Topology and its Applications 25 (1987) 75-80 North-Holland

75

A COUNTEREXAMPLE FOR A PROBLEM OF ARHANGEL'SKII CONCERNING THE PRODUCT OF FRECHET SPACES

Tsugunori Nogura

Department of Mathematics, Fa@y of Science, Ehime University, Bunkyo-cho, Matsuyama, Japan

Received 16 September 1985 Revised 12 March 1986

Using the continuum hypothesis, we give a counterexample for the following problem posed by Arhangel'skii: If $X \times Y$ is Fréchet for each countably compact regular Fréchet space Y, then is X an $\langle \alpha_3 \rangle$ -space?

```
AMS(MOS) Subj. Class. (1980): Primary 54620, 54BlO; 
Secondary: 54A20
\langle \alpha_i \rangle-space
                        BNstrongly Fréchet
                        Fréchet
```
1. Introduction

A topological space X is said to be *strongly Fréchet* $[10]$ (=countably bi-sequential in the sense of [5]) if, for every decreasing sequence $\{A_n: n \in N\}$ accumulating at $x \in X$, there exists a convergent sequence *B* of *X* with $x \in \overline{B \cap A_n}$ for each $n \in N$, where N denotes the integers. If $A_i = A_j$ for each *i* and *j*, then such a space is said to be Fréchet.

It is well-known that Fréchet spaces behave quite badly with respect to product operations. In fact the product of two compact Fréchet spaces need not be Fréchet [9]. The following theorems are positive results for the product of Fréchet spaces when at least one factor space is countably compact.

1.1. Theorem [5]. A space X is strongly Fréchet if and only if $X \times C$ is Fréchet, where $C = \{0\} \cup \{1/n : n \in N\}$ or C is the closed unit interval [0, 1].

1.2. Theorem [2]. *If X is an* $\langle \alpha_3$ -*FU* \rangle -space, then $X \times Y$ is *Fréchet for each countably compact regular Fréchet space Y.*

After proving Theorem 1.2, Arhangel'skii asked whether the converse of the above theorem is true [2, 5.19], i.e. he asked: If $X \times Y$ is Fréchet for each countably compact regular Fréchet space Y, then is X an $\langle \alpha_3 \rangle$ -space?

0166-8641/87/%3.50 @ 1987, Elsevier Science Publishers B.V. (North-Holland)

The purpose of this paper is to construct, under CH, a non- $\langle \alpha_3 \rangle$ -space X such that $X \times Y$ is Fréchet for each countably compact regular Fréchet space Y.

In this paper all spaces are assumed to be Hausdorff topological spaces.

2. **Definition and preliminary results**

Let X be a space. A collection $\mathcal A$ of convergent sequences of X is said to be a *sheaf* in X if all members of $\mathcal A$ converge to the same point of X, which is said to be the vertex of the sheaf A . In this paper all sheaves are assumed to be countably infinite.

We consider the following properties of X which were introduced by Arhangel'skii [l, 21.

Let $\mathcal A$ be a sheaf in X with vertex $x \in X$. Then there exists a sequence B converging to x such that

$$
|\{A \in \mathcal{A} : |A \cap B| = \aleph_0\}| = \aleph_0,\tag{a_3}
$$

$$
|\{A \in \mathcal{A} : A \cap B \neq \emptyset\}| = \aleph_0,\tag{a_4}
$$

where *IAl* denotes the cardinality of a set *A.*

We say B satisfies (α_i) with respect to $\mathcal A$ if B satisfies the property (α_i) for $i = 3, 4$. The class of spaces satisfying the property (α_i) for every sheaf $\mathscr A$ and vertex $x \in X$ is denoted by $\langle \alpha_i \rangle$. We denote by $\langle \alpha_i$ -FU) the intersection of the class of Fréchet spaces and the class $\langle \alpha_i \rangle$ for $i = 3, 4$. For a class $\mathscr C$ of spaces we say an element of % is a %-space. Clearly an $\langle \alpha_3 \rangle$ -space is an $\langle \alpha_4 \rangle$ -space. A w-space in the sense of Gruenhage [3] and a bisequential space are $(\alpha_3$ -FU)-spaces [6, 2].

The following two theorems show the relationship between well known spaces and $\langle \alpha_4$ -FU \rangle -spaces.

