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Abstract 

Let d be the class of normalized analytic functions in the unit disk A. Let ~b(z) be either zF(a,b;c;z) or 
(c/ab)[F(a, b; c; z ) -  1], where F(a, b; c; z) denotes the classical hypergeometric function. The purpose of this paper is to 
study close-to-convexity (and hence univalency) of ~b(z) in the unit disc. More generally, we find conditions on a,b,c 
and fl such that ~b satisfies Reel"((1 - z ) c ~ ' ( z ) -  f l )>0  for all z C A and for some real r/E (-½n,  lrr). @ 1997 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction and main results 

The theory of Gauss hypergeometric function 

2Fl(a,b;c;z) :=F(a,b;c;z)  = ~ (a'n)(b'n)zn (Izl < 1), 
n=0 (c ,n ) (1 ,n )  

which is the solution of the homogeneous hypergeometric differential equation 

z(1 - z)w"(z) + [c - (a + b + 1 )z]w'(z) - abw(z) = 0 

is fully set out in [4]. Euler, Gauss, Kummer, Riemann and Ramanujan all contributed to the 
theory of hypergeometric equation which appears in many situations and is connected with con- 
formal mappings [13], quasiconformal theory [11], differential equations [9], continued fraction 
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and so on. Here a,b,c  are complex numbers such that c C - m ,  m = 0 ,  1,2,3, . . . ,  (a, 0 ) =  1 for 
a ¢ 0  and, for each positive integer n, (a ,n ) :=a(a  + 1 ) . . . ( a  + n -  1), see [4]. In the exceptional 
case c = - m ,  m = 0 ,  1,2,3, . . . ,  F(a ,b;c;z )  is defined if a = - j  or b = - j ,  where j = 0 ,  1,2 . . . .  and 
j<~m. It is clear that if a = - m ,  a negative integer, then F(a,b;c;z )  becomes a polynomial of  de- 
gree m in z. We are concerned with the normalized hypergeometric function f ( z ) =  zF(a, b; c;z) or 
(c/ab)[F(a,b; c ; z ) -  1]. The hypergeometric function satisfies numerous identities [1, 3, 4] and we 
observe that the behaviour of the hypergeometric function F(a,b; c;z) near z = 1 is classified into 
three cases according to c > a + b, c = a + b and c < a + b, respectively: 

(i) For c > a  + b (see [20, p. 49, 4, 24]) 

F(c)F(c - a - b) 
F(a,b;c; 1 ) =  <ec .  (1.1) 

F(c - a)F(c - b) 

(ii) F(a, b; a + b; z) ~ - l og (1  - z)/B(a, b) as z --* 1; B(a, b ) =  C(a)C(b )/F(a + b ), see [6, 4]. 
(iii) F(a, b; c; z) ~ (B(c, a ÷ b - c)/B(a, b))(1 - z) c-a-b, as z ~ 1, c < a + b, see [24, p. 299, 4]. 
The case c = a  + b is called the zero-balanced. When z = x ,  x E (0, 1), Cases (ii) and (iii) above 
have been extended and improved in [2, 18], see also [3, 4]. In this paper, we focus our attention 
to study the geometric nature of  the hypergeometric function, in particular the univalency part. In 
[19, 15], examples have been constructed to demonstrate that in each of  the above three cases there 
exist functions of  the form zF(a, b; c; z) or F(a, b; c; z), containing univalent as well as nonunivalent 
functions. However, the exact range of the parameters (a, b, c) for which zF(a, b; c; z) or F(a, b; c; z) 
is univalent remains unknown [15, 19, 21, 23, 12, 22]. Our theorems are basically related with 
certain subfamilies of the family d of  all normalized analytic functions f ( f ( 0 ) =  0 = f ' ( O ) -  1 ) in 
the unit disc A, and so we include here some basic definitions and notations: denote by 5P, ~:g([1), 
5~*([1) the subclasses of  s~' that consist of  functions that are univalent, convex of order [1< 1, and 
starlike of order [1< 1, respectively. We write ~ =  oU(0), 5 P* = 5P*(0) and it is a well-known fact 
that f E of([1) if and only if z f '  E 5~*([1). We also introduce the class of close-to-convex functions. 
According to a standard analytic definition, a function f E s ]  is said to be close-to-convex o f  order 
[1 < 1 with respect to a f ixed  starlike function g if and only if 

