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a b s t r a c t

This paper contains a classification of the regular minimal abstract polytopes that act as
covers for the convex polyhedral prisms and antiprisms. It includes a detailed discussion
of their topological structure, and completes the enumeration of such covers for convex
uniform polyhedra. Additionally, this paper addresses related structural questions in the
theory of string C-groups.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Symmetric maps on surfaces have been extensively studied, especially in the context of compact surfaces (see [2,4]). The
geometric and combinatorial structure of the prisms and antiprisms have been studied since antiquity, and inmodern times
maps whose vertex figures are polygons have begun to be studied as abstract polyhedra (rank 3 polytopes) [9, Section 6B].
While much work has been done on the study of regular abstract polytopes (the primary reference on the topic is [9]), and
there is increasingly large body of literature on the structure of chiral polytopes (abstract polytopes whose flags fall into
two symmetry classes, with adjacent flags in different orbits, cf. [14,11]), the study of less symmetric abstract polytopes is
still in its early development.

A seminal paper in the study of less symmetric polytopes was Hartley’s [6] discovery of how an abstract polytope may
be represented as a quotient of some regular abstract polytope. This paper is part of an ongoing effort to better understand
the nature of these quotient representations both geometrically as covering maps and algebraically via the group actions
induced by the automorphism groups of the regular covers. Inwhat followswe shall provide explicit descriptions ofminimal
regular covers of the n-prisms and n-antiprisms.

Together with the results in [7], this provides a complete description of theminimal regular covers of the convex uniform
polyhedra, where a uniform polyhedron has regular facets with an automorphism group that acts transitively on its vertices.
We also provide the first description in the context of abstract polytopes of minimal regular covers for an infinite class of
non-regular polytopes.
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2. Background

In the current work our focus is on the study of abstract polyhedra, which are defined by restricting the definition of
abstract polytopes to the rank 3 case. Readers interested in themore general theory and definitions should see [9, Section 2A],
whichwe follow closely here. An abstract polyhedronP is a partially ordered set, with partial order on the elements denoted
by ≤ satisfying the constraints P1–P4.

P1: It contains a unique minimum face F−1 and a unique maximum face F3.
P2: All maximal totally ordered subsets of P , called the flags of P , include F−1 and F3 and contain precisely 5 elements.

As a consequence of P1 and P2, the ordering ≤ induces a strictly increasing rank function on P with the ranks of F−1 and F3
being −1 and 3, respectively. Following the terminology of the inspiring geometric objects, the elements of ranks 0, 1 and
2 of an abstract polyhedron are respectively called vertices, edges and faces. Let F ,G be two elements of P . We say F and G
are incident if F ≤ G or G ≤ F .

P3: The polyhedron P is strongly connected (defined below).
P4: The polyhedron P satisfies the ‘‘diamond condition’’, that is, all edges are incident to precisely two vertices and two

faces, and if a vertex V is incident to a face F , then there exist precisely two edges incident to V and F .

A section determined by F and G is a set of the form G/F := {H | F ≤ H ≤ G}. A poset P of rank n is said to be
connected if either n ≤ 1 or n ≥ 2 and for any two proper faces F ,G ∈ P there exists a finite sequence of proper faces
F = H0,H1, . . . ,Hk = G of P where Hi−1 and Hi are incident for each 1 ≤ i ≤ k. A poset P is said to be strongly connected
if every section of P is connected.

Let P be an abstract polyhedron. The vertex-figure of P at a vertex v is the section P/v = {F ∈ P | v ≤ F}. The degree
of a vertex v is the number of edges containing v, and the degree of a face f (sometimes called co-degree of a face) is the
number of edges contained in f . Polyhedra for which the degree of every vertex is p and the co-degree of every face is q are
said to be equivelar of Schläfli type {p, q}.

It follows from P4 that, given i ∈ {0, 1, 2} and a flag Ψ of P , there exists a unique flag Ψ i which differs from Ψ only
it its element at rank i. The flag Ψ i is called the i-adjacent flag of Ψ . The strong connectivity implies now that each face or
vertex-figure of P is isomorphic to a polygon as a poset.

A rap-map is a map between polyhedra preserving rank and adjacency, that is, each element is sent to an element of the
same rank, and adjacent flags are sent to adjacent flags. An automorphism of a polyhedron P is a bijective rap-map of P to
itself. We denote the group of automorphisms of a polyhedron by Γ (P ) – or simply by Γ whenever there is no possibility
of confusion – and say that P is regular if Γ acts transitively on the set of flags of P , denoted F (P ). Familiar examples of
geometric polyhedra whose face lattices are regular abstract polyhedra are the platonic solids and the regular tilings of the
plane by triangles, squares or hexagons.

Throughout this paper we will use ‘‘polyhedra’’ to mean either the geometric objects or abstract polyhedra, as
appropriate.

A string C-group G of rank 3 is a group with distinguished involutory generators ρ0, ρ1, ρ2, where (ρ0ρ2)
2

= id, the
identity in G, and ⟨ρ0, ρ1⟩ ∩ ⟨ρ1, ρ2⟩ = ⟨ρ1⟩ (this is called the intersection condition).

The automorphism group of an abstract regular polyhedron P is always a string C-group of rank 3. In fact, given an
arbitrarily chosen base flag Φ of P , ρi is taken to be the (unique) automorphism mapping Φ to the i-adjacent flag Φ i.
Furthermore, any string C-group of rank 3 is the automorphism group of an abstract regular polyhedron [9, Section 2E],
so, up to isomorphism, there is a one-to-one correspondence between the string C-groups of rank 3 and the abstract regular
polyhedra. Thus, in the study of regular abstract polyhedra we may either work with the polyhedron as a poset, or with its
automorphism group. We now review some of the relevant results and definitions from [12,10].

The monodromy group Mon(P ) := ⟨r0, r1, r2⟩ of a polyhedron P is the group of permutations on F (P ) generated
by the maps ri : Ψ → Ψ i (see [8]). It is important to note that these are not automorphisms of P since they are not
adjacency preserving (compare the action of r2 on Ψ and Ψ 1). A string C-group Γ = ⟨ρ0, ρ1, ρ2⟩ has a flag action on P if
there is a group homomorphism from Γ → Mon(P ) defined by ρi → ri. Note also that the action of ri (and thus of the
flag action) commutes with the automorphisms of any given polyhedron, so (Ψ ri)α = (Ψ α)ri and more generally, for all
w ∈ Mon(P ), α ∈ Γ (P ) then (Ψ w)α = (Ψ α)w. Observe that in the case that there exists a group homomorphism from
Γ to Mon(P ), it is contravariant since (Ψ ρi)ρj = (Ψ i)ρj = (Ψ ρj)

i
= Ψ rjri.