2.1. Theorem [2]. A space X is strongly Fréchet if and only if it is an $\langle \alpha_4$ -FU \rangle -space.

2.2. Theorem [8]. *Each countably compact regular Fréchet space is strongly Fréchet (hence* $\langle \alpha_4$ -FU)).

3. **Construction of our example**

We denote by βN the Stone-Cech compactification of N. For a subset A of N, we denote $A^* = \text{Cl}_{\beta N}A - A$. Let F be a closed subset of N^* . We put $X = N \cup \{F\}$ and topologize as follows: Points of N are isolated. The set of the form $U \cup \{F\}$ is a basic neighborhood of *F* in *X*, where *U* is a subset of *N* with $F \subset U^*$. The following facts are well-known.

3.1. Fact. Let Z be a non-empty zero set in N^* . Then $\text{Int}_{N^*}Z \neq \emptyset$.

3.2. Fact. *Two disjoint cozero sets in* N* *have disjoint closures.*

3.3. Fact [4] \blacksquare *Let* $X = N \cup \{F\}$. Then X is strongly Fréchet if and only if F is regular *closed in* N^* *and, for each zero set Z of* N^* , $F \cap Z \neq \emptyset$ *implies* $F \cap \text{Int}_{N^*}Z \neq \emptyset$.

3.4. Lemma (CH). Let Z be a zero set in N^* with the non-empty boundary H. Then *there exist two regular closed sets* F_1 *and* G_1 *in* N^* *such that*

- (i) $F_1 \subset Z$ and $G_1 \subset Z$,
- (ii) Bdy_{N*} $F_1 = Bdy_{N*}G_1 = H$,
- (iii) $Int_{N^*}F_1 \cap Int_{N^*}G_1 = \emptyset,$
- (iv) *for each zero set K of* N^* *such that* $H \cap Bdy_{N^*}K \neq \emptyset$,

 $K \cap \text{Int}_{N^*}F_1 \neq \emptyset$ and $K \cup \text{Int}_{N^*}G_1 \neq \emptyset$.

After constructing F_1 and G_1 , put $F = F_1 \cup (N^* - Z)$ and let $X = N \cup \{F\}$. Then we can show that X is the desired space. This lemma is proved in [7] for another purpose, but we include the proof (under CH); since details of the construction will be used later.

Proof of Lemma 3.4. We construct F_1 and G_1 by transfinite induction. Note that the cardinality of the set of all zero sets in N^* equals the cardinality of the continuum. Let $\{Z_{\alpha}: \alpha < \omega_1\}$ be the family of all zero sets in Z such that $H \cap Bd$ $y_{N^*} Z_{\alpha} \neq \emptyset$ for $\alpha < \omega_1$, where ω_1 is the first uncountable ordinal. Let $\{W_\alpha; \alpha < \omega_1\}$ be a family of zero sets in Z such that $W_{\alpha} \subsetneq W_{\beta}$ for $\alpha > \beta$, $W_{\alpha} = \bigcap \{W_{\beta} : \beta < \alpha\}$ if α is limit and $\bigcap \{W_\alpha: \alpha < \omega_1\} = H$. We choose O_1 and V_1 , non-empty disjoint clopen subsets of $Z_1 \cap W_1$, and inductively we suppose that we have defined for each $\beta < \alpha$, non-empty clopen subsets O_8 and V_8 of N^* such that

$$
\bigcup \{O_{\gamma}: \gamma < \beta\} \subset O_{\beta} \subset \text{Int}_{N^*}Z,
$$
\n
$$
(1)
$$

$$
\bigcup \{V_{\gamma}: \gamma < \beta\} \subset V_{\beta} \subset \text{Int}_{N^*}Z,
$$

$$
Q_{\beta} \cap Z_{\beta} \neq \emptyset, \qquad V_{\beta} \cap Z_{\beta} \neq \emptyset.
$$

$$
(Q_{\beta} - \bigcup \{Q_{\gamma}: \gamma < \beta\}) \cup (V_{\beta} - \bigcup \{V_{\gamma}: \gamma < \beta\}) \subset W_{\beta},
$$
\n
$$
(2)
$$

$$
O_{\gamma} \cap V_{\delta} = \emptyset \quad \text{for } \gamma, \delta \leq \alpha. \tag{3}
$$

