1 A A  2 ~ R V B , S A A  1 A A  2 ~ B )  (45) 

while A 2 =, (B z v (A a ~ B1)) = (A 1 A A 2) =~ (B 1 V BE), again owing to 
our choice of  A =* B = A '  v B. 

As an extension of VE, one can encounter  this modus ponens like 
inference 

( {Aj  ~ Bj}, v iA i )  ~ v ini (46) 

By analogous reasoning we find 

( V i A l ) '  <w m i n ~ ( A k ~ B , )  < v i B i < m a x k ( A k ~ B k )  (47) 

While maxk(A k =~ B k) = max~(A'~)v  maxt(Bt) , so that if one knew 
A kAk, one could write 

A IBI = V k (Ak  =~ Bk) >w ( A kAk)  ', (48) 
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this would not be too useful, as some A k can be 0. Rather, it is the 
inequality 

A k(Ak ~ Bk) < V lB/ 

which lies at the heart of (47). The equivalent expression using modus  
tollens is 

and 

( { A  i = Bi}, V j B j )  ~ V j A j  (49) 

( V I,B~) <w m i n k ( A k  ~ Bk)  < V jA}  < m a x t ( A  t ~ Bt) .  (50) 

Once again one could have 

v i A l .  = maxt(  A t ~ BI) >w V IBt, 

but as above this form has minimal utility. 
Another  common inference in logic (transitivity) has the form 

( A  ~ X ,  X 1 ==~ X 2 . . . .  , X, ~ B) ~ A ~ B (51) 

We can use our fuzzy modus ponens (5) to pass from A to B so long as the 
following inequalities are satisfied: 

A' < (A = X l ) , ( A  ~ X l ) '  < (X~ =X2)  . . . . .  (X._1 ~ X . ) '  

< ( X  n =:~ B )  ( 5 2 )  

From these we infer X~ = (Xs_  1 =~ X s) and B = (An ~ B). Similarly 
using modus tollens (8) and 

B ' >  (X.  ~ B ) ' , ( X .  ~ B )  > (X.  1 =Xo) ' .  . . . .  (X, ~ X 2 )  

> (A ~ X) '  

we infer Xr' = (Xr  =~ Xr+ 1) and A' = (A'  ~ X 0. (Note that the interme- 
diate inequalities are the same as those above.) Should B and C be joined 
by I11 . . .  Ym similarly satisfying 

B'  < ( B  ~ Y , ) , ( B  =, Y1)' < (}'1 ~ Y2) . . . . .  (Ym-1 ~ ym), 

< ( Y m  = C ) ,  

then this meshes with series (52) and C = (Ym ~ C). 
These results illustrate a number of interesting features. So long as the 

intermediate inequalities are satisfied, the derived implication 

(A ~ d  B) = (A ~ X  1,X.  ~ B ) ,  (53) 
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now represented by two quantities, does not  depend upon the actual 
values of (X 1 ~ X 2) . . . . .  (An_ 1 =~ An). In other words, the successive 
influences do not  dilute the inference. While (53) can not  be reduced to 
the simpler form (A ~ B) - (A'  v B), it does enable us to preserve the 
most important feature of the classical result. In (51) if A is true, then X 1 
is true, if X 1 is true, then X z is true . . . . .  if X n is true then B is true: 
hence if A is true, B is true, and (51) indeed simplifies to A = B. 
Similarly, if (A = X 1) > A',  then B = (X n ~ B) summarizes (52). (It is 
this encapsulation that is not possible with the simpler form A' v B.) If 
we are working with quantified quantities, then (Vx(X ~ ~ X s + I )  x) > 
(Vy(X~_ a ~ X~)r)'  guarantees (As =~ X~+I) x > (Xs_  1 ~ X ) '  x for each x, 
and (53) becomes 

( A ~ d  B )  = (Vx( A = X1)x ,  Vy( X n ~ B)y)  

Thus for each x ~ X, A x > (/x y(A =~ X l ) y ) '  , n x >_~ A y ( S  n = B ) y ,  using 
the minimization interpretation of universal quantification introduced 
above. Finally A x(A ~ X1) x > (A gAg) '  yields /x xBx = /x x(Xn ~ B )  x. 