Re [ ei" \9--~(zf'(z) 

1 1 for some real q E ( - - ~ ,  ~r~). The family of  close-to-convex functions of order [1 relative to 9 E 5 P* 
is denoted by <g([1; g). If q---0, we simply denote it by ~0([1; g). Thus, we remark that the usual 
class of all close-to-convex functions of order [1, denoted by cg([1), is the set {~([1; 9): g E 5~*}. Set 
~(0)  = ~.  It is important to note that the chain of proper inclusions for 0 ~< [1 < 1: ~*([1) C <g([1) C 5 P. 
For general properties of these classes of  functions, we refer to the book by Duren [5]. For 0 ~< [1 < 1, 
we also introduce the class 

~@([1)={p(z): 3 q E  JR, z p E d ,  such that p ( 0 ) =  1, R e [ e i " ( p ( z ) -  [1)]>0, z E A }  

and define 

Jl([1) = { f  E xJ: f ' ( z )  E ~([1)}. 

When q = O, we denote ~([1) and ~([1) simply by 2'~o([1) and ~o([1), respectively. Clearly cg([1;z) = 
~([1) for [1<1, and therefore, if  0-~<[1< 1, we have that ~([1) is included in cg, but not in 5 P*, and 
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neither is the smaller class ~o(fl). The question about the inclusion of  ~o( f l )C  5 P* was raised in 
[25], and settled in the negative in [10]. There has been considerable interest to study the properties 
of  the transformations of  the type f H Va, b;c(f) := zF(a, b; e; z) • f (z ) .  For Re c > Re b > 0, we have 
the representation 

- , f ( z )  d t  ( 1 . 3 )  Vab.~(f):= F(b)F(c b) tb_l( 1 t)~_b_ l Z 
'" - (1  - t z )  ~ 

and this operator has been studied in [7, 16, 17]. Our attempt in this paper is to study the operator 
V~,b:c(f) but only for the special choice f ( z )=z / (1  - z )  which is the extremal functions together 
with its rotations for the convex family oU. Then in this case, it is clear that the transform becomes 
the normalized hypergeometric function: Va, b;c(z/(1 -- z ) ) = zF( a, b; c; z ). We note that the function 
z/( 1 - z )  is not included in ~0(0). However, the problems of finding the exact range of the parameters 
(a,b,c) for the function F(a,b;c;z) or (c/ab)[F(a,b;c;z)-  1] to be univalent, starlike, close-to- 
convex, or convex remain open. For partial answers and the latest improvements to these questions, 
I refer to [15, 19, 23, 12, 22]. In this connection, the authors in [19] found sufficient conditions for 
the function zF(a,b; c;z) to belong to cg0(0,z/(1 - z ) )  and hence univalent in A. Now we state one 
of  our main results which by a slightly different method of proof improves the result of [ 19]. 

Theorem 1. Suppose that a, b and fl < 1 are associated by any one of  the followin 9 conditions: 
(1) a E (0, ec), b E (0, l/a] and fl ~< 1 - (1/cos r/)(1 - F(a + b)/F(a)F(b)). 
(2) a E (/,oe),~ bE [a/(2a - 1),c~) and/~< 1 - (1/cos r/)(F(a + b)/F(a)F(b) - 1). 
(3) g e a > 0 ,  [a[ ~ min{ 1, Rv#Re--a}, b = ~  and fl~<l - (1 / cos t / ) (1  - F(2Rea)/F(a)F(-d)). 
(4) R e a > 0 ,  la[ ~> max{l ,  RvFR~--a}, b = ~  and ~<~ 1 - (1/cosq)(F(2Rea)/F(a)F(-d) - I). 
(5) c>~ max{a+ b,a+ b+ ( a b -  1)/4,(3(a+ b + a b ) -  1)/4} and fl <~ 1 - ( [ c -  2ab[ + 2ab)/(c cos r/), 

where a,b satisfy either a,b>O, or aE C\{0} ,  b = ~ .  
Then the function zF(a,b; a + b;z) belongs to cg(fl; 9) with 9(z)=z/(1 - z). 

