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INTRODUCTION

Given a module M over a commutative ring R, it is of considerable
interest to obtain information on the homological properties of its symmet-
ric powers S iM and and exterior powers Hi M. One possible approach to
this problem is to start from a free resolution F of M and produce
‘‘approximate resolutions’’ of S iM and Hi M. These are complexes with the
correct homology in degree zero, which are minimal if R is local and F is
minimal, and which are acyclic under certain conditions on F. In case F
has length F 1 such constructions have been proposed, and necessary and

w xsufficient conditions have been given for the exterior powers by Lebelt 9
w xand for the symmetric powers by Avramov 2 .

In Section 4 we consider the case when F has length at most 2. By using
combinations of divided, exterior, and symmetric powers of the free
modules in F, we give approximate resolutions of S iM and provide a
criterion for their acyclicity.

The situation is more complicated for longer complexes. When R is a
w xQ-algebra, Lebelt 11 gives approximate resolutions of the exterior powers

and proves that they are acyclic if M has sufficiently high torsion-freeness.
w xIn 14 Weyman proposed a variation of Lebelt’s construction for both

symmetric and exterior powers over arbitrary rings and formulated neces-
sary and sufficient conditions for its acyclicity. A close examination of the

w xboundary maps of 14 shows that in most cases they do not produce a
complex; cf. Example 6.2. The reason is that their definition uses some
noncanonical families of maps.
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ALEXANDRE B. TCHERNEV1114

For a finite complex of free R-modules F of arbitrary length, with
Ž . iH F s M, we construct canonical complexes of free modules SS F and0

LL i F, whose zeroth homology is S iM and Hi M, respectively. These com-
plexes are built from appropriate combinations of symmetric and exterior
powers of the free modules in F, with naturally induced maps between
them. Our main results, Theorems 2.1 and 2.2, provide necessary and
sufficient conditions for the acyclicity of SS i F and LL i F; Theorems 3.11

w xand 3.12 do the same for the complexes constructed by Lebelt 11 and for
their variants for symmetric powers.

Each acyclicity criterion involves two types of conditions. On the one
w x w x w xhand, as in 2 , 9 , and 14 , there are hypotheses on the grades of

appropriate ideals of minors for the differentials of the complex F, which
w xare analogous to the conditions in the Buchsbaum]Eisenbud criterion 3

for acyclicity of F. On the other hand, there is a hypothesis on the additive
Ž .torsion of R. This condition indicates except when F has length at most 2
w xthat the constructions considered in 11 and in the present paper give a

strongly characteristic-dependent approach to the approximate resolutions
of the symmetric or the exterior powers of M.

As an example, consider the case where R is Noetherian and the
complex

w w w wn ny1 2 16 6 6 6

F: 0 ª F F ??? F F ª 0n ny1 1 0

is a finite free resolution of M with w / 0 for j s 1, . . . , n. Denote by rj j

Ž .the rank of w , and by I w its ideal of minors of order s. In this specialj s j
situation some of our results can be formulated as follows:

Let k G 2 be an integer. If n G 2, then the following three conditions
are equivalent:

Ž . i ii SS F is a free resolution of S M for i s 1, . . . , k.
Ž . kii SS F is acyclic; k! is invertible in R.
Ž . Ž . Ž . Ž .iii grade I w G kj for j even; grade I w G k j y 1 q 1 q tr j r yt jj j

for j odd and t s 0, . . . , k y 1; k! is invertible in R.

As an application of our acyclicity criteria, in Section 5 we generalize a
w xresult of Avramov 2 on the q-torsion-freeness of the symmetric powers of

a finite module of projective dimension 1 over a Noetherian ring.

PRELIMINARIES

Throughout this paper R denotes a commutative ring with unity, un-
adorned tensor products are over R, and all considered graded objects are
positive, i.e., their homogeneous parts indexed by negative integers are
zero.
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Ž . < a < < b <A graded R-algebra A is called strictly commutatï e if ab s y1 ba
for all homogeneous a, b g A, and a2 s 0 for all a g A of odd degree.
The tensor product A m B of graded R-algebras A and B has the
multiplication

< X < < <a bX X X Xa m b a m b s y1 aa m bb .Ž . Ž . Ž . Ž . Ž .

It is a strictly commutative algebra provided A and B are. A derï ation of
A is an R-linear endomorphism  of degree y1 of the underlying graded

Ž . Ž .module of A, satisfying the Leibnitz formula  ab s  a b q
Ž . < a < Ž .y1 a b for all homogeneous a, b g A. It is a differential of A if in
addition  2 s 0.

Ž . Ž .A complex M s M, m is acyclic if H M s 0 for each i ) 0 and exacti
Ž . w xif in addition H M s 0. For an integer c, we write M c for the complex0

Ž w x w x. w x w xM c , m c , where M c is the graded R-module with M c s M , andi iyc
w x Ž .cthe differential is given by m c s y1 m . We also consider the canoni-i iyc

c w xcal degree c bijective map of graded modules S : M ª M c , given for
cŽ . w x 1each u g M by S u s u g M c , and write S for S .i iqc

Ž .The tensor product of the complexes of R-modules M s M, m and
Ž . ŽN s N, n is the complex of R-modules M m M s M m N, m m 1 q
.1 m n .