We define O_{α} and V_{α} . We first define O'_{α} and V'_{α} as follows: If α is isolated, we put $O'_\alpha = O_{\alpha-1}$ and $V'_\alpha = V_{\alpha-1}$. Assume α is a limit ordinal. Put $\hat{O}_\alpha = \bigcup \{O_\beta : \beta < \alpha\}$ and $\hat{V}_\alpha = \bigcup \{ V_\beta : \beta < \alpha \}$. Then the relation

$$
\bigcup \{(N^*-W_\beta)-O_\beta\colon \beta<\alpha\}=(N^*-W_\alpha)-\hat{O}_\alpha
$$

expresses $(N^* - W_\alpha) - \hat{O}_\alpha$ is cozero set in N^* . Thus it follows that $((N^* - W_\alpha) \hat{O}_\alpha$) \cup \hat{V}_α and \hat{O}_α are disjoint cozero sets in N^* . We choose O'_α any clopen subset of N^* which contains \hat{O}_{α} and which is disjoint from $((N^* - \hat{W}_{\alpha}) - \hat{O}_{\alpha}) \cup \hat{V}_{\alpha}$. By exchanging O_{α} for V_{α} , we can define V_{α}' .

Note that $Z - O'_\alpha$ and $Z - V'_\alpha$ are zero sets in N^* whose boundaries in N^* are H. Since $Z_\alpha \cap (Z - O'_\alpha) \cap (Z - V'_\alpha) \neq \emptyset$, Int_{N*} $(Z_\alpha \cap (Z - O'_\alpha) \cap (Z - V'_\alpha)) \neq \emptyset$ by Fact 3.1. Let S_α and T_α be non-empty clopen subsets of N^* such that

$$
S_{\alpha} \cup T_{\alpha} \subset \text{Int}_{N}^{*}(Z_{\alpha} \cap (Z - O_{\alpha}') \cap (Z - V_{\alpha}') \cap W_{\alpha}).
$$

Let $O_\alpha = O'_\alpha \cup S_\alpha$ and $V_\alpha = V'_\alpha \cup T_\alpha$. We have choosen O_α and $V_\alpha (\alpha < \omega_1)$ satisfying the conditions (1) , (2) and (3) . Put

$$
F_1 = \mathrm{Cl}_{N^*}(\bigcup \{O_\alpha \colon \alpha < \omega_1\}), \qquad G_1 = \mathrm{Cl}_{N^*}(\bigcup \{V_\alpha \colon \alpha < \omega_1\}).
$$

Then clearly F_1 and G_1 satisfy (i), (iii) and (iv). We show (ii). Let U be any clopen subset of N^* with $U \cap H \neq \emptyset$. Then $U \cap Z$ is a non-empty zero set with $U \cap Z \cap H \neq \emptyset$ *0.* Hence $U \cap F_1 \neq \emptyset$ and $U \cap G_1 \neq \emptyset$ by (iv). This implies that *H* is the boundary of F_1 and G_1 . The proof is completed. \Box

It is easy to see that every zero set Z in N^* with non-empty boundary in N^* can be expressed by the form $Z = N^* - \bigcup \{ T_n^* : n \in N \}$, where $\{ T_n : n \in N \}$ is pairwise disjoint infinite subsets of N and $\bigcup \{T_n : n \in N\} = N$. In the arguments below, we fix such $\{T_n: n \in N\}$. We put $F = F_1 \cup (N^* - Z)$ and $X = N \cup \{F\}$. Then clearly *F* is a regular closed in N^* and, by (iv) and Fact 3.3, X is strongly Fréchet. For each clopen subset O in N^* , we denote by \tilde{O} a subset of N with $\tilde{O}^* = O$. We note that

if
$$
\alpha < \beta
$$
, then $O_{\beta} - W_{\alpha} \subset O_{\alpha}$ by (2) (4)

and

$$
T_n \cap \tilde{O}_\alpha \text{ is finite for } n \in N \text{ and } \alpha < \omega_1. \tag{5}
$$

We also note that each T_n and \tilde{O}_α converges to *F* in *X*.

A subset $A \subseteq X$ is closed if and only if $F \in A$, or if A meets each \tilde{O}_a and each *T,* in a finite set.

Assertion 1. The *space* X does not satisfy (α_3) .