The special case r /= fl = 0 in Parts ( 1 ) and (2) of Theorem 1 for a, b, c > 0 has been obtained by 
the author in [19] and the proof of  this theorem will be given in Section 2 

Example 2. Let f ( z )=zF(a ,b ;a+b;z )  and 9(z)=zF(a,-d;2Rea;z). Then taking q = 0  in Theorem 1 
we have the following results which improve on Theorem 2.1 in [19]: 

(i) f ( z )  E Cgo(1/B(a,b);z/(1 - z)) if a > 0  and b E (0, 1/a]. 
(ii) f ( z ) E ~ 0 ( 2 -  1/B(a,b);z/(1 - z ) )  if a>½ and b>~a/(2a- 1). 

(iii) 9(z) E Cgo(1/B(a,~);z/(1 - z)) if R e a > 0  and [a I ~< rain{l, v / -~a} .  
(iv) y(z) E cg0(2 - 1/B(a,~);z/(1 - z)) if R e a > 0  and [a[/> max{l ,  Rv"-~}. 

It is easy to give sufficient coefficient conditions for f to belong the class cg(fl; 9), at least when 
9(z) E 5#* takes one of  the following forms: 

Z, 
z z z z 

or 
1 + z '  1 zkz 2' (1 -4-Z) 2 1 "[-ZAvZ 2' 
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so that z/9(z) takes one o f  the equivalent forms 

1, l ± z ,  l ± z : ,  ( l + z )  2 or l ± z + z  2, 

respectively. According to Frideman [8], these are the only nine functions of  the class 5 ~ whose 
coefficients are rational integers. Using these we  first state and prove the following simple results 
which in particular give sufficient conditions for the univalency of  the normalized analytic functions. 

Proposition 3. Let f ( z ) = z  + ~=2an zn. Then we have the following: 
(i) ~.~>11nan - (n + 1)an+ll~<(1 - f l )cos  ~/ implies that f Ecg([3;9) with 9 ( z ) : z / ( 1  - z ) .  

(ii) ~.~>1 l( n - 1)a._l - 2nan + (n + 1)a.+ll ~<(1 - / ~ )  cos rt implies that f E ~(fl;  9) with 9(z) =z /  
(1 - z )  2. 

(iii) ~n~t  I( n -- 1)an-1 -- (n + 1)an+ll ~<(1 -- fl) COS r 1 implies that f E cg(fl; g) with g(z) =z / (1  - z : ) .  
( iv) ~n~=l I(n - 1)an-~ - nan + (n + 1)an+, I~<(1 - f l )cos  r/ implies that f E c~(fl; g) with 9(z) =z /  

(1 - z + z2) .  

Proof. (i) Suppose that 9(z)=z/(1  - z )  and f satisfies the condition 

y ~  Inan - (n + 1)an+t[ ~<(1 - f l )cos  q. 
n>~l 

Then for Izl < 1, we can write 

( z f ' ( z )  [3) 
Reei" k, = Re ei"[(1 - z ) f ' ( z )  - fi] 

Cz ) = (1 - f l )cos  t / -  Ree '"  (nan - (n + 1)a.+l)z ~ 
\ n~>l  

> (1  -  )cos - lug. - (n + l ) a . + , [  
n ~ l  

Therefore, f E c~(fl; 9) with 9(z) : z / ( 1  - z). 
The remaining parts follow on the similar lines of  the proof  of  part (i). [] 

Parts ( i ) - ( i i i )  o f  the special case q = 0 and fl = 0 of  Proposition 3 are due to [14]. Also, we point 
out that it would not be difficult to state sufficient conditions, such as in Proposition 3, for f to 
belong to cg(fl; 9) at least when the choice o f  9 E 5 e* satisfies a property that z/9(z) is a polynomial 
function and l imz~l(z/9(z))= 1. Using Proposition 3, we can easily draw the following corollaries, 
and these are in some sense important in special circumstances, see [15, 16, 19]. 