We say that the regular polyhedron P covers Q, denoted by P ↘ Q, if Q admits a flag action from Γ (P ). (This implies
the notion of covering described in [9, p. 43].) For example, if p is the least common multiple of the co-degrees of the faces
of a polyhedron P , and q is the least commonmultiple of the vertex degree of P , then P is covered by the tessellation T of
type {p, q} whose automorphism group is isomorphic to the string Coxeter group

[p, q] := ⟨ρ0, ρ1, ρ2 | (ρ0ρ2)
2

= (ρ0ρ1)
p

= (ρ1ρ2)
q
= id⟩.

Here the polyhedron T can be viewed as a regular tessellation of the sphere, Euclidean plane or hyperbolic plane, depending
onwhether 1

p +
1
q is bigger than, equal to, or less than 1

2 , respectively.We say thatP is aminimal regular cover ofQ ifP ↘ Q

and if R is any other regular polyhedron which covers Q and is covered by P , then P = R.
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Let P ↘ Q, then by the main result of [5] the structure of Q is totally determined by the stabilizer N of a specified base
flag Φ ∈ F (Q) under the flag action of Γ (P ). In fact, the elements of Q are understood to be precisely the orbits of the
elements of P under the action of N .

Central to the identification and construction ofminimal regular covers of polyhedra is the following theorem combining
results from [12,10].

Theorem 1. Let Q be an abstract polyhedron and Mon(Q) its monodromy group. Then Mon(Q) is a string C-group. Moreover,
the regular abstract polytope P associated with Mon(Q) is the minimal regular cover for Q.

The proof of these facts in [12] depends on the observation thatMon(Q) ∼= Γ /Core(Γ ,N), whereΓ is the automorphism
group of any regular cover of Q, N is the stabilizer in Γ of a flag in Q under the flag action of Γ and the core is the largest
normal subgroup of Γ in N , denoted Core(Γ ,N).

It verges on folklore that whenever P is regular, Γ (P ) ∼= Mon(P ) [10]. This leads to a useful reinterpretation of the
condition for a regular polyhedron P to be a cover of Q. The fact that Q admits a flag action by Γ (P ) is equivalent to
observing that there is an epimorphism from Mon(P ) to Mon(Q). Thus, we find it more natural to understand the cover
P ↘ Q as an epimorphism of monodromy groups, instead of as a contravariant homomorphism from an automorphism
group to a monodromy group. This perspective is motivated by the natural way in which i-adjacent flags of P are mapped
into i-adjacent flags of Q. Henceforth we shall proceed according to this notion and use the generators r0, r1, r2 of Mon(P )
instead of those of Γ (P ) to denote the action on the flags of Q. For compactness of notation, we will frequently write a, b
or c instead of r0, r1 or r2, respectively.

3. On the sufficiency of generating sets for flag stabilizers

For a given abstract polyhedronP , we define its flag graphGF (P ) as the edge-labeled graphwhose vertex set consists of
all flags of P , where two vertices (flags) are joined by an edge labeled i if and only if they are i-adjacent for some i = 0, 1, 2.

We recall a standard result from graph theory (see, e.g., [1]):

Theorem 2. Let G and G∗ be dual planar graphs, and T a spanning tree of G. Then the complement of the edges of T is a spanning
tree for G∗.

We also recall the following useful theorems from [13]:

Theorem 3. Let T be a spanning tree in the flag graph GF (Q) of Q rooted at Φ , a specified (base) flag of Q. For each edge
e = (Ψ , Υ ) of GF (Q), define the walk βe as the unique path from Φ to Ψ in T , across e and followed by the unique path from
Υ to Φ . Let wβe be the word in Γ inducing the walk βe. Then S = {wβe : e ∈ GF (Q) \ T } is a generating set for StabΓ (Φ).

Note that this is essentially just a restatement of the Reidemeister–Schreier algorithm for finding a generating set for the
stabilizer of a vertex in the automorphism group of any finite graph (cf. [3]), however this theorem extends the result to
countably infinite graphs in the natural way.While the generating sets for the stabilizer of a base flag obtained in Theorem 3
are handy, a more natural way to construct elements of the stabilizer of a base flag in a tiling come from lollipopwalks, that
is, walks from the base flag to the cell of the flag graph corresponding to a vertex, edge or face of the tiling (the stem of the
walk), around that cell, and back along the same path. The following theorem allows us to construct a generating set for the
stabilizer of a base flag in a tiling using this more natural construction.

Theorem 4. Let Q be a finite polyhedron with planar flag graph, Φ be a base flag for Q, and let P ↘ Q with Γ := Aut(P ).
Then StabΓ (Φ) admits a generating set containing no more than one generator for each vertex and face of Q.

Proof. Let T be a spanning tree in GF (Q), and T ∗ the spanning tree for GF (Q)∗ corresponding to the omitted edges of T
in F G(Q). Let {gx} be a set of elements of Γ corresponding to the vertices, edges and faces of Q such that each gx is of the
form

gx = wx(rirj)qxw−1
x (1)

where qx is the degree of the node x in GF (Q)∗ corresponding to a vertex, edge or face of Q, and wx induces a walk on the
flag graph from Φ to a flag on the corresponding vertex, edge or face entirely contained in T . Then each gx corresponds to a
lollipop walk in GF (Q). Let G = {gx|x ∈ Q} ∪ {g−1

x |x ∈ Q}.
To prove the result, it suffices to show that each of the wβe of Theorem 3 induced by T may be obtained as a suitably

ordered product of elements from G. Let e be an omitted edge of T in F G(Q). We say that a node x of T ∗ is enclosed by βe if
it is contained in the region bounded by βe. An edge of T ∗ is enclosed by βe if either of its endpoints is. Our proof proceeds
by induction on the number of edges enclosed by βe.

