Topology and its Applications 25 (1987) 75-80 North-Holland 75

A COUNTEREXAMPLE FOR A PROBLEM OF ARHANGEL'SKII CONCERNING THE PRODUCT OF FRÉCHET SPACES

Tsugunori Nogura

Department of Mathematics, Faculty of Science, Ehime University, Bunkyo-cho, Matsuyama, Japan

Received 16 September 1985 Revised 12 March 1986

Using the continuum hypothesis, we give a counterexample for the following problem posed by Arhangel'skii: If $X \times Y$ is Fréchet for each countably compact regular Fréchet space Y, then is X an $\langle \alpha_3 \rangle$ -space?

```
AMS(MOS) Subj. Class. (1980): Primary 54G20, 54B10;Secondary: 54A20\langle \alpha_i \rangle-space\beta Nstrongly FréchetFréchet
```

1. Introduction

A topological space X is said to be strongly Fréchet [10] (=countably bi-sequential in the sense of [5]) if, for every decreasing sequence $\{A_n: n \in N\}$ accumulating at $x \in X$, there exists a convergent sequence B of X with $x \in \overline{B \cap A_n}$ for each $n \in N$, where N denotes the integers. If $A_i = A_j$ for each i and j, then such a space is said to be Fréchet.

It is well-known that Fréchet spaces behave quite badly with respect to product operations. In fact the product of two compact Fréchet spaces need not be Fréchet [9]. The following theorems are positive results for the product of Fréchet spaces when at least one factor space is countably compact.

1.1. Theorem [5]. A space X is strongly Fréchet if and only if $X \times C$ is Fréchet, where $C = \{0\} \cup \{1/n: n \in N\}$ or C is the closed unit interval [0, 1].

1.2. Theorem [2]. If X is an $\langle \alpha_3$ -FU \rangle -space, then X × Y is Fréchet for each countably compact regular Fréchet space Y.

After proving Theorem 1.2, Arhangel'skii asked whether the converse of the above theorem is true [2, 5.19], i.e. he asked: If $X \times Y$ is Fréchet for each countably compact regular Fréchet space Y, then is X an $\langle \alpha_3 \rangle$ -space?

0166-8641/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

The purpose of this paper is to construct, under CH, a non- $\langle \alpha_3 \rangle$ -space X such that $X \times Y$ is Fréchet for each countably compact regular Fréchet space Y.

In this paper all spaces are assumed to be Hausdorff topological spaces.

2. Definition and preliminary results

Let X be a space. A collection \mathcal{A} of convergent sequences of X is said to be a *sheaf* in X if all members of \mathcal{A} converge to the same point of X, which is said to be the *vertex* of the sheaf \mathcal{A} . In this paper all sheaves are assumed to be countably infinite.

We consider the following properties of X which were introduced by Arhangel'skii [1, 2].

Let \mathcal{A} be a sheaf in X with vertex $x \in X$. Then there exists a sequence B converging to x such that

$$|\{A \in \mathscr{A} \colon |A \cap B| = \aleph_0\}| = \aleph_0, \qquad (\alpha_3)$$

$$|\{A \in \mathscr{A} \colon A \cap B \neq \emptyset\}| = \aleph_0, \tag{(\alpha_4)}$$

where |A| denotes the cardinality of a set A.

We say B satisfies (α_i) with respect to \mathscr{A} if B satisfies the property (α_i) for i = 3, 4. The class of spaces satisfying the property (α_i) for every sheaf \mathscr{A} and vertex $x \in X$ is denoted by $\langle \alpha_i \rangle$. We denote by $\langle \alpha_i \text{-FU} \rangle$ the intersection of the class of Fréchet spaces and the class $\langle \alpha_i \rangle$ for i = 3, 4. For a class \mathscr{C} of spaces we say an element of \mathscr{C} is a \mathscr{C} -space. Clearly an $\langle \alpha_3 \rangle$ -space is an $\langle \alpha_4 \rangle$ -space. A w-space in the sense of Gruenhage [3] and a bisequential space are $\langle \alpha_3 \text{-FU} \rangle$ -spaces [6, 2].

The following two theorems show the relationship between well known spaces and $\langle \alpha_4$ -FU \rangle -spaces.

2.1. Theorem [2]. A space X is strongly Fréchet if and only if it is an $\langle \alpha_4$ -FU \rangle -space.

2.2. Theorem [8]. Each countably compact regular Fréchet space is strongly Fréchet (hence $\langle \alpha_4$ -FU \rangle).