Corollary 4. Let f ( z )  : z + ~.~=2 an zn" Suppose that 

1 >~2a2>~ . . -  >~na,>~ . . -  >/1 - (1 - fl) cos q (1.4) 
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or 

l <~ 2a2 <~ . . . <~ nan ~< . . . ~< l + ( 1 - 1 3 )  cos t/. 

Then f E cg(/3; g) with g(z) = z / ( 1  - z). 

Coro l l a ry  5. Let  f ( z ) = z  + ~"~nC~=2 an Zn. Suppose that 

1 >~2a2 - 1 ~>3a3 - 2a2/> . - .  ~>(n + 1)an+l - nan ~> . . .  ~> 1 - (1 - fl) cos t/ 

or 

(1.5) 

(1.6) 

r(a + b - 1 )'~, 
) 

1) 

/ 
(3) a E ( 0 ,  l )  b E ( 1 , o c ~ ) , c = a + b - 1  and ~ < < . l - ( 1 / c o s q ) ( 1  

(4) a, b E ( 1 , o e ) ,  or a, b E  (0,1) ,  c>>,ab and/~<1 - 1 /cos t / ,  

(5) a E ( 1 , o o )  and bE(O, 1], c > a  + b - 1  and fl<<. l - 1 / c o s t / ,  

( F ( 2 R e a  Z 1) 
(6) R e a > ½ ,  b = ~ , c = 2 R e a - 1  a n d f l < < . l - ( 1 / c o s t / ) \  F(a)F(-~) - 

(7) a E  C \ { 0 ,  1}, b = ~ ,  0 - ¢ c ~ > { 0 , ] a 2 1 , 2 R e a -  1} and/3~<1 - 1 /cos t / .  

1 ~<2a2 - 1 ~<3a3 - 2 a 2 ~  < - . .  ~<(n + 1)an+l - nan<~ . . .  ~< 1 + (1 - fl) cos q. (1.7) 

Then f E cg(fl; g) with g(z) = z / ( 1  - z) 2. 

Coro l l a ry  6. Let  f ( z )  = z  + ~n~2 an zn" I f  one o f  the following four conditions, 

1 ~> 3a3 ~> " .  1> (2n + 1 ) a 2 n + l / > " "  >/2a2/> - . . / >  2na2n t > . . .  >1 1 - ( 1  - / 3 )  cos t/, 

1 ~<3a3 ~ < ' "  ~<(2n + 1)a2n+1 ~ < " "  ~<2a2~<..-  <~2na2n ~ < ' "  ~< 1 + (1 - / ~ )  cos q, 

1 ~>3a3 ~> . . .  ~>(2n + 1)a2n+l ~> " '"  >~2na2n>- . . .  ~>2a2~ > 1 - (1 - ]3) cos q, 

l ~ < 3 a 3 ~ < . . . ~ < ( 2 n + l ) a 2 n + l < ~ - . . < ~ 2 n a e n < < , . . . < ~ 2 a e / > l + ( 1 - ~ ) c o s q  

is satisfied, then f E ~(f l ;  g) with 9(z) = z / ( 1  - z2). 

N o w  we are in a posit ion to state our next  result and the p roof  o f  the fol lowing theorem will be 
given in Section 2. 

Theo r em  7. Suppose that a, b and c are related by any one o f  the following conditions: 

( F ( a + b - 1 )  ) 
(1) a, b E [ 1 , o ~ ) ] ,  c = a + b -  1 a n d / ~ < 1 - ( 1 / c o s t / )  F--(a)F(b)- - 1 , 

(r(a+b_-J)r(a)r(b) ) (2) a E ( 0 , 1 ) ,  b E ( 1  - a ,  1), c = a + b -  1 and~<<.l - ( 1 / c o s t / ) \  - 1 , 
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Then for f ( z )=zF(a ,b ;c ; z )  the Alexander transform Ar of  the function f defined by 

Af(z)  = fo z f(t)t dt = ~ Anz" 
n 

n = l  

is in c£(fi;9 ) with g ( z ) : z / (1  - z). 