Proof. Let $\mathcal{A} = \{T_n : n \in \mathbb{N}\}\$. Then \mathcal{A} is a sheaf with vertex F. Let B be any subset of N satisfying $|{T_n \in A: |T_n \cap B| = \aleph_0} = \aleph_0$. We show that B is not a convergent sequence. We note that $B^* \cap Z$ is a zero set in N^* and $H \cap (B^* \cap Z) \neq \emptyset$. Choose Z_{α} such that $Z_{\alpha} = B^* \cap Z$. Then, by (2), $V_{\alpha} \cap Z_{\alpha} \neq \emptyset$. This show that we can choose an infinite subset $C \subset B$ with $C^* \subset V_\alpha \cap Z_\alpha$. C does not converge to F by (3). The proof is completed. \square

Assertion 2. Let Y be any countably compact regular Fréchet space. Then $W = X \times Y$ *is Fréchet.*

$$
S_n = (T_n \times Y) \cap A
$$

If $(F, q) \in Cl_wS_n$ for some $n \in N$, then, by Theorems 2.2 and 1.1, we can choose $\{w_n: n \in N\}$ in S_n . Therefore we assume $(F, q) \notin \text{Cl}_W S_n$ for every $n \in N$. Note that we can assume $A = \bigcup \{S_n : n \in N\}$. We show that there exists O_α such that

$$
(F, q) \in \text{Cl}_W((O_\alpha \times Y) \cap A). \tag{6}
$$

If such O_{α} exists, then, since \tilde{O}_{α} converges to *F* in *X* and *Y* is strongly Fréchet, the arguments are completed by using Theorem 1.1. We show assertion (6) by dividing into two cases.

Case 1. $(F, q) \notin Cl_W(\bigcup \{Cl_wS_n \cap (\{F\} \times Y): n \in N\}).$

Let G be an open neighborhood of *q* in Y such that

$$
(\{F\} \times \text{Cl}_Y G) \cap (\bigcup \{\text{Cl}_W S_n : n \in N\}) = \emptyset. \tag{7}
$$

We first show that there exists an open neighborhood U_n of *F* in a subspace $T_n \cup \{F\}$ such that $(U_n \times G) \cap S_n = \emptyset$ for each $n \in N$. If such U_n does not exist for some $n \in N$, then there exist $m_k \in T_n$ ($m_1 < m_2 < \cdots$) and $y_k \in G$ such that $(m_k, y_k) \in S_n$. Since $C\vert_{Y}G$ is countably compact, an accumulation point y of the set { $y_n: n \in N$ } exists. Then $(F, y) \in (\lbrace F \rbrace \times Cl_VG) \cap Cl_WS_n$. This contradicts (7).

The set $T_n - U_n$ is finite for each $n \in N$ and $(\bigcup \{T_n - U_n : n \in N\})^* \subset Z$. So there exists W_{α} with $W_{\alpha} \subset Z - (\bigcup \{T_n-U_n: n \in N\})^* \subset (\bigcup \{U_n, n \in N\})^*$. We put $E =$ $\bigcup \{U_n: n \in N\} \cup O_{\alpha} \cup \{F\}$. Note $O_0 - (\bigcup \{U_n: n \in N\})^* \subset O_{\alpha}$ for $\beta \ge \alpha$ by (4), therefore $F = F \cap W_{\alpha} \cup (F - W_{\alpha}) \subseteq (U_{\alpha} | U_n : n \in N)^* \cup O_{\alpha}$. This implication shows that *E* is a neighborhood of *F* in *X*. Since $(F, q) \notin Cl_W((\bigcup \{U_n : n \in N \} \times G) \cap A)$, $(F, q) \in \mathrm{Cl}_W(\tilde{O}_\alpha \times Y) \cap A$). The assertion (6) is proved in this case.

Case 2. $(F, q) \in Cl_W(\bigcup \{Cl_wS_n \cap (\{F\} \times Y): n \in N\})$. Using the Fréchetness of Y, we choose $(F, y_k) \in \text{Cl}_W S_{n_k} \cap (\{F\} \times Y)$ with $\lim_{k \to \infty} (F, y_k) = (F, q)$. Since $S_{n_k} \subset$ $(T_{n_k} \cup \{F\}) \times Y$ and T_{n_k} converges to *F*, there exists $\{w_m^k : m \in N\} \subset S_{n_k}$ with $\lim_{m\to\infty} w_m^k = (F, y_k)$. We put $w_m^k = (a_m^k, b_m^k)$ for *k*, $m \in N$. Let *G* be any open neighborhood of *q* in Y. Then there exists $r \in N$ such that $\{y_k: k > r\} \subset G$. Since ${(F, b_n^k): n \in N}$ converges to (F, y_k) , there exists $m_k \in N$ such that ${(F, b_m^k): m > 0}$ m_k } \subset {*F*} \times *G* for $k > r$. Since {*T_n*: $n \in N$ } is pairwise disjoint,

$$
(\bigcup \{T_{n_k} - \{a_m^k : m > m_k : k > r\})^* \cap (\bigcup \{ \{a_m^k : m > m_k \} : k > r \})^* = \emptyset.
$$