Suppose βe encloses a single edge of T ∗, then βe encloses a single node u ∈ T ∗ corresponding to a cell U of F G(Q). To see
this it suffices to observe that βe crosses e∗, and bounds a simply connected region and so cannot contain both endpoints
of e∗. Thus wβe induces a walk in T to a flag on U , around the cell and back again. Thus wβe = gu (or its inverse) for some
choice of u.
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Fig. 1. A diagram of the inductive step in Theorem 4 for an edge ewith node u of degree d = 4. Black and gray edges are in T ∗ , green edges are in GF (Q),
solid green edges are traversed by gu and dashed gray edges correspond to portions of T ∗ that may vary in size depending on the choice of e. Note that the
ordering on the vi here corresponds to wβe traversing the edge e counterclockwise. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. An example shown in red of a subtree S4 obtained during the inductive step of Theorem 4, in this case corresponding to the vertex v4 . (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

As an inductive hypothesis, suppose that if a word βe encloses at most k − 1 ≥ 1 edges of the dual T ∗ of the tree T in
F G(Q), then it can be expressed as a product of elements of Gwith respect to the tree T .

Suppose βe encloses k edges. Let e∗ be the edge in T ∗ dual to e, denote the endpoints of e by Ψ and Υ and without loss of
generality suppose thatwβe traverses e fromΨ toΥ and let u and v be the endpoints of e∗, where u is enclosed by βe and v is
not. Let U denote the cell of GF (Q) corresponding to u, and let Λ denote the first vertex of U traversed by gu. The direction
in which wβe traverses the edge e induces an orientation on the edges of U . Denote the degree of u ∈ T ∗ by d. We index the
edges incident to u (other than e∗) and e1, e2, . . . , ek−1, ek+1, ek+2, . . . , ed starting atΨ and running opposite the orientation
induced on the edges of the cell U in the order crossed so that Λ is shared by ek−1 and ek+1. Label the dual edges with
the corresponding labels, i.e., e∗

1, . . . , e
∗

k−1, e
∗

k+1, . . . , e
∗

d , and their other endpoints v1, . . . , vk−1, vk+1, . . . , vd, respectively
(see Fig. 1). By construction βe crosses only the edge e∗ of T ∗ and so both endpoints of the remaining edges incident to u in
T ∗ are enclosed by βe. Let T ′ be the enclosed edges of T ∗ and their endpoints, and observe that T ′ is a tree. Thus S = T ′

\ {u}
is a forest in T ∗. Denote the components of S by S1, S2, . . . , Sk−1, Sk+1, . . . , Sd−1 such that vi ∈ S i, and let Si = Si ∪ {e∗

i , u}
for each of i = 1, . . . , d − 1, i ≠ k (an example is shown in Fig. 2).

Observe that each of the trees Si is the enclosed tree for the corresponding βei , and so by the inductive hypothesis, each
of the wβei

for i = 1, . . . , d is equivalent to a product of the gx (or their inverses) suitably ordered. Also, gu ∈ G corresponds
to a walk in T to Λ, around U , and back again. Thus wβe is equal to the product

k−1
i=1

w
s(i)
βei


g s(k)
u


d

i=k+1

w
s(i)
βei


,
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Fig. 3. Arrows indicate the orientation of traversal of the wβei
and gu used in the inductive step of Theorem 4.

where s(i) is ±1 depending on whether the element or its inverse is required to keep the corresponding walks coherently
oriented around the node u (respecting the orientation induced by wβe as above). In the case of wβei

, this would be opposite
the orientation of the edge ei, and in the case of gu thiswould be in the same orientation (see Fig. 3).With such an orientation,
group elements in the wβei

corresponding to shared edges in GF (Q) are cancelled by successive terms in the products and
thus wβe may be written as a product (suitably ordered) of elements of G.

Thus, by finite induction, any of the wβe may be written as a product of elements in G. Note that any word corresponding
to a walk from Φ in T to a flag on a cell corresponding to an edge of Q, around that cell and back is automatically trivial, and
so may be safely omitted from the generating set for StabΓ (Φ). Likewise, we may omit the inverses from the description of
our generating set and so we may conclude that StabΓ (Φ) = ⟨gx⟩ where x is taken from the set of faces and vertices of Q,
as desired. �

Observe that by the argument above, a generating set for StabΓ (Φ) may be obtained by identifying a spanning tree T in
the flag graph and a set of elements of Γ corresponding to lollipop walks with stems in T rooted at Φ about the faces and
vertices of Q. This provides an algorithm for finding a small generating set for StabΓ (Φ). We summarize this useful fact in
the following corollary.

Corollary 5. Let Q, P , Φ, Γ as in Theorem 4. Let T be a spanning tree in GF (Q). Let G = {gx} a set of elements of Γ indexed
by the set of faces and vertices in Q of the form

gx = wx(riri+1)
qxw−1

x

with qx the degree of x ∈ GF (Q)∗ and wx induces a walk in T from Φ to a flag on x. The StabΓ (Φ) = ⟨G⟩.

Note that in the case of uniform polyhedra (such as prisms and antiprisms) the generating set may be reduced even
further. Suppose Q is a uniform polyhedron with regular cover P such that P has Schläfli type {p, q} where q is the degree
of any (every) vertex inQ. Then each of the gx corresponding to a vertex ofQ in the argument above is trivial inΓ = Aut(P )
and so may be safely omitted from the generating set for StabΓ (Φ).

4. Prisms

Let Γ be the universal regular cover of the n-prism (n = 3 or n ≥ 5), that is, the Coxeter group

⟨a, b, c | a2 = b2 = c2 = (ac)2 = (bc)3 = (ab)l.c.m.(4,n)
= id⟩.

We define type A to be those flags containing a square and an edge contained in an n-gon. We let g−1 := (ab)−4, and in
general gk := cb(ab)kc(ab)4c(ba)kbc for k = 0, 1, . . . , n − 2. We further let hn := c(ab)nc.

Proposition 6. Let gi, hn as stated above, then

StabA = ⟨gk, hn | k = −1, . . . , n − 2⟩

for any base flag of type A.

Proof. It is immediately clear that the given elements are in the stabilizer of flags of type A since they correspond to walks
around either one of the bases (hn) or to each of the square faces (gk). Since all of the words corresponding to a walk around
a vertex are trivial in [l.c.m.(4, n), 3], by Corollary 5 and the spanning tree T given in Fig. 4, we know that StabA is generated
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Fig. 4. The spanning tree of the flag graph for a 5-prism (dashed edges of are identified to construct the prism). Bold edges correspond to edges of the
spanning tree T , while colored hairline edges correspond to the edges in F G(Q) \ T . The tree can be extended to arbitrary n-prisms by introducing (or
removing) additional copies of the yellow highlighted region. Edge colors indicate the type of adjacency relationship on the flags, i.e., red corresponds to
the action of r0 , green to the action of r1 and blue to r2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. The walk corresponding to
1

i=n−2 gi on the 5-prism, where n = 5.

by G = {gk, hn, babc(ab)ncbab}, since each g ∈ G corresponds to a lollipop walk for a face of the prism with stem in T . It
suffices therefore to demonstrate that babc(ab)ncbab is equivalent to some product of the gk and hn.