Corollary 8. Suppose that a and b are related by any one of  the following conditions: 

( F ( a + b + l )  ) 
(1) a E ( - 1 , 0 ] , b E [ 0 , ~ ) ]  andf l~<l- (1 /cosr / )  1 -  F ( a + l ) F ( b + l )  ' 

(2) a E ( - 1 , 0 ] , b E ( - 1 - a , 0 ]  a n d f l < . l - ( 1 / c o s t / ) ( F _ ( a + b + l )  - 1 )  
\ F(a + 1 )F(b + 1 ) ' 

(3) aE[O,c~), bE(O,c~) and fl<. l - (1 / cosq )  (\F(aF(a + b+ l )F(b+ l) - l ) ,  

( F(2Rea + 1) ) 
(4) R e a >  - ½, b = ~  and fl<~l - (1/cosq) \ F ( - ~  1 ~ +  1) - 1_. 

Then the function ((a + b)/ab)[F(a, b; a + b; z) - 1] is in cg(fl; g) with g(z) = z/( 1 - z). 

Proof. We note that for g(z)=zF(a + 1,b + 1;c + 1;z) we have 

Ao(z) : f "  g(t) dt = (c/ab)[F(a, b; c; z) - 1] 
Jo t 

and therefore the required conclusion follows from Theorem 7. [] 

Example 9. Let f ( z )  = ((a+b)/ab)[zF(a, b; a+b; z ) -  1], g(z) = (2Re a/laiZ)[F(a, ~; 2Re a; z ) -  1], and 
fl(a, b) = F(a + b + 1 )/F(a + 1 )F(b + 1 ). Then taking q = 0 in Corollary 8 we have the following 
results which extend and improve the theorems in [15]. 

(i) f ( z )  EC~o(fi(a,b);z/(1 - z ) )  if a E ( - 1 , 0 )  and b>0 .  
(ii) f ( z ) E ~ 0 ( 2 - -  fl(a,b);z/(1 - z ) )  if a E ( - 1 , 0 ]  and bE [ -1  - a, 0). 

(iii) f ( z )  E ~0(2 - fl(a,b);z/(1 - z)) if a,b>O. 
(iv) g(z)ECgo(2-fl(a,~);z/(1 - z ) )  i f R e a >  1 

2" 

To cover the situation where c > a + b, we state the following theorem without proof as it follows 
in the same lines of proof of Theorem 7. 

Theorem 10. Suppose that any one o f  the following conditions is satisfied: 
(1) a E ( - - 1 , 0 ) , b E ( - - 1 , 0 )  andc>~a+b+ab .  
(2) aE(0 ,  cx~), bE(0 ,  c~) and c>~a+b+ab.  
(3) a E C \ { - 1 } ,  b = ~  and O ~ c ~  m a x { - 1 , 2 R e a  + la[ 2} with f l=0.  

Then the function (c/ab)[F(a, b; c; z) - 1] belongs to cg(fl; z/(1 - z)) with fl ~< 1 - 1/cos q. 
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To emphasize the importance of  dealing with complex values for a and b, we give below two 
examples. We remark that the examples of  this type are not available in the literature. 

Examples 11. (1) Choose [ 3 = 0 = t /  and a = - m ,  where m~>2 is a positive integer. Then from 
Theorem 10(3) we deduce that if 0 ~ c > ~ m ( m -  2), the polynomial 

c ~ [(-m + 1,n- 1)12 
- ~ [ F ( - m , - m ; c ; z )  - 1 ] = z +  ( c ÷  1,n - l ) (1 ,n)  zn 

n = 2  

is close-to-convex with respect to z/(1 - z )  and hence univalent in A. 
(2) Choose [3 = 0 = q and a = id, where d is a nonzero real number. Then from Theorem 10(3) 

we deduce that if c >~d 2, the function 

c F ~ [(1 + id, n - 1)12 z" 
-~[ ( i d , - i d ; c ; z ) -  1 ] = z +  ( c +  1 , n -  1)(1,n) 

n=2 

is close-to-convex with respect to z/(1 - z )  and hence univalent in A. 

Finally, we state the following theorem without proof as it follows if we use Corollary 6 and 
adopt the method of proof of  Theorem 7. 