3. Construction of our example

We denote by βN the Stone-Čech compactification of N. For a subset A of N, we denote $A^* = \operatorname{Cl}_{\beta N} A - A$. Let F be a closed subset of N^* . We put $X = N \cup \{F\}$ and topologize as follows: Points of N are isolated. The set of the form $U \cup \{F\}$ is a basic neighborhood of F in X, where U is a subset of N with $F \subset U^*$. The following facts are well-known. **3.1. Fact.** Let Z be a non-empty zero set in N^* . Then $Int_{N^*}Z \neq \emptyset$.

3.2. Fact. Two disjoint cozero sets in N^* have disjoint closures.

3.3. Fact [4]. Let $X = N \cup \{F\}$. Then X is strongly Fréchet if and only if F is regular closed in N^* and, for each zero set Z of N^* , $F \cap Z \neq \emptyset$ implies $F \cap \operatorname{Int}_{N^*}Z \neq \emptyset$.

3.4. Lemma (CH). Let Z be a zero set in N^* with the non-empty boundary H. Then there exist two regular closed sets F_1 and G_1 in N^* such that

- (i) $F_1 \subset Z$ and $G_1 \subset Z$,
- (ii) $\operatorname{Bdy}_{N^*}F_1 = \operatorname{Bdy}_{N^*}G_1 = H$,
- (iii) $\operatorname{Int}_{N^*}F_1 \cap \operatorname{Int}_{N^*}G_1 = \emptyset$,
- (iv) for each zero set K of N^* such that $H \cap Bdy_{N^*}K \neq \emptyset$,

 $K \cap \operatorname{Int}_{N^*} F_1 \neq \emptyset$ and $K \cup \operatorname{Int}_{N^*} G_1 \neq \emptyset$.

After constructing F_1 and G_1 , put $F = F_1 \cup (N^* - Z)$ and let $X = N \cup \{F\}$. Then we can show that X is the desired space. This lemma is proved in [7] for another purpose, but we include the proof (under CH); since details of the construction will be used later.

Proof of Lemma 3.4. We construct F_1 and G_1 by transfinite induction. Note that the cardinality of the set of all zero sets in N^* equals the cardinality of the continuum. Let $\{Z_{\alpha}: \alpha < \omega_1\}$ be the family of all zero sets in Z such that $H \cap \text{Bd } y_{N^*} Z_{\alpha} \neq \emptyset$ for $\alpha < \omega_1$, where ω_1 is the first uncountable ordinal. Let $\{W_{\alpha}: \alpha < \omega_1\}$ be a family of zero sets in Z such that $W_{\alpha} \subsetneq W_{\beta}$ for $\alpha > \beta$, $W_{\alpha} = \bigcap \{W_{\beta}: \beta < \alpha\}$ if α is limit and $\bigcap \{W_{\alpha}: \alpha < \omega_1\} = H$. We choose O_1 and V_1 , non-empty disjoint clopen subsets of $Z_1 \cap W_1$, and inductively we suppose that we have defined for each $\beta < \alpha$, non-empty clopen subsets O_{β} and V_{β} of N^* such that

$$\bigcup \{ O_{\gamma} \colon \gamma < \beta \} \subset O_{\beta} \subset \operatorname{Int}_{N^{*}} Z,$$

$$\bigcup \{ V_{\alpha} \colon \gamma < \beta \} \subset V_{\alpha} \subseteq \operatorname{Int}_{N^{*}} Z.$$
(1)

$$\bigcup \{ v_{\gamma} \colon \gamma < \beta \} \subseteq V_{\beta} \subseteq \operatorname{Int}_{N} \ast \mathcal{Z},$$
$$O_{\beta} \cap Z_{\beta} \neq \emptyset, \qquad V_{\beta} \cap Z_{\beta} \neq \emptyset,$$

$$(O_{\beta} - \bigcup \{O_{\gamma}: \gamma < \beta\}) \cup (V_{\beta} - \bigcup \{V_{\gamma}: \gamma < \beta\}) \subset W_{\beta},$$
⁽²⁾

$$O_{\gamma} \cap V_{\delta} = \emptyset \quad \text{for } \gamma, \, \delta < \alpha.$$
 (3)

