Discrete Mathematics 23 (1978) 17-22. © North-Holland Publishing Company

CHAPACTERIZATIONS OF 2-VARIEGATED GRAPHS AND OF 3-VARIEGATED GRAPHS

Vasanti N. BHAT-NAYAK, S.A. CHOUDUM¹

Centre of Advanced Study in Mathematics, University of Bombay, Bombay 400 098, India

Ranjan N. NAIK²

Department of Mathematics, University of Bombay, Bombay 400 098, India

Received 13 July 1976 Revised 15 August 1977

A graph is said to be k-variegated if its vertex set can be partitioned into k equal parts such that each vertex is adjacent to exactly one vertex from every other part not containing it. We prove that a graph G on 2n vertices is 2-variegated if and only if there exists a set S of n independent edges in G such that no cycle in G contains an odd number of edges from S. We also characterize 3-variegated graphs.

1. Introduction

For terminology we refer to [2]. We consider finite graphs without loops or multiple edges. In [1] Bednarek and Sanders gave the following characterization of 2-variegated trees.

Theorem. (Bednarek and Sanders.) A tree T with 2n vertices is 2-variegated if and only if the point independence number $\beta_0(T)$ of T is n.

They illustrated that the condition in this characterization is neither necessary nor sufficient for an arbitrary graph to be 2-variegated and posed the problem of characterizing 2-variegated graphs and in general k-variegated graphs. We prove the following characterization of 2-variegated graphs and deduce that of Bednarek and Sanders for trees as a corollary.

2. A characterization of 2-variegated graphs

Theorem 2.1. A graph G of order 2n is 2-variegated if and only if there exists a set S of n independent edges in G such that no cycle in G contains an odd number of edges from S.

¹ Research supported by UGC, New Delhi. Present address: Computer Division, IIT, Madras.

² Research supported by CSIR, New Delhi

Proof. The necessity of the condition is obvious. If G is 2-variegated with $V(G) = A_1 \sqcup B_1$ as a 2-variegation then we can take for S the set of n independent edges joining a vertex of A_1 to a vertex of B_1 . We will call such edges in G special edges.

We establish the sufficiency by induction on *n*. The result is trivially true for n = 1. Suppose that if in a graph H on 2n - 2 vertices, $n \ge 2$, there exists a set \tilde{S} of n - 1 independent edges such that no cycle in H contains an odd number of edges from \tilde{S} then there exists a 2-variegation $V(H) = \tilde{A}_1 \sqcup \tilde{B}_1$ of H with edges from \tilde{S} as special edges. Let G be a graph on 2n vertices, $n \ge 3$ with a set $S \subseteq n$ independent edges in G such that no cycle in G contains an odd number of edges from S. Let $S = \{e_1, \ldots, e_n\}$ with $e_i = a_i b_i$, $1 \le i \le n$. Let $H = C - \{a_n, b_n\}$. Obviously H is on 2n - 2 vertices and $\tilde{S} = \{e_1, \ldots, e_{n-1}\}$ is such that no cycle in H contains an odd number of edges from \tilde{S} . By induction hypothesis H is 2-variegated with edges from \tilde{S} as special edges. Let C_1, \ldots, C_i be the connected components of H. Each C_i , $1 \le i \le t$, is 2-variegated. Let $V(C_i) = A_i \sqcup B_i$, $1 \le i \le t$, be a 2-variegation of C_i with some edges from \tilde{S} as special edges. Without icss of generality we may take

$$\bigcup_{i=1}^{t} A_{1} = \{a_{i}, 1 \leq l \leq n-1\} \text{ and } \bigcup_{i=1}^{t} B_{i} = \{b_{i}, 1 \leq l \leq n-1\}.$$

If the edge set $E(G) = E(H) \sqcup \{e_n\}$ then $V(G) = X \sqcup |Y|$ is a 2-variegation of G where

$$X = \{a_n\} \bigsqcup A$$
 and $Y = \{b_n\} \bigsqcup B$, $A = \bigsqcup_{i=1}^{t} A_i$ and $B = \bigsqcup_{i=1}^{t} E_i$

Before proceeding to handle the case $E(G) \neq E(H) \sqcup \{e_n\}$ we make the following observation. If H is a 2-variegated connected graph of order 2*l* with $V(H) = A_1 \sqcup B_1$ as a 2-variegation and \tilde{S} , the set of *l* independent edges between A_1 and B_1 then every xy-path, $x, y \in A_1$ (or $x, y \in B_1$) contains an even number of edges from \tilde{S} and if $x \in A_1$, $y \in B_1$, say, then every xy-path contains an odd number of edges from \tilde{S} .