Theorem 12. Suppose that a, b and [3 < 1 are associated by any one o f  the following conditions: 
(1) R e a > 0 ,  lal ~< min{ 1/x/~, v/(2Re a/3)}, b = ~  and [341 - (1 / cos  ~)(1 - (2r(2Rea)/ t ' (a)F(~))) .  
(2) R e a > 0 ,  [a[~> max{1/x/~, v/(2Rea/3 )}, b=-d, and fl <~ l - ( 1 / cosn ) (2r (2Rea) / r (a ) r (~ )  - 1). 
(3) aE(O, ½] and bE(0 ,  1/2a] (or aE(½, c~) and b<<. min{1/2a, a / ( 3 a -  1)}), and [3 is given by 

_ _ _ (  2F(a +b)) [3~<1 1 1 
cos n F(a)F(b) J" 

(4) a E (½,zx~) and b>~ max{1/2a, a/(3a - 1)}, and fl~< 1 - (1/cosr / ) ((2F(a + b)/r(a)r(b)) - 1). 
Then the odd hypergeometric function zF( a,b; a + b;z 2) belongs to cg(fl;z/(1 -z2) ) .  

Theorem 12 shows that the function ~ ~" zF( 5, ~, 1; z 2 ) = (2/~)zK(z), where K(z ) = fo/2( 1 - z  2 sin 2 t)-~/2 
dt, is in cg(fl;z/(1 - z 2 ) )  with f l=  1 - (~ - 2)/(rtcos q). 

2. Proofs of main theorems 

Proof of Theorem 1. Consider zF(a,b; c ; z ) = z  + ~ = 2 A n z  n where Al = 1 and for n ~>2, 

(a,n- 1)(b ,n-  1) 
A,--- (c,n - 1)(1,n - 1)" (2.1) 

Then 

nA, - (n + 1)A,+l = (a,n -- 1)(b,n - 1 ,X(n)  , ]  
(c, nl )(1,n) 
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where 

X(n)=nZ(c -  a - b) + n ( 1  - a b ) -  (a - 1 ) ( b -  1). 

Now we let T := ~.>~1 ]nA. - ( n  + 1)A.+1] and therefore, by Proposition 3(i), it sufficies to show 
that T~<(1 - f l ) c o s t / .  We first deal with the case c=a + b and divide the proof into two parts. 

(1) If  a,b are related by (1) then for all n~> 1, X(n)=n(1 - a b ) -  ( a -  1 ) ( b -  1)~>0 so that 

T = ~ (a,n -1)(b ,n  - 1) 
.=1 ( a ~ / ~ , - - ~ l , n )  [n(1 - a b ) - ( a -  1 ) ( b -  1)] 

_ 1 - ab ~ (a,n - 1)(b,n - 1) ~ (a - 1 , n ) ( b -  1,n) 
a + b  ~=~ ( a + b + l , n - 1 ) ( 1 , n - 1 ) - . = ,  (a+b, ,~-(1,n-)  

1 - a b  F ( a + b +  l) ( F ( a + b )  ) 
a + b  F ( a + l ) F ( b + l ) -  F ( a + l ) F ( b + l ) - I  , by (1.1), 

which gives 

r(a + b) 
T = l  

F(a)F(b)" 

(2) If  a,b are related by (2) then for all n~> 1, X(n)=n(1 - a b ) -  ( a -  1 ) ( b -  1)~<0 so that 

T =  - ~ (a,n - 1)(b,n - 1 
.=1 (a+b,n)( l ,n)  )[n(1 - a b ) - ( a -  1 ) ( b -  1)] 

which gives 

r(a + b) 
T -  1. 

r(a)r(b) 

Therefore the conclusions for (1) and (2) of  Theorem 1 follow from the above observations. Cases 
(3) and (4) can be obtained from the above two cases. 