We define O_{α} and V_{α} . We first define O'_{α} and V'_{α} as follows: If α is isolated, we put $O'_{\alpha} = O_{\alpha-1}$ and $V'_{\alpha} = V_{\alpha-1}$. Assume α is a limit ordinal. Put $\hat{O}_{\alpha} = \bigcup \{O_{\beta} : \beta < \alpha\}$ and $\hat{V}_{\alpha} = \bigcup \{V_{\beta} : \beta < \alpha\}$. Then the relation

$$\bigcup \{ (N^* - W_\beta) - O_\beta : \beta < \alpha \} = (N^* - W_\alpha) - \hat{O}_\alpha$$

expresses $(N^* - W_{\alpha}) - \hat{O}_{\alpha}$ is cozero set in N^* . Thus it follows that $((N^* - W_{\alpha}) - \hat{O}_{\alpha}) \cup \hat{V}_{\alpha}$ and \hat{O}_{α} are disjoint cozero sets in N^* . We choose O'_{α} any clopen subset of N^* which contains \hat{O}_{α} and which is disjoint from $((N^* - \hat{W}_{\alpha}) - \hat{O}_{\alpha}) \cup \hat{V}_{\alpha}$. By exchanging O_{α} for V_{α} , we can define V'_{α} .

Note that $Z - O'_{\alpha}$ and $Z - V'_{\alpha}$ are zero sets in N^* whose boundaries in N^* are *H*. Since $Z_{\alpha} \cap (Z - O'_{\alpha}) \cap (Z - V'_{\alpha}) \neq \emptyset$, $\operatorname{Int}_{N^*} (Z_{\alpha} \cap (Z - O'_{\alpha}) \cap (Z - V'_{\alpha})) \neq \emptyset$ by Fact 3.1. Let S_{α} and T_{α} be non-empty clopen subsets of N^* such that

$$S_{\alpha} \cup T_{\alpha} \subseteq \operatorname{Int}_{N} (Z_{\alpha} \cap (Z - O'_{\alpha}) \cap (Z - V'_{\alpha}) \cap W_{\alpha}).$$

Let $O_{\alpha} = O'_{\alpha} \cup S_{\alpha}$ and $V_{\alpha} = V'_{\alpha} \cup T_{\alpha}$. We have choosen O_{α} and $V_{\alpha}(\alpha < \omega_1)$ satisfying the conditions (1), (2) and (3). Put

$$F_1 = \operatorname{Cl}_{N^*}(\bigcup \{O_{\alpha} : \alpha < \omega_1\}), \qquad G_1 = \operatorname{Cl}_{N^*}(\bigcup \{V_{\alpha} : \alpha < \omega_1\}).$$

Then clearly F_1 and G_1 satisfy (i), (iii) and (iv). We show (ii). Let U be any clopen subset of N^* with $U \cap H \neq \emptyset$. Then $U \cap Z$ is a non-empty zero set with $U \cap Z \cap H \neq \emptyset$. Hence $U \cap F_1 \neq \emptyset$ and $U \cap G_1 \neq \emptyset$ by (iv). This implies that H is the boundary of F_1 and G_1 . The proof is completed. \square

It is easy to see that every zero set Z in N^* with non-empty boundary in N^* can be expressed by the form $Z = N^* - \bigcup \{T_n^*: n \in N\}$, where $\{T_n: n \in N\}$ is pairwise disjoint infinite subsets of N and $\bigcup \{T_n: n \in N\} = N$. In the arguments below, we fix such $\{T_n: n \in N\}$. We put $F = F_1 \cup (N^* - Z)$ and $X = N \cup \{F\}$. Then clearly F is a regular closed in N^* and, by (iv) and Fact 3.3, X is strongly Fréchet. For each clopen subset O in N^* , we denote by \tilde{O} a subset of N with $\tilde{O}^* = O$. We note that

if
$$\alpha < \beta$$
, then $O_{\beta} - W_{\alpha} \subset O_{\alpha}$ by (2) (4)

and

$$T_n \cap \tilde{O}_{\alpha}$$
 is finite for $n \in N$ and $\alpha < \omega_1$. (5)

We also note that each T_n and \tilde{O}_{α} converges to F in X.

A subset $A \subseteq X$ is closed if and only if $F \in A$, or if A meets each \tilde{O}_{α} and each T_n in a finite set.

Assertion 1. The space X does not satisfy (α_3) .

Proof. Let $\mathscr{A} = \{T_n : n \in N\}$. Then \mathscr{A} is a sheaf with vertex F. Let B be any subset of N satisfying $|\{T_n \in A : |T_n \cap B| = \aleph_0\}| = \aleph_0$. We show that B is not a convergent sequence. We note that $B^* \cap Z$ is a zero set in N^* and $H \cap (B^* \cap Z) \neq \emptyset$. Choose Z_α such that $Z_\alpha = B^* \cap Z$. Then, by (2), $V_\alpha \cap Z_\alpha \neq \emptyset$. This show that we can choose an infinite subset $C \subset B$ with $C^* \subset V_\alpha \cap Z_\alpha$. C does not converge to F by (3). The proof is completed. \Box

Assertion 2. Let Y be any countably compact regular Fréchet space. Then $W = X \times Y$ is Fréchet.