Consider now the product γ = g−1
−1hn(

1
i=n−2 gi)g0. We first observe that

1
i=n−2

gi =

1
i=n−2

cb(ab)ic(ab)4c(ba)ibc = cb


1

i=n−2

(ab)ic(ab)4c(ba)i

bc

= cb(ab)n−2


1

i=n−2

c(ab)4cba


bc = cb(ab)n−2 acb(ab)3cban−2

bc

= cb(ab)n−2a

cb(ab)2abcb

n−2
abc = c(ba)n−1 cb(ab)2acbcn−2

abc

= c(ba)n−1cb

(ab)2ac

n−2
bcabc = c(ba)n−1cb(ababca)n−2bcabc

= c(ba)n−1cba(babc)n−2abcabc.

Thus
1

i=n−2 gi corresponds to the walk depicted in Fig. 5. We now observe that if we multiply this product on the left by hn
and on the right by g0 we obtain

hn

1
i=n−2

gig0 = c(ab)nc · c(ba)n−1cba(babc)n−2abcabc · cbc(ab)4cbc

= cabcba(babc)n−2abcac(ab)4cbc = acbcba(babc)n−2aba(ab)4cbc
= abca(babc)n−2(ba)2bcbc = abac(babc)n−2(ba)2bcbc.

This corresponds to the walk in the flag graph of the prism shown in Fig. 6. We now multiply on the left by g−1
−1 , obtaining

γ = (ba)4 · abac(babc)n−2(ba)2bcbc
= bababc(babc)n−2babacb = ba(babc)n−1babcab = ba(babc)nab
= bab(abcb)n−1abcab = bab(acbc)n−1abcab = bab(cabc)n−1abcab
= babc(ab)n−1cabcab = babc(ab)n−1acbcab = babc(ab)n−1abcbab = babc(ab)ncbab

as desired. �
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Fig. 6. The walk in the flag graph of the 5-prism corresponding to abac(babc)n−2(ba)2bcbc , where n = 5.

4.1. Minimal regular cover of the n-prism

We now proceed to prove that ⟨a, b, c|a2 = b2 = c2 = (ab)l.c.m.(4,n)
= (bc)3 = (ac)2 = w = id⟩, where w = (c(ab)2

c(ab)3)2, is the automorphism group of the minimal regular cover of the n-prism for arbitrary values of n ∈ N, n ≥ 3. Let
Γ = ⟨a, b, c|a2 = b2 = c2 = (ab)l.c.m.(4,n)

= (bc)3 = (ac)2 = id⟩ and denote ClΓ (w) by Cl∗.
We now show that gk · Cl∗ = g−1

k−2 · Cl∗ for i = 1, . . . , n − 1. First we rewrite

gk = cb(ab)kc(ab)4c(ba)kbc
= c(ba)k+1c(ba)3bcb(ab)kc
= c(ba)k+1c(ba)3cbc(ab)kc.

Observe that the equation w = id is equivalent to (ba)2c(ba)3cb = c(ab)3caba. Then,
gk · Cl∗ = c(ba)k−1((ba)2c(ba)3cb)c(ab)kc · Cl∗ = c(ba)k−1(c(ab)3caba)c(ab)kc · Cl∗

= c(ba)k−1c(ab)3acbcaab(ab)k−1c · Cl∗ = c(ba)k−1c(ab)3abcbb(ab)k−1c · Cl∗

= c(ba)k−1c(ab)4c(ab)k−1c · Cl∗ = c(ba)k−2bacab(ab)3c(ab)k−1c · Cl∗

= c(ba)k−2bcb(ab)3c(ab)k−1c · Cl∗ = g−1
k−2 · Cl∗.

As a consequence,

StabA/Cl∗ = ⟨g−1 · Cl∗, g0 · Cl∗, hn · Cl∗⟩. (2)
In what follows we describe the action of the generators listed in (2) on the flags of type different from A. Let flags of type

B be the ones containing an edge between two squares, and flags of type C those containing an n-gon.
Note that g−1 · Cl∗ fixes flags of type B, and acts on each flag type C like a 4-step rotation of the prism. Flags of type C

remain fixed under g0 · Cl∗ whereas each flag type B is mapped to its image under a 4-step rotation on the prism. Finally,
the action of hn · Cl∗ on flags of type B and C depends on the congruence of n (mod 4). If n ≡ 0, then hn is a trivial word in
Γ ; if n ≡ 2, then hn · Cl∗ acts on each flag type B and C like a half-turn with center in an adjacent square of the prism; and if
n ≡ 1, 3 then hn · Cl∗ interchanges flag-orbits B and C.

We now center our attention to the 4n-prisms. As observed in the previous paragraph, in this case hn is trivial and
StabA/Cl∗ is generated by the two elements g−1 ·Cl∗ and g0 ·Cl∗. Assume that an element x = ga1

−1g
b1
0 ga2

−1g
b2
0 · · · gam

−1g
bm
0 ·Cl∗ ∈

StabA/Cl∗ acts trivially on all flags of types B and C. Because of the action described in the previous paragraph, we have
that


i ai ≡


i bi ≡ 0(mod n). Conversely, every word in StabA/Cl∗ satisfying the congruence relation just described acts

trivially on all flags of types B and C and belongs to the core of StabA on Γ .

Proposition 7. The automorphism group of the minimal regular cover of the 4n-prism is given by the Coxeter group [4n, 3]
subject to the single extra relation

(c(ab)2c(ab)3)2 = id.

Proof. Following the paragraph preceding the proposition, it only remains to prove that any element x = ga1
−1g

b1
0

ga2
−1g

b2
0 · · · gam

−1g
bm
0 · Cl∗ ∈ StabA/Cl∗ with


i ai ≡


i bi ≡ 0(mod n) is trivial. It suffices to prove that g−1 · Cl∗ and g0 · Cl∗

commute, since clearly gn
−1 and gn

0 are trivial in Γ . We frequently make use of the fact that (bc)3 = id. For convenience we
omit ‘‘·Cl∗’’.

g−1
−1g0 = (ab)4cbc(ab)4cbc = (ab)3abbcb(ab)3abbcb

= (ab)3acb(ab)3acb = (ab)3cab(ab)3cab = [(ab)3c(ab)2](ab)2cab.