Now suppose $E(G) \neq E(H) \sqcup \{e_n\}$. Let us suppose, without loss of generality, that $aa_n \in E(G)$, $a \in A_i$ for some $i, 1 \leq i \leq t$. We then claim that $ba_n \notin E(G)$, $b \in B_i$. Otherwise the cycle $a_n P(a, b) a_n$ where P(a, b) is a path from a to b in the connected component C_i , contains an odd number of edges from S, a contradiction. Similarly, b_n is not joined to any vertex in A_i . Since C_1, \ldots, C_t are connected components of H, there are no edges of G between C_i and C_j , $i \neq j$, $1 \leq i, j \leq t$. It now follows that, if necessary by calling A_j as B_j and B_j as A_j , we can take, without loss of generality, $V(G) = X \sqcup Y$ as a 2-variegation of $G, X = \{a_n\} \sqcup A$, $Y = \{b_n\} \sqcup B$ with S as the n independent edges between X and Y. The proof is now complete. Let G be a graph. A set of points in G is independent if no two of there are adjacent. The largest number of points in such a set is called the point independence number of G and is denoted by $\beta_0(G)$ or β_0 . Analogously, an independent set of lines of G has no two of its lines adjacent and the maximum cardinality of such a set is the line independence number $\beta_1(G) = \beta_1$ of G. A point and a line are said to cover each other if they are incident. A set of points which covers all the lines of a graph G is called a point cover for G, while a set of lines which covers all the points is a line cover. The smallest number of points in any point cover for G is called its point covering number and is denoted by $\alpha_0(G)$ or α_0 . Similarly, $\alpha_1(G)$ or α_1 is the smallest number of lines in any line cover of G and is called its line covering number.

Corollary 2.2. (Bednarek and Sanders.) A tree T with 2n vertices is 2-variegated if and only if the point independence number $\beta_0(T)$ of T is n.

Proof. We know that for a nontrivial connected graph on p vertices $\alpha_0 + \beta_0 = \alpha_1 + \beta_1 = p$ [2, p. 95] and that for a connected bipartite graph $\beta_1 = \alpha_0$ [2, p. 96]. Consequently for a connected bipartite graph on 2n vertices $\beta_0 = n$ if and only if $\beta_1 = n$.

Remarks 2.3. For an arbitrary 2-variegated graph G there is no uniqueness of 2-variegation as in the case of a 2-variegated tree. For example consider the 4-cycle *abcd*; if $\{a, b\} \sqcup \{c, d\}$ is a 2-variegation then $\{a, d\} \sqcup \{b, c\}$ is another 2-variegation. However, it can be easily shown that if G is a connected 2-variegated graph relative to a set S of n independent edges, then the partition is unique to the set S; that is if $V(G) = A_1 \sqcup B_1 = A_2 \sqcup B_2$ and S is the set of n independent edges between A_1 and B_1 as well as between A_2 and B_2 then either (i) $A_1 = A_2$, $B_1 = B_2$ or (ii) $A_1 = B_2$, $B_1 = A_2$.

Remark 2.4. Every connected 2-variegated graph on 2n vertices can be obtained from a 2-variegated tree on 2n vertices.

3. A characterization of 3-variegated graphs

From the definition of a k-variegated graph, $k \ge 3$, it immediately follows that a graph G of order kn is k-variegated if and only if there exists k mutually disjoint sets P_1, \ldots, P_k of vertices of G, $|P_i| = n \forall i, 1 \le i \le k$, such that each of the subgraphs of G on $P_i \sqcup P_j$, $i \ne j, 1 \le i, j \le k$, is 2-variegated. We give below a nontrivial characterization of 3-variegated graphs.

Theorem 3.1. A graph G of order 3n is 3-variegated if and only if there exist three mutually disjoint sets S_1 , S_2 , S_3 of independent edges, called special edges.

 $|S_1| = |S_2| = |S_3| = n$, such that the following holds:

(i) Through every vertex there are precisely two special edges.

(ii) If e = uv is an edge of G that is not a special edge and if the two special edges through u belong to S_0 , S_1 then the special edges through v also belong to S_0 , S_1 .

(iii) if e = uv is a special edge of G, and if $e \in S_i$ then the other special edges through u and v belong to S_i and S_k , $j \neq k$, $i \neq j$, $i \neq k$.

Proof. Suppose that G is a 3-variegated graph of order 3n with $V(G) = X \bigsqcup Y \bigsqcup Z$ as a 3-variegation. Let $S_1 = S_{xy}$ be the set of n independent edges joining a vertex of X to a vertex of Y. Similarly let $S_2 = S_{yz}$, $S_3 = S_{zx}$. Then S_1 , S_2 , S_3 satisfy (i), (ii) and (iii) follows immediately.

Conversely, suppose that G is a graph of order 3n such that there exist mutually disjoint sets S_1 , S_2 , S_3 of n independent edges each, called special edges, satisfying (i), (ii) and (iii). We then show that G is 3-variegated.