Proof. Let A be a subset of W and $(p, q) \in \operatorname{Cl}_W A - A$. We choose a convergent sequence $\{w_n : n \in N\}$ in A with $\lim_{n \to \infty} w_n = (p, q)$. If $p \neq F$, the arguments are completed trivially. Therefore we can suppose p = F. Put

$$S_n = (T_n \times Y) \cap A.$$

If $(F, q) \in \operatorname{Cl}_W S_n$ for some $n \in N$, then, by Theorems 2.2 and 1.1, we can choose $\{w_n : n \in N\}$ in S_n . Therefore we assume $(F, q) \notin \operatorname{Cl}_W S_n$ for every $n \in N$. Note that we can assume $A = \bigcup \{S_n : n \in N\}$. We show that there exists O_{α} such that

$$(F,q) \in \operatorname{Cl}_{W}((O_{\alpha} \times Y) \cap A).$$
(6)

If such O_{α} exists, then, since \tilde{O}_a converges to F in X and Y is strongly Fréchet, the arguments are completed by using Theorem 1.1. We show assertion (6) by dividing into two cases.

Case 1. $(F, q) \notin \operatorname{Cl}_W(\bigcup \{\operatorname{Cl}_W S_n \cap (\{F\} \times Y): n \in N\}).$

Let G be an open neighborhood of q in Y such that

$$(\{F\} \times \operatorname{Cl}_{Y}G) \cap (\bigcup \{\operatorname{Cl}_{W}S_{n} : n \in N\}) = \emptyset.$$

$$(7)$$

We first show that there exists an open neighborhood U_n of F in a subspace $T_n \cup \{F\}$ such that $(U_n \times G) \cap S_n = \emptyset$ for each $n \in N$. If such U_n does not exist for some $n \in N$, then there exist $m_k \in T_n$ $(m_1 < m_2 < \cdots)$ and $y_k \in G$ such that $(m_k, y_k) \in S_n$. Since $\operatorname{Cl}_Y G$ is countably compact, an accumulation point y of the set $\{y_n : n \in N\}$ exists. Then $(F, y) \in (\{F\} \times \operatorname{Cl}_Y G) \cap \operatorname{Cl}_W S_n$. This contradicts (7).

The set $T_n - U_n$ is finite for each $n \in N$ and $(\bigcup \{T_n - U_n : n \in N\})^* \subset Z$. So there exists W_α with $W_\alpha \subset Z - (\bigcup \{T_n - U_n : n \in N\})^* \subset (\bigcup \{U_n n \in N\})^*$. We put $E = \bigcup \{U_n : n \in N\} \cup O_\alpha \cup \{F\}$. Note $O_\beta - (\bigcup \{U_n : n \in N\})^* \subset O_\alpha$ for $\beta \ge \alpha$ by (4), therefore $F = F \cap W_\alpha \cup (F - W_\alpha) \subset (\bigcup \{U_n : n \in N\})^* \cup O_\alpha$. This implication shows that E is a neighborhood of F in X. Since $(F, q) \not\in \operatorname{Cl}_W((\bigcup \{U_n : n \in N\} \times G) \cap A)$, $(F, q) \in \operatorname{Cl}_W(\tilde{O_\alpha} \times Y) \cap A)$. The assertion (6) is proved in this case.

Case 2. $(F, q) \in \operatorname{Cl}_W(\bigcup \{\operatorname{Cl}_W S_n \cap (\{F\} \times Y): n \in N\})$. Using the Fréchetness of Y, we choose $(F, y_k) \in \operatorname{Cl}_W S_{n_k} \cap (\{F\} \times Y)$ with $\lim_{k \to \infty} (F, y_k) = (F, q)$. Since $S_{n_k} \subset (T_{n_k} \cup \{F\}) \times Y$ and T_{n_k} converges to F, there exists $\{w_m^k: m \in N\} \subset S_{n_k}$ with $\lim_{m \to \infty} w_m^k = (F, y_k)$. We put $w_m^k = (a_m^k, b_m^k)$ for k, $m \in N$. Let G be any open neighborhood of q in Y. Then there exists $r \in N$ such that $\{y_k: k > r\} \subset G$. Since $\{(F, b_n^k): n \in N\}$ converges to (F, y_k) , there exists $m_k \in N$ such that $\{(F, b_m^k): m > m_k\} \subset \{F\} \times G$ for k > r. Since $\{T_n: n \in N\}$ is pairwise disjoint,

$$(\bigcup \{T_{n_k} - \{a_m^k : m > m_k : k > r\})^* \cap (\bigcup \{\{a_m^k : m > m_k\} : k > r\})^* = \emptyset.$$