We now use the fact that w = id is equivalent to (ab)3c(ab)2 = c(ba)2c(ba)3c .

g−1
−1g0 = (c(ba)2c(ba)3c)(ab)2cab = c(ba)2c(ba)2bacababcab

= c(ba)2c(ba)2bcbabcab = cbabacbabacbcabcab
= cbabcababcabacbcab = cbabc[(ab)2cababc]bab.
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Since w = id is equivalent to (ab)2c(ab)2c = bac(ba)2c(ba)3,

g−1
−1g0 = cbabc(bac(ba)2c(ba)3)bab = cbabcbca(ba)2c(ba)4b

= cbacba(ba)2c(ba)4b = cbcaba(ba)2bbc(ba)4b
= cbc(ab)4cbc(ab)4 = g0g−1

−1 . �

We go now to the remaining cases of n-prism, that is, n ≡ 1, 2, 3(mod 4).
Note that there is a rap-map from the 2n-prism to the n-prism consisting in wrapping twice each 2n-gon on itself, while

identifying the squares by opposite pairs. In other words, the rap-map identifies each flag with the flag obtained from it by
the half-turn Rπ whose axis contains the centers of both 2n-gons. As a consequence, any string C-group having a flag-action
on the 2n-prism has a flag-action on the n-prism. In particular, the minimal regular cover of the 2n-prism is a regular cover
of the n-prism. We shall prove that the minimal regular covers of the 2n-prism and of the n-prism coincide whenever n is
not a multiple of 4.

First consider the case when n ≡ 2(mod 4), that is, n = 2k for some odd integer k. If there is a nontrivial element α in the
minimal regular cover of the 4k-prism acting trivially on the 2k-prism, then it must act on each flag of the 2k-prism either
like id, or like the half-turn Rπ , with not all actions being trivial. We prove next that such an α does not exist.

Note thatα always belongs to the stabilizer of flags of type A of the 2k-prism, but itmay ormay not belong to the stabilizer
StabA of flags of type A of the 4k-prism. We first discard the possibility of α belonging to StabA. Note that g−1 fixes all flags
of type B of the 4k-prism while g0 rotates them 4 steps around the prism. Similarly, g0 fixes flags of type C while g−1 rotates
them 4 steps around the prism. Let GPr be the subgroup of the rotation group of the 2k-prism generated by a 4-step rotation.
Then StabA acts on the set consisting of a given flag ΦB of type B, a given flag ΦC of type C, and the images of ΦB and ΦC by
GPr. Since 2k is not a multiple of 4, Rπ ∉ G. As a consequence, there is no nontrivial element in StabA/Cl∗ acting on flags of
type B and C either like the identity, or like Rπ , but not like the identity in both kinds of flags.

The set of elements acting like Rπ on flags of type A is a right coset of StabA. In fact, we can choose that coset to be
c(ab)kc · StabA. If α is not in StabA, then it must belong to c(ab)kc · StabA; however, all elements in StabA preserve the n-gons
of the n-prism, while c(ab)kc interchanges them. In doing so, it does not act on flags of type C like id or Rπ . This proves
the non-existence of α, and hence, the minimal regular cover of the n-prism must coincide with that of the 2n-prism when
n = 2k for odd k.

Finally consider the case when n is odd. Assume that there is an element α in the minimal regular cover of the 2n-prism
acting on each flag either like id or like Rπ . We note that g−1 and g0 either preserve or rotate 4 steps flags of types B and
C. Since 2n ≡ 2(mod 4), then it is possible to map by a word on g−1 and g0 any flag type B (or C) into its image by all
rotations by an even number of steps, but not by an odd number of steps, around the 2n-prism. On the other hand, h2n is
an involution which maps flags on a 2n-gon into flags of the other 2n-gon. These generators also satisfy the property that
h2ngih2n = g−1

i , i = −1, 0. Since n is odd, there is no element in StabA mapping a flag type B or C of the 2n-prism to its
image by Rπ , and α cannot belong to StabA.

Again we choose the set of elements acting like Rπ on flags of type A to be c(ab)nc · StabA, and we assume α ∈

c(ab)nc · StabA. We note that all elements in StabA preserve the flag-orbits of the 2n-prism, while c(ab)nc interchanges
flag orbits B and C. In doing so, it does not act on flags of type C like id or Rπ . This proves the non-existence of α, and hence,
the minimal regular cover of the n-prism must coincide with that of the 2n-prism (and to that of the 4n-prism) when n is
odd.

Overall we proved the following.

Theorem 8. The automorphism group of the minimal regular cover of the n-prism is given by the Coxeter group [l.c.m(4, n), 3]
subject to the single extra relation (c(ab)2c(ab)3)2 = id.

At the beginning of the section we discarded the case n = 4 (the cube) to avoid unnecessary bifurcations of the analysis.
Nevertheless, Proposition 6 and Theorem 8 hold for n = 4 as well. The arguments of the proof of Proposition 6 hold once
it is clarified that all faces are equivalent under the automorphism group and a proper definition of the group elements gk
and h4 is provided. The validity of Proposition 6 can also be derived directly from Theorem 3 for a suitable spanning tree.
Furthermore, Theorem 8 holds for n = 4 since relation (c(ab)2c(ab)3)2 = id is trivial in the cube.

To conclude this section we point out that the arguments here developed also show that the minimal regular cover of
the ∞-prism, or the map on the plane consisting only of an infinite strip divided into infinitely many squares, is the Coxeter
group [∞, 3] subject to the single relation (c(ab)2c(ab)3)2.

5. Antiprisms

Let Γ be the universal regular cover of the n-antiprism (n ≥ 4), that is, the Coxeter group
⟨a, b, c | a2 = b2 = c2 = (ac)2 = (bc)4 = (ab)l.c.m(3,n)

= id⟩.
We recall that flags of type A contain a triangle and an edge contained in an n-gon. We let g−1 := (ab)−3, h−1 := bc(ab)3cb,
and in general gk := cb(ab)kc(ab)3c(ba)kbc and hk := cb(ab)kcabc(ab)3cbac(ba)kbc for k = 0, 1, . . . , n − 2. We further let
hn := c(ab)nc.
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Fig. 7. The spanning tree of the flag graph of the 4-antiprism (dashed edges are identified to construct the antiprism). Bold edges correspond to edges of
the spanning tree T , while colored hairline edges correspond to the edges of F G(Q) \ T . The tree can be extended to arbitrary n-antiprisms by introducing
(or removing) additional copies of the yellow highlighted region. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Proposition 9. Let gi, hi, hn as defined above, then

StabA = ⟨gk, hi, hn | k = −1, . . . , n − 2⟩.