Perhaps the most counterintuitive result here is that some of the 
(X s = As+ 1) can in principle be less than 1 /2  without affecting the overall 
inference. (Clearly if each exceeds 1/2,  all inequalities are immediately 
satisfied.) Thus all that is required of (As ~ X ~ ÷  1) is that it exceeds 
(Xs_  1 =:~ Xs) '  and (As+ 1 ~ Xs+2 )t which can be quite small. In general, 
no two adjacent implications can be less than 1/2. However, given strong 
implications on either side, this model permits a weak implication in 
between representing an "intuitive leap" (a tunneling-in-inference-space) 
phenomenon. (Mathematically this results from making full use of the 
B >  1 - A r e g i o n o f t h e 0 < A  < 1 , 0 < B < l d o m a i n o v e r w h i c h A ~ B  
is defined.) Should a weak implication enter, the system could search for a 
stronger connective, as would a person in a similar situation. However, one 
would still have the result, found initially more quickly and simply but so it 
would seem with less rigor. Of course, if appropriate, a lower limit (eg, 
1/2)  can be imposed ad hoe on the individual implications. In any event 
one is not restricted to a monotonicity increasing sequence of A, X1, Xz 
. . . . .  Xn,  B,  though such could be imposed if warranted. 

Closely related to the above is fuzzy mathematical induction: (F 1, F n_ 1) 
F n, or more precisely, (F1, F n =* Fn+ 1 ) --> Fn+ 1. So long as F n and 

(F n =, Fn+ 1) remain above 1/2,  then Fn+ 1 > 1/2,  and all is well. However, 
should (Fn ~ Fn+ 1) drop below 1/2, induction would cease. To avoid this 
deadlock, one should switch to Gn+ 1 = F~'+I so that (F, =* G,+ 1) > 1/2. 
Should (Gm ~ Gin+ 1 ) < 1 /2  for some m > n + 1, one simply switches 
back to Fro+ 1 = G ' + I  so that (G,, ~ F,,+a) > 1/2. One can continue in 
this manner to all countable m, n. (Clearly from the foregoing, implications 
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less than 1 /2  can still be used for inference. The point here is that in the 
spirit of induction, one demands that certain conditions be true for all n, 
and in this formulation the greater- than-I /2 is one of these.) 

Example 

Pearl [10] has presented a probabilistic treatment of a simplified version 
of the Yale shooting problem [11]. Using our cut-rule results of the 
previous section, a fuzzy-logic treatment can also be effected. In this 
problem a gun is loaded at to, (represented by LDo), shot at someone at 
t 1 > t o (SHl ) ,  who dies by t 2 > t 1 (AL~), despite the normal tendency to be 
(otherwise) alive at t 2 ( A L  2) given being alive at t l ( A L 1 ) .  The state LD 1 
also enters. Thus 

A L  1 A S H  1 A L D  1 ~ A L '  2 (54a) 

L D  o ~ L D  1 (54b) 

A L  l /x ( S H  1 /x L D 1 ) '  = ~ A L  2 (54c) 

summarize the given possibilities, and combining (54ab) according to (40), 
LD 1 being the cut expression, we find at once that 

m i n ( A L  1 A S H  1 A L D  1 ~ A L ' 2 , L D  o ~ L D 1 )  

<_ ( A L  1 A S H  t A L D  o ~ AL '2 )  

< m a x ( A L  1 A S H  1 A L D I  ~ A L '  2, L D  o ~ L D I )  (55) 

so long as ( A L  1 A S H  1 A L D  1 ~ A L '  2) > ( L D  o ~ L D O ' .  

Under some conditions these bounds can be tighter than the corre- 
sponding probabilistic result. [10] (Expression (54c) does not really enter 
because as a fuzzy function its values can be determined from those of 
(54a)). 

5. CONCLUSIONS 

Fuzzy m o d u s  p o n e n s  remains an active area of research [12-17]. The 
purpose here was simply to see how far one could go by preserving as 
much as possible of the spirit of classical inference, keeping in mind the 
roles played by the operator (connective) of implication. If, by means of 
axioms a n d / o r  rules of inference, we have derived B from A, we write 
A ~ B (A implies B). Alternatively knowing A ~ B, and A, we infer B, 
written (A, A =~ B) ---> B. But keeping in mind that even in classical logic 
we cannot express inference purely in terms of logic operations, we carry 



118 K.K. Thornber 

that principle over to fuzzy logic. We also preserve the character (symme- 
try) of the implication operation. The result has been a number of rules of 
inference, some, like the crutial rada (proof by contradiction), were not 
obtainable by other interpretations. 