(5) Now we shall deal with the case c>a + b. Assume the hypothesis that c>~ max{a + b,a + 
b + (ab - 1)/4,(3(a + b + ab) - 1)/4}. Using this, it can be easily seen that the function X(n) is 
increasing for n ~> 2, and that X(n)~>X(2)~> 0 for all n ~> 2. Now, we rewrite the expression for X(n) 
and T as 

X ( n ) = ( c - a - b ) n ( n -  1 ) + ( c - a - b - a b +  l ) n - ( a -  1 ) ( b -  1) 

and 

T [c-  2ab I 
-- + TI + Tz + T3, 

¢ 
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where, using (1.1), we compute 

Tl _ ( c -  a - b )ab  ~-~ (a + l , n  - 2 ) ( b  + l , n  _?) 
-- ~ c  + 1) n=2 -(C "~- 2-,n :~(1-, fi~ 

a b F ( c ) F ( c  + 1 - a - b )  

F ( c  + l - a ) F ( c  + l - b ) '  

T2 (c-a-b-ab+l)  (a,n-1)(b,n-l) 

=(c-a-b-ab+l)( F(c)F(c+l-a-b) !) 
r ( e  + 1 - ) - ' 

7'3 = - ~ (a - 1,n)(b - 1,n) 

=- ((c ÷ 1 - a - b ) F ( c ) F ( c  + 1 - a - b )  

F ( c  ÷ 1 - a ) F ( c  + 1 - b )  
( a -1 ) (bc  - 1 ) ) "  

Simplifying the value of the sum TI + 7"2 + T3, we find that 

T =  l c -  2ab] + 2ab 

and the conclusion is immediate from Proposition 3(i). [] 

o o  n Proof  of Theorem 7. Consider A t ( z ) =  ~ . = l ( A . / n ) z  , where A l = l  and for n >/2, A. is defined 
by (2.1). For convenience, we let S : =  ~.~>l [ A . -  A.+l[ and note that it sufficies to show that 
S ~< ( 1 - fl) cos q. Again we divide the proof into several parts. First we assume that c = a + b - 1. 
Then we have two possibilities. 

Case  1: Let a, b E  [1,c~), or a E ( 0 ,  1) and bE(1  - a ,  1). First we observe that 

IA. -A.+~[ = ( a , n -  1 ) ( b , n -  1)[n( c b)] 
( c , n ) ( 1 , n )  + 1 - a - b )  - (1 - a)(1 - , 

so that 

f f - ~ ( a -  1 , n ) ( b -  1,n) 
S := ~ [A. - A.+,[ = ~ T/~--- 1,n-)(1, n)" 

n > ~ l  n = l  

Using the formula (1.1) we find that 

s = F ( a + b - 1 )  _ l. 
r(a)r(b) 
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Case  2: Let a E ( 0 ,  1) and b E  [1,o~). Then, in this case we see that 

S =  - Z ( a -  1 , n ) ( b -  1,n) [r{a + 6 -  !) _ 1 . 
° : ,  (a  + -6 : = - L r ( a ) r o )  

Secondly, for the next case, we assume that c >~ ab. 

Case  3: Let a, bC(1,o~3), or a, b E ( 0 , 1 ) .  Then, in this case we see that a b > a  + b -  1 which 
means that we are actually considering the situation where e > a + b -  1. Thus for all n >~ 1 we have 

n(e  + l - a -  b ) - ( 1 - a ) ( 1 -  b)>~c + l - a -  b - ( 1 -  a ) ( 1 - b ) = c - a b > ~ O .  

Therefore,  writing 

c + l - a - b ~ ( a , n ) ( b , n )  
S =  

we obtain that 

- - l  + ~ ( a -  1 , n ) ( b -  1,n) 

a o { a , }  : 1  
e \ r ( e + l - . ) r ( e + l  b) i ) 

Finally, for the last case, we assume that e > a + b -  1. 
Case  4: Let a E ( 1 , o o )  and b E ( 0 ,  1]. Then in this case we see that a + b -  1 >jab which means 

that, for all n ~> 1, the inequality 

n(c  + 1 - a -  b ) -  (1 - a)(1 - b)>>,c + 1 - a -  b -  (1 - a)(1 - b ) = c -  a b > O  

holds and hence, we have S - - 1 .  Now, the conclusion for all the other cases follow from these 
observations, and therefore, the proof  is complete. [~ 
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