Proof. While it is immediately clear that the given elements are in the stabilizer of flags of type A since they correspond to
walks around either one of the bases (hn) or to each of the triangular faces (gk, hk), and since all of thewords corresponding to
awalk around a vertex are trivial in [l.c.m.(3, n), 4], by Corollary 5 and the spanning tree given in Fig. 7we know that StabA is
generated by {gk, hk, hn, bcbabc(ab)ncbabcb} for−1 ≤ l ≤ n−2. It suffices therefore to demonstrate that bcbabc(ab)ncbabcb
is equivalent to some product of the elements gk, hi and hn.

We begin by considering the product
1

k=n−2

h−1
k gk =

1
k=n−2

cb(ab)kcabc(ba)3cbac(ba)kbc · cb(ab)kc(ab)3c(ba)kbc

=

1
k=n−2

cb(ab)kcabc(ba)3c(ab)2c(ba)kbc

= cb


1

k=n−2

(ab)kcabc(ba)3c(ab)2c(ba)k

bc

= cb(ab)n−2


1

k=n−2

cabc(ba)3c(ab)2cba


bc

= cb(ab)n−2 cabc(ba)2bcbabcban−2
bc = cb(ab)n−2a


cbc(ba)2bcbabcb

n−2
abc

= c(ba)n−1cbc((ba)2bcbacb)n−3(ba)2bcbabcbabc
= c(ba)n−1cbcb(ababcbac)n−3b(ba)2bcbabcbabc
= c(ba)n−1cbcb(ababcbac)n−3b(ba)2bcbabcbabc
= c(ba)n−1cbcba(babcbc)n−3babcbabcbabc.

We also note that h−1
0 g0 = cbcabc(ba)3cbacbc · cbc(ab)3cbc = cbcabc(ba)2bcbabcbc , so after some further tedious

computations1 we observe that γ = hn
0

k=n−2 h
−1
k gk = cabcbcba(babcbc)n−2babcbabcbc. Likewise, multiplying γ on the

left by h−1
−1g−1 weobtain h−1

−1g−1γ = bc(ba)3cb·(ba)3 ·cabcbcba(babcbc)n−2babcbabcbc = bcbabc(ab)ncbabcb as desired. �

Thus

StabA = ⟨gk, hk, hn | k = −1, . . . , n − 2⟩.

5.1. Minimal regular cover of the n-antiprism

We now proceed to prove that ⟨a, b, c|a2 = b2 = c2 = (ab)l.c.m.(3,n)
= (bc)4 = (ac)2 = w = id⟩, where

w = (c(ab)2cbc(ab)2)2 is the automorphism group of the minimal regular cover of the n-antiprism for arbitrary values
of n ∈ N, n ≥ 4. Let Γ = ⟨a, b, c|a2 = b2 = c2 = (ab)l.c.m.(3,n)

= (bc)4 = (ac)2 = id⟩. Denote the word (c(ab)2cbc(ab)2)2
by w, and ClΓ (w) by Cl∗.

1 The reader interested in omitted details, here and elsewhere, is referred to the version of this article available at arXiv.org, Article-ID 1206.6119v1.
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We now show that gk · Cl∗ = hk−2 · Cl∗ = gk−3 · Cl∗ for all k = 2, . . . , n − 1. For convenience we omit ‘‘·Cl∗’’ at the end
of each group element. We frequently use the following fact.

id = w = caba(bcbc)abab(ca)babcbcabab = caba(cbcb)abab(ac)babcbcabab.

Taking the inverse we get

id = babacbcbabc(ab)3cbcabac,

and therefore

(ab)3 = cbabcbcababcabacbc. (3)
gk = cb(ab)kc(ab)3c(ba)kbc = cb(ab)kc(cbabcbcababcabacbc)c(ba)kbc

= cb(ab)kbabcbcababcabcab(ba)kbc = cb(ab)k−1bcbcababacbc(ba)k−1bc
= cb(ab)k−2acbcabababbcbc(ba)k−1bc = cb(ab)k−2acbc(ab)3bcbc(ba)k−1bc
= cb(ab)k−2cabc(ab)3cbcb(ba)k−1bc = cb(ab)k−2cabc(ab)3cbca(ba)k−2bc = hk−2

= cb(ab)k−2cabc(cbabcbcababcabacbc)cbac(ba)k−2bc = cb(ab)k−2(cbcbc)ababcab(ba)k−2bc
= cb(ab)k−2(bcb)ababc(ba)k−3bc = cb(ab)k−3acbababc(ba)k−3bc
= cb(ab)k−3c(ab)3c(ba)k−3bc = gk−3.

Hence StabA/Cl∗ is generated only by the four elements g−1 · Cl∗, g0 · Cl∗, h−1 · Cl∗, hn · Cl∗.
We denote by flags of type B those 1-adjacent to flags of type A, flags of type C those 2-adjacent to flags of type B, and

flags of type D those 2-adjacent to flags of type A. Then g−1 ·Cl∗ acts like id on flags of type B and C, g0 ·Cl∗ acts like id on flags
of types B and D, and h−1 · Cl∗ acts like id on flags of type C and D. Each of g−1 · Cl∗, g0 · Cl∗ and h−1 · Cl∗ act like a three step
rotation around the antiprism on flags of the (unique) type they do not fix. On the other hand, hn is trivial if n ≡ 0 (mod 3);
otherwise hn · Cl∗ does not preserve flag orbits B, C and D.

We first analyze the case of the 3n-prism. According to the action of the three generators of StabA/Cl∗ on flags of types B, C
andD, every elementα fixing all flagsmust be such that the sumof the exponents of all factors g−1 ·Cl∗ (resp. g0 ·Cl∗, h−1 ·Cl∗)
on any word corresponding to α must be a multiple of n. Conversely, any element α ∈ StabA/Cl∗ such that all words
representing α satisfy the property just described must preserve all flags. We shall prove that relation w = id implies
that all such elements α are trivial in StabA/Cl∗, implying in turn that Cl∗ = CoreΓ (StabA). To do this, it suffices to verify
that the elements g−1, g0 and h−1 commute, or equivalently, that the elements g−1

−1h−1g−1h−1
−1 · Cl∗, g−1

−1g0g−1g−1
0 · Cl∗ and

h−1g0h−1
−1g

−1
0 · Cl∗ are trivial.