One should carefully distinguish inference and decision theory. In the 
latter one usually carries out explicit operations to determine an output 
that elicits a decision. In the former, by contrast, one relies on implicit 
operations. For  example modus ponens goes into A =~ B to note that if 
l = * 0 i s 0 a n d l = *  l i s l ,  t h e n A =  l a n d A = ~ B =  l m e a n s t h a t B = l ;  
values of A =~ B for A = 0 are not needed for this inference. This going 
inside of, this implicit-function dependence (given x and f(x, y), find y), is 
what inference is all about. 
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APPENDIX A: CHOICE OF IMPLICATION 

A word about the operation of implication is necessary. We shall use 
(A ~ B) = (A' v B), as if it were just another logic connective. Some 
authors have modified A =~ B in order to emphasize one or more aspects 
of inference, eg, (A =~ B) = (A a B). However, we must bear in mind that 
even though the result of an inference in classical logic can be expressed in 
the form, "When A is true, B is true," which can be represented by the 
operation of implication, A ~ B, the two, inference and implication, are 
two very different concepts. In addition, and as a technical point crucial for 
what follows, A a B = 1, A < B, = B, A > B has an inappropriate, logic 
symmetry in representing A ~ B. To be sure it reduces to the classical 
A'  v B for (A, B) = {0, 1}. 2 But it is discontinuous along A = B in the very 
region ((A, B) > 1 /2)  where A =, B is most useful. Indeed, one cannot 
infer B from A and A =~ B for A < B since A a B = 1 for all (A, B) in this 
region. In addition, choosing A a B at once precludes both contraposition 
and reductio ad absurdum. Contraposition is excluded since B a A  (Godel 
implication) cannot be determined from A a B for B > A. ( B a A  = A for 
B > A, but A cannot be had from A at B.) Rada is excluded since A ot B 
and A a B '  cannot be solved for A'  for the same reason, neither ever 
equals A or A'.  To be sure one can infer B from A orB for A > B, 
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(A, A a B )  ~ B = A a B  <w A, according to the spirit of this paper; how- 
ever, if A < B, inference is impossible as A a B = 1, even for A and B 
close to 1. Also, lacking contraposition, there is no modus tollens. 

The choice (A ~ B) = (1 ^(1 - A + B)), which, in contrast with AotB, 
does correspond to A'  v B in the choice of fuzzy logic operations bounded 
sum and bounded product for union and intersection, respectively, and 
which does preserve contraposition, also precludes reductio ad absurdum. 
Again, the logic symmetry is inappropriate since (1 A (1 - A + B)) = 1 
for A < B and (1 - A + B) for A > B. Though continuous across A = B, 
it embodies two distinct functional dependences in the region ((A, B) > 
1/2)  where only one type of dependence would be expectted. Again B 
cannot be inferred from A and A ~ B for A < B. In this, the Lukasiewicz 
form, for A > B one can effect an inference in the form (A, 1 - A + B) 

B = (1 - A + B) - A'  <w A, and similarly for modus tollens A'  = (1 
- A + B) - B <w B'. However, neither inference is possible for B > A, 
although both B and A can be close to 1. In chaining the consequent can 
only decrease, approaching 0 for long chains. This is most undesirable. 
Concerning rada, a degenerate form is in fact possible, but only for 
A > B > A', in precisely the quadrant of (A, B) where rada is least 
expected: specifically one finds A'  = ((1 - A + B) + (1 - A + B') - 
1)/2.  (N.B. A'  < 1/2.)  In logic (A =, B, A ~ B ' )  ---, A' = 1. 

It is surprising, therefore, that by choosing (A ::* B ) =  ( A ' v  B ) =  
max(A', B), not only does one satisfy all the basic operational properties of 
logic, except excluded middle, but one also obtains a number of properties 
of inference not generally obtained with other choices. To be sure Lu- 
casiewicz preserves excluded middle but even so loses a meaningful rada as 
well as idempotency, absorption, distributivity, equivalence, and symmetri- 
cal difference. (A =, B) = max(A', B) maintains rada, as well as all these 
other properties of logic, even without the excluded middle. 

APPENDIX B: DEGENERATE FORMS 

This inference (A,A ~ B) ~ B = (A =~ B) >w A' will yield the fuzzy 
set B only for those elements x ~ X for which B(x) exceeds A'(x). (In 
much the same way, in logic A = 1 and (A ::* B) = 1 are necessary to 
infer B = 1; the other combinations do not permit inferences.) Consider 
the degenerate form (A,A ~ A) ~ A = (A ~ A) >w A'. One might con- 
clude that unless A > 1/2,  so that A > A',  one could not infer A. 
However, since one is given the antecedent A to begin with, no inference 
is necessary. Hence, A ~ A is not expected to play a significant role in 
inference, and can be ignored. It does, of course, equal max (A, A'). But in 
general, as in logic, structures of the form (A A B) ~ (A v C) are to be 
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avoided because they tend to stifle inferences. (In logic this structure 
always equals one.) 

One might conclude on intuitive grounds that (A ~ A) = 1-- i f  I know 
A, I know A. But this is equivalent to postulating excluded middle, and, if 
all the other properties of logic are demanded, one is back to logic 
necessarily. Even worse is that the same intuition yields (A =, A')  = 0: if I 
know A, I know I do not have A'.  But (A =~ A')  :~ 0 even in logic. 
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