On the other hand

$$
\mathrm{Cl}_{N^*}(\bigcup\{a_m^k: m>m_k\}^* : k > r\}) \subset (\bigcup\{\{a_m^k: m>m_k\}: k > r\})^*
$$

and the boundary of $Cl_{N^*}(\bigcup \{ \{a_m^k : m > m_k\}^* : k > r \})$ in N^* has non-empty intersection with H. These arguments show that $Z - (\bigcup \{T_{n_k} - \{a_m^k : m > m_k : k > r\})^*$ is a zero set in N^* whose boundary in N^* meets *H*. Consequently there exists $\alpha(G) < \omega_1$ such that

$$
Z_{\alpha(G)}=Z-(\bigcup\{T_{n_k}-\{a_m^k: m>m_k\}:k>r\})^*.
$$

Since $O_{\alpha(G)} \cap Z_{\alpha(G)} \neq \emptyset$ by (2) and, by (5), $\tilde{O}_{\alpha(G)} \cap T_n$ is finite for each $n \in N$, $\tilde{O}_{\alpha(G)}$ contains an infinite set $\{a_s^k: i \in N\}$, where $k_i \neq k_j$ if $i \neq j$. We put

$$
A_{\alpha(G)} = \tilde{O}_{\alpha(G)} \cap \bigcup \{ \{ a_m^k : m_k \} : k > r \},
$$

\n
$$
B_{\alpha(G)} = \{ b_m^k : a_m^k \in A_{\alpha(G)} \}.
$$

As Y is countably compact Fréchet, there exist $b_{\alpha(G)} \in Cl_YB_{\alpha(G)}$ and an infinite convergent sequence $C_{\alpha(G)} \subset B_{\alpha(G)}$ such that $\lim C_{\alpha(G)} = b_{\alpha(G)}$. We note $b_{\alpha(G)} \in$ Cl_YG . Hence, by the regularity of Y,

$$
q \in Cl_Y\{b_{\alpha(G)} : q \in G, G \text{ is open in } Y\}.
$$

Again, using the Fréchetness of Y, we can choose $\alpha(G_i) < \omega_1$ with

$$
\lim_{i\to\infty}b_{\alpha(G_i)}=q.
$$

Let $\alpha = \sup{\{\alpha(G_i): i \in N\}}$. We show that O_{α} satisfies the assertion (6). Let *E* and G be open neighborhoods of *F* in *X* and *q* in *Y*, respectively. There exist $b_{\alpha(G_i)} \in G$ and $C_{\alpha(G_i)}$ such that lim $C_{\alpha(G_i)} = b_{\alpha(G_i)}$. Since G is open, $C_{\alpha(G_i)} - G$ is finite. Then ${a_m^k : b_m^k \in C_{\alpha(G_i)} \cap G}$ is an infinite subset of $O_{\alpha(G_i)}$. This shows

 $E \times G \cap (\tilde{O}_x \times Y) \cap A \neq \emptyset$.

The proof of the assertion (6) is completed. \square

References

- [l] A.V. Arhangel'skii, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13 (1972) 1185-1189.
- [2] A.V. Arhangel'skii, The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. (1981) 164-200.
- [3] G. Gruenhage, Infinite games and generalizations of first countable spaces, Gen. Topology Appl. 6 (1976) 339-352.
- [4] V.I. Malyhin, On countable space having no bicompactification of countable tightness, Soviet Math. Dokl. 13 (1972) 1407-1411.
- [5] E. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972) 91-138.
- [6] T. Nogura, Frechetness of inverse limits and products, Topology Appl. 20 (1985) 59-66.
- [7] T. Nogura, The product of $\langle \alpha_i \rangle$ -spaces, Topology Appl. 21 (1985) 251-259.
- [8] R.C. Olson, Bi-quotient maps, countably bi-sequential spaces, Gen. Topology Appl. 4 (1974) l-28.
- [9] P. Simon, A compact Frechet space whose square is not Frechet, Coment Math. Univ. Carolina 21 (1980) 749-753.
- [lo] F. Siwiec, Sequence-covering and countably bi-quotient mappings, Gen. Topology Appl. 1 (1971) 149-154.