Note that (bc)4 = id, and that relation w = id is equivalent to ababcabab = cbcbabacbabacbc and to cbcababcab =

babacbabacbcba. Assuming this, and omitting ‘‘·Cl∗’’ for convenience, we have

g−1
−1h−1g−1h−1

−1 = (ab)3bc(ab)3cb(ba)3bc(ba)3cb = ababacabababcabababcbababacb
= ababcb(ababcabab)abcbababacb
= ababcb(cbcbabacbabacbc)abcbababacb
= abacabacbabacbcabcbababacb = abcbacbabacbcabcbababacb
= abcbcababacbacbcbababcab = abcbcababacbab(cbcababcab)
= abcbcababacbab(babacbabacbcba) = abcbcababacacbabacbcba
= abcbcababbabacbcba = id.

By a similarly tedious calculation, since w · Cl∗ = id is equivalent to ababcbcababcab · Cl∗ = cbabacbcba · Cl∗ we observe
that g−1

−1g0g−1g−1
0 · Cl∗ = (ab)3cbc(ab)3cbc(ba)3cbc(ba)3cbc · Cl∗ = id.

Finally, since w · Cl∗ = id is equivalent to ababcababc · Cl∗ = cbcbabacbabacb · Cl∗ and cababcbcababcababc · Cl∗ =

babacb · Cl∗, a similar computation reveals that h−1g0h−1
−1g

−1
−1 · Cl∗ = id.

We have proved the following.

Proposition 10. The automorphism group of the minimal regular cover of the 3n-antiprism is given by the Coxeter group [3n, 4]
subject to the single extra relation (c(ab)2cbc(ab)2)2 = id.

Wheneverm ≡ 1, 2 (mod 3)we let n = 3m and note that there is a rap-map from the n-prism to them-prism, where the
preimage of any flag in them-prism is a set of three flags with the property that they can be obtained from each other by an
m-step rotation or a 2m-step rotation around the 3m-antiprism. Consequently, theminimal regular cover of the n-antiprism
covers the minimal regular cover of the m-prism, and the kernel of this cover is the set of elements in the minimal regular
cover of the n-antiprism with trivial action on all flags of them-antiprism, that is, all elements in the minimal regular cover
of the n-antiprism which map each flag of the n-antiprism to itself, or to its image under the m-step or 2m-step rotations.
As we shall see, id is the only element satisfying this property.

Assume that α is an element in automorphism group of the minimal regular cover of the n-antiprism mapping each flag
of the n-antiprism to itself, or to its image under them-step or 2m-step rotations. If α belongs to the stabilizer StabA of a flag
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Fig. 8. Infinite antiprism.

type A of the n-prism then, the action of the generators of StabA on the flags of the n-prism described above implies that α
must map each flag of type B, C or D to its image under a 3k-step rotation for some integer k. Since m is not a multiple of 3,
then α must act like id. On the other hand, if α ∉ StabA, then α must belong either to c(ab)mc · StabA or to c(ab)2mc · StabA.
However, no element in those two cosets preserves the flag orbits B, C andD, contradicting our assumption about the action
of α on the flags of the 3n-prism.

Overall we proved the following.

Theorem 11. The automorphism group of the minimal regular cover of the n-antiprism is given by the Coxeter group
[l.c.m(3, n), 4] subject to the single extra relation (c(ab)2cbc(ab)2)2 = id.

The 3-antiprism is isomorphic to the octahedron, which is a regular polyhedron. Similarly to the case of the prisms,
Proposition 9 and Theorem 11 also hold in this case.

To conclude we note that the arguments developed above show that the minimal regular cover of the ‘‘∞-antiprism’’
(see Fig. 8), is the Coxeter group [∞, 4] subject to the unique relation (c(ab)2cbc(ab)2)2.

6. Topology and algebraic structure of the minimal covers

Westart our discussion by observing that the automorphismgroupof aminimal regular cover of ann-prism is determined
by the l.c.m.(4, n), so form odd and n = m, 2m, 4m, the corresponding n-prisms share the sameminimal regular cover. Thus
we need only concern ourselves with studying the structure of the covers of 4m-prisms for arbitrary m ∈ N. The following
theorem describes the group structure of the monodromy group of the 4m-prism.

Theorem 12. Let P4m be the minimal regular cover of the 4m prism. Then Γ (P4m) contains a normal subgroup H isomorphic to
Z3
m, and the quotient Γ (P4m)/H is isomorphic to the octahedral group B3. In particular, Γ (P4m) has order 48m3.

Proof. We abuse notation and denote by a, b, c the generators of Γ (P4m), which coincides with the monodromy group of
the 4m-prism. Let α := (ab)4, β := c(ab)4c, γ := bc(ab)4cb ∈ Γ (P4m). We claim that H := ⟨α, β, γ ⟩ ∼= Z3

m. To see this
note first that the order of α, β and γ is m. Recall that an element of Γ (P4m) fixes all flags of the 4m-prism if and only if
it is the identity element, and note that the action of the commutators αβα−1β−1, αγ α−1γ −1 and βγβ−1γ −1 on all flags
of the 4m-prism is trivial. Moreover, the elements in ⟨α⟩ fix flags of types A and B, the elements in ⟨β⟩ fix flags of types B
and C, and the elements in ⟨γ ⟩ fix flags of types A and C, so these three subgroups have trivial intersection. This implies the
desired isomorphism.

To see thatH is normal in Γ (P4m) it suffices to see that the conjugates of α, β and γ by a, b and c belong toH . In all cases
the computations are straightforward except, perhaps, for aγ a. Note that w = id implies that abc(ab)3 = bac(ba)3c(ba)2c ,
and then

aγ a = abc(ab)3 · abcba = bac(ba)3c(ba)2c · abcba = bca(ba)3cbabacabcba
= bca(ba)3cbabcbcba = bc(ab)3cbaca = bc(ab)3cb = γ .