On the other hand $Cl_{N*}(\lfloor \cdot \rfloor)$

$$Cl_{N^*}(\bigcup \{a_m^k: m > m_k\}^*: k > r\}) \subset (\bigcup \{\{a_m^k: m > m_k\}: k > r\})^*$$

and the boundary of $\operatorname{Cl}_{N^*}(\bigcup \{\{a_m^k: m > m_k\}^*: k > r\})$ in N^* has non-empty intersection with H. These arguments show that $Z - (\bigcup \{T_{n_k} - \{a_m^k: m > m_k: k > r\})^*$ is a

zero set in N^* whose boundary in N^* meets H. Consequently there exists $\alpha(G) < \omega_1$ such that

$$Z_{\alpha(G)} = Z - (\bigcup \{T_{n_k} - \{a_m^k : m > m_k\} : k > r\})^*.$$

Since $O_{\alpha(G)} \cap Z_{\alpha(G)} \neq \emptyset$ by (2) and, by (5), $\tilde{O}_{\alpha(G)} \cap T_n$ is finite for each $n \in N$, $\tilde{O}_{\alpha(G)}$ contains an infinite set $\{a_{s_i}^{k_i}: i \in N\}$, where $k_i \neq k_j$ if $i \neq j$. We put

$$A_{\alpha(G)} = \tilde{O}_{\alpha(G)} \cap \bigcup \{\{a_m^k: m_k\}: k > r\},\$$
$$B_{\alpha(G)} = \{b_m^k: a_m^k \in A_{\alpha(G)}\}.$$

As Y is countably compact Fréchet, there exist $b_{\alpha(G)} \in \operatorname{Cl}_Y B_{\alpha(G)}$ and an infinite convergent sequence $C_{\alpha(G)} \subset B_{\alpha(G)}$ such that $\lim C_{\alpha(G)} = b_{\alpha(G)}$. We note $b_{\alpha(G)} \in \operatorname{Cl}_Y G$. Hence, by the regularity of Y,

$$q \in \operatorname{Cl}_Y\{b_{\alpha(G)}: q \in G, G \text{ is open in } Y\}.$$

Again, using the Fréchetness of Y, we can choose $\alpha(G_i) < \omega_1$ with

$$\lim_{i\to\infty}b_{\alpha(G_i)}=q.$$

Let $\alpha = \sup\{\alpha(G_i): i \in N\}$. We show that O_{α} satisfies the assertion (6). Let E and G be open neighborhoods of F in X and q in Y, respectively. There exist $b_{\alpha(G_i)} \in G$ and $C_{\alpha(G_i)}$ such that $\lim C_{\alpha(G_i)} = b_{\alpha(G_i)}$. Since G is open, $C_{\alpha(G_i)} - G$ is finite. Then $\{a_m^k: b_m^k \in C_{\alpha(G_i)} \cap G\}$ is an infinite subset of $O_{\alpha(G_i)}$. This shows

 $E \times G \cap (\tilde{O}_{\alpha} \times Y) \cap A \neq \emptyset.$

The proof of the assertion (6) is completed. \Box

References

- A.V. Arhangel'skii, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13 (1972) 1185-1189.
- [2] A.V. Arhangel'skii, The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. (1981) 164-200.
- [3] G. Gruenhage, Infinite games and generalizations of first countable spaces, Gen. Topology Appl. 6 (1976) 339-352.
- [4] V.I. Malyhin, On countable space having no bicompactification of countable tightness, Soviet Math. Dokl. 13 (1972) 1407-1411.
- [5] E. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972) 91-138.
- [6] T. Nogura, Fréchetness of inverse limits and products, Topology Appl. 20 (1985) 59-66.
- [7] T. Nogura, The product of $\langle \alpha_i \rangle$ -spaces, Topology Appl. 21 (1985) 251-259.
- [8] R.C. Olson, Bi-quotient maps, countably bi-sequential spaces, Gen. Topology Appl. 4 (1974) 1-28.
- [9] P. Simon, A compact Fréchet space whose square is not Fréchet, Coment Math. Univ. Carolina 21 (1980) 749-753.
- [10] F. Siwiec, Sequence-covering and countably bi-quotient mappings, Gen. Topology Appl. 1 (1971) 149-154.