Let $S_1 = \{a_1b_1, a_2b_2, \ldots, a_nb_n\}$. Without loss of generality assume that through a_i the other special edge is from S_2 and through b_i the other special edge is from S_2 , $1 \le i \le n$ (see Fig. 1). Note that the other end vertices of all the edges from S_2 and S_3 together account for only the *n* remaining vertices. Call them $\{c_1, \ldots, c_n\}$ and suppose, without loss of generality, that $a_ic_i \in S_2$, $1 \le i \le n$. Now, a_ib_j , $i \ne j$, $1 \le i, j \le n$, cannot be an edge of G since otherwise we will get a contradiction to (ii). From hypothesis it follows immediately that a_ic_j , $i \ne j$, $1 \le i, j \le n$ cannot be an edge of G. If $b_ic_{\alpha_i} \in S_3$, $1 \le i \le n$, then it similarly follows from the hypothesis that $b_ic_{\alpha_j}$, $i \ne j$, $1 \le i, j \le n$, cannot be an edge of G. Let $X = \{a_1, \ldots, a_n\}$, $Y = \{b_1, \ldots, b_n\}$, $Z = \{c_1, \ldots, c_n\}$. Then $V(G) = X \sqcup Y \sqcup Z$ is a 3-variegation of G.

We next give a necessary condition for 3-variegation similar to that for 2-variegation given in Theorem 2.1. However, we illustrate that this condition is not sufficient for 3-variegation.

Proposition 3.2. If a graph G of order 3n is 3-variegated than there exist three mutually disjoint sets S_1 , S_2 , S_3 of independent edges, called special edges $|S_1| = |S_2| = |S_3| = n$, such that (A) holds where

(A): If C is a cycle in G that contains $n_1 + n_2 + n_3$ special edges, n_i from S; i = 1, 2 3 then either a'l n_i 's are even or ill n's are odd. **Proof** Let $V(G) = X \sqcup Y \sqcup Z$ be a 3-variegation of G, $S_1 = S_{xy}$, $S_2 = S_{yz}$, $S_3 = S_{zx}$. Let C be a cycle in G and let C have $n_1 + n_2 + n_3$ special edges, n_i from S_i , i = 1, 2, 3. If $n_1 + n_2 + n_3 = 0$ then trivially (A) holds. Suppose $n_1 + n_2 + n_3 \ge 1$. If $n_1 = n_{xy}$, $n_2 = n_{yz}$, $n_3 = n_{zx}$, we say that C is of type (n_{xy}, n_{yz}, n_{zx}) . Without loss of generality, let $x_i \in X$ be a vertex on C. Suppose that $x_{i+1} \in X$ is the next vertex on C from X when we travel C, say clockwise. Of course, $x_i = x_{i+1}$ is possible. We have the following three cases for distribution of vertices of G on the path P_i on C between x_i and x_{i+1} , taken clockwise.

Case 1. x_i and x_{i+1} are adjacent vertices on C. Hence P_i is of type (0, 0, 0).

Case 2. On P_i the vertices adjacent to x_i and x_{i+1} are, one from Y and the other from Z (see Fig. 2).

Case 3. On P_i the vertices adjacent to x_i and x_{i+1} are both from either Y or Z (see Fig. 3).

 $P_i: \underbrace{0, \dots, 0}_{x_i} \quad \cdots \quad \underbrace{0, \dots, 0}_{y} \quad \cdots \quad \underbrace{0, \dots, 0}_{x_{i+1}} \quad \text{or} \quad P_i: \underbrace{0, \dots, 0}_{x} \quad \cdots \quad \underbrace{0, \dots, 0}_{z} \quad \cdots \quad \underbrace{0, \dots, 0}_{x_{i+1}}$ Fig. 3.

In case 2 (x_i, y) (or (y, x_{i+1})) is the only special edge from S_{xy} , (z, x_{i+1}) (or (x_i, z)) is the only special edge from S_{zx} , and all other special edges on P_i are from S_{yz} and obviously they have to be odd in number. Hence P_i is of type $(1, n_0, 1)$ where n_0 denotes an odd integer. In case 3 P_i is of the type $(2, n_e, 0)$ where n_e denotes an even integer. Summing over P_i 's to get C we see that (A) holds.

Remarks 3. Consider the graph H given in Fig. 4. The graph H is not 3-variegated. For, since degree of the vertex 2 is two, the vertices 1, 2, 3 have to go in different parts in any suitable partition. Since 4 is adjacent to 1, 4 has to be n the same part as that of 1. Now, in whichever of the three parts, 5 is placed we

Fig. J.

arrive at a contradiction. However, with $S_1 = \{(1, 3), (5, 6), (7, 8)\}$, $S_2 = \{(1, 2), (4, 5), (8, 9)\}$ and $S_3 = \{(2, 3), (4, 6), (7, 9)\}$ condition (A) of Proposition 3.2 is satisfied. It follows that condition (A), by itself, is not sufficient for a graph to be 3-variegated.

References

- [1] A.R. Bednarek and E.L. Sanders, A characterization of Divariegated trees, Discrete Math. 5 (1973) 1-14.
- [2] F. Harary, Graph Theory (Addison-Wesley, Reading, Ma., 1969).