Alternatively one can note that the orbit of each flag under the action of H coincides with its orbit under aHa, bHb and cHc .
Note that all elements in H stabilize all flag orbits. On the other hand, a fixes all flag orbits, b interchanges flags of type

A with flags of type B, and c interchanges flags of type A with flags of type C. As a consequence, a · H, b · H and c · H are
three different elements in Γ (P4m)/H . Furthermore, {a · H, b · H, c · H} is a generating set of Γ (P4m)/H consisting of three
involutions, two of which commute. The order of bc ·H must divide 3, and the order of ab ·H must divide 4, since (ab)4 ∈ H .
By observing the action of (ab)k · H and of (bc)k · H for k = 1, 2, 3 we note that the order of these elements is 4 and 3
respectively. Then Γ (P4m)/H must be a subgroup of the symmetric group of the cube containing an element of order 3 and
an element of order 4. It follows that Γ (P4m)/H is either the symmetry group of the cube, or the symmetry group of the
hemicube. However, the order of abc · H is 6 and not 3, discarding the latter. This finishes the proof, since the octahedral
group is isomorphic to the symmetry group of the cube. �

The symmetry group of the toroidal 4-polytope {4, 3, 4}(m,0,0) in the notation of [9, Section 6] isZ3
moB3. We note that this

group is not isomorphic to Γ (P4m) since Γ ({4, 3, 4}(m,0,0)) contains no central element, and (abc)3m ∈ Z(Γ (P4m)). In fact,
(abc)3m acts on all flags of the 4m-prism as the half-turn with respect to the axis through the centers of the two 4m-gons,
and hence it commutes with all elements of the monodromy group of the 4m-prism.

Now that we know the structure of the group, we can discuss the topological structure of P4m. We first note that since w
(and any other element of ClΓ (w)) is a product of an even number of generators, the corresponding quotient is orientation
preserving and so P4m lies on an orientable surface. The polyhedron is regular, the number of flags in P4m is 48m3, so the
surface where P4m lies is compact (P4m has a finite number of flags). We also observe that
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• there are 2 · 4m flags per face,
• there are 4 flags per edge,
• and there are 6 flags per vertex.

Thus the number of faces is 6m2, the number of edges is 12m3, and the number of vertices is 8m3, and so the Euler
characteristic of the surface is given by χ(P4m) = 6m2

−12m3
+8m3

= (6−4m)m2. ThusP4m lies on a compact orientable
surface of genus (2m − 3)m2

+ 1.
Wemay engage in a similar line of reasoning as regards the n-antiprism. Here theminimal regular cover is determined by

the l.c.m.(3, n), so for n = m and n = 3m, the corresponding n-antiprisms share the same minimal regular cover whenever
m ≢ 0(mod 3). Thus we need only be concerned with minimal regular covers for the 3m-antiprism, with m ∈ N. The
following theorem describes the group structure of the monodromy group of the 3m-antiprism.

Theorem 13. Let A3m be theminimal regular cover of the 3m-antiprism. ThenΓ (A3m) contains a normal subgroup K isomorphic
to Z4

m. Furthermore, the quotient Γ (A3m)/K is isomorphic to the octahedral group B3. In particular, Γ (A3m) has order 48m4.

Proof. The proof follows from similar arguments to those of the proof of Theorem 12.
Consider now K := ⟨(ab)3, c(ab)3c, bc(ab)3cb, cbc(ab)3cbc⟩ and use similar considerations to those in the proof of

Theorem 12 to show that K ∼= Z4
m.

To verify that K is normal it can be done by noting that aKa, bKb and cKc induce the same orbit as K on any given flag of
the 3m-prism. Alternatively it can be done algebraically, where, using (3),

a · bc(ab)3cb · a = abc · (ab)·cba = abc · cbabcbcababcabacbc · cba
= bcbcababcabaca = cbcbababacbc = (cbc(ab)3cbc)−1,

and hence a · cbc(ab)3cbc · a = (bc(ab)3cb)−1.
Finally, the quotient Γ (A3m)/K is isomorphic to B3 since (ab)3 ·K and (bc)4 ·K have orders 3 and 4 respectively, whereas

abc · K has order 6. �

As in the case of the prisms above, the w in the automorphism group of the minimal regular cover of the n-antiprism is a
product of an evennumber of generators and so the corresponding quotient from the covering hyperbolic tiling is orientation
preserving, so A3m lies on a compact orientable surface. We also observe that there are 6m flags per face, 4 per edge, and 8
per vertex. Thus the number of faces is 8m3, the number of edges is 12m4 and the number of vertices is 6m4. Thus the Euler
characteristic of the surface is given by χ(A3m) = 8m3

− 12m4
+ 6m4, and so the genus of A3m is 3m4

− 4m3
+ 1.

7. Discussion of results

In [7,13,12] generating sets for the stabilizer of a base flag of a polyhedron in the automorphism group of the regular
cover were obtained by considering just one generator (at most) per face of the polyhedron. In particular, these generators
correspond to lollipop walks. For the finite polyhedra in [7], confirmation that this set of generators was adequate to
generate the stabilizer had to be confirmed computationally using GAP [15], while for the infinite polyhedra in [13,12]
we had to rely on a carefully constructed spanning trees and the application of Theorem 3 to demonstrate sufficiency. It is
not, however, reasonable to suppose that such a set of generators would suffice in general, even if one also includes all of
the generators corresponding to lollipop walks for the vertices. In particular, counterexamples may easily be obtained via
consideration of polyhedral maps on the projective plane. Thus Theorem 4 provides a sufficiency condition for generating
sets for polyhedra with planar flag graphs, in particular the lemma shows the sufficiency in general of a much smaller set of
generators than those suggested by Theorem 3 for spherical and planar polyhedra, but some additional questions remain in
this area requiring further investigation. For the polyhedra with planar flag graphs will any set of generators corresponding
to one lollipop walk per face and vertex of the polyhedron work, or must the stems of the lollipops all belong to a tree (as
required by the proof of the theorem and noted in Corollary 5)? For polyhedra of other topological types, what conditions are
necessary for a collection of generators to guarantee that they suffice to generate the stabilizer of a base flag, in particular,
are there correspondingly small sets of generators (e.g., one corresponding to each lollipop walk around a face or vertex of
the polyhedron, plus some small number depending on the genus)? Likewise, little, if anything, seems to be known about
sufficiency theorems for generating sets for the stabilizer of a base flag of abstract polytopes of higher rank, where upper
bounds are given by the generating sets given by Theorem 3. Finding such small generating sets can be instrumental in
characterizing the structure of minimal regular covers because they significantly reduce the complexity of the associated
computations. Thus it is an open questionwhether onemay determine, based on geometric features of a polytope (e.g., rank,
number of facets and/or vertices, etc.), a small upper bound on the number of generators for the stabilizer of a base flag of a
finite polytope.
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