1. SYMMETRIC AND EXTERIOR POWERS

� 4Let M be a graded R-module. For an integer m let M m be the graded
� 4 � 4submodule of M with M m s M and M m s 0 for i / m. Letm m i

Ž � 4. Ž � 4.C M m denote the symmetric algebra S M m when m is even and the
Ž � 4.exterior algebra L M m when m is odd. In general, note that M s

� 4[ M m and setmG 0

� 4C M s C M m .Ž . Ž .[
mG0

Ž . ŽWe endow C M with the canonical grading for which it is strictly
.commutative

C M s C a0 M m ??? m C at M ,Ž . [t 0 t
a q2 a q ??? qta st1 2 t

where

SaM for even j,jaC M s aj ½ H M for odd j,j

Ž .and consider M as a graded submodule of C M .
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The properties of symmetric and exterior algebras easily yield:

Ž .1.1 PROPOSITION. If M is a graded R-module, A is strictly commutatï e
graded R-algebra, and t : M ª A is a degree zero homomorphism of graded
R-modules, then there exists a unique canonical extension of t to a homomor-

Ž . <phism of graded R-algebras u : C M ª A, such that t s u .M

Ž .A canonical bigraded R-module structure on C M is given by

1.2 C M s C a0 M m ??? m C at M .Ž . Ž . [t , i 0 t
a q2 a q ??? qta st1 2 t
a qa q ??? qa si0 1 t

Ž .In this bigrading M s C M for each t.t t, 1

Ž . Ž .1.3 PROPOSITION. Let M s M, m be a complex with differential m.
Ž .Then m extends uniquely to a different  of the algebra C M .m

Ž . Ž .w xProof. On the graded R-module A s C M [ C M 1 consider the
product

< <a1.4 a, x b , y s ab, xb q y1 ayŽ . Ž . Ž . Ž .Ž .
w xfor a, b g C M and x , y g C M 1 .Ž . Ž .

It is easy to check that A becomes a strictly commutative graded R-alge-
bra. Since the homomorphism of graded R-modules t : M ª A given by

Ž . Ž Ž .. Ž .u ¬ t u s u, Sm u has degree zero, by the universal property 1.1 of
Ž . Ž .C M we obtain a map of graded R-algebras u : C M ª A. The desired

derivation  is then given by the composition of u with the canonicalm

Ž .w x y1projection A ª C M 1 , followed by S .
2Ž . 2Ž . 2Ž . Ž . 2Ž .Note that  u¨ s  u ¨ q u ¨ for all u, ¨ g C M . As  u sm m m m

2Ž . Ž . 2m u s 0 for the algebra generators of C M , it follows that  s 0. Thism

shows existence. Uniqueness is clear.

Ž . Ž Ž . .We call C M s C M ,  the free strictly commutatï e DG algebra ofm

the complex M. Note that  is a map of bigraded R-modules of bidegreem

Ž .y1, 0 .

Ž . Ž .1.5 BASE CHANGE. For a complex of R-modules M s M, m and a
homomorphism of commutatï e rings r : R ª Q the canonical extension

u : C M m Q ª C M m QŽ . Ž .Q R R R

Ž .of the canonical inclusion M m Q ª C M m Q is an isomorphism ofR R R
DG algebras o¨er Q which is compatible with the bigrading. In particular, for

y1 Ž .a multiplicatï ely closed set U in R there is an isomorphism U C M (R
Ž y1 .y1C U M .U R
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Proof. By the universal property of tensor products, the homomor-
Ž . Ž .phism of R-algebras C M ª C M m Q extending M ª M m 1 in-R Q R

X Ž . Ž .duces a Q-algebra homomorphism u : C M m Q ª C M m Q .R R Q R
X X Ž .Clearly u and u are inverse isomorphisms. Since u (  m Q (u is am

Ž . Ž .Q-differential on C M m Q which extends  m Q, by 1.3 we getQ m
y1 Ž .u (  m Q (u s  .m Ž mmQ.

Ž . Ž .1.6 PROPOSITION. For complexes of R-modules M s M, m and N s
Ž .N, n , the canonical extension

q : C M m N ª C M m C NŽ . Ž . Ž .

Ž . Ž .of the inclusion of graded R-modules t : M [ N ª C M m C N gï en by
Ž .t u, ¨ s u m 1 q 1 m ¨ , is an isomorphism of DG algebras o¨er R, which is

compatible with the bigrading.

Proof. The inverse to q is given by the homomorphism of graded
Ž . Ž . Ž .R-algebras C M m C N ª C M [ N derived from the canonical inclu-

Ž . Ž .sions M ª M [ N ¤ N by the universal properties of C M , C N and of
y1 Ž .the tensor product. Since q (  m 1 q 1 m  (q is a differential ofm n

Ž . Ž . y1 ŽC M [ N and extends m [ n , by 1.3 we obtain q (  m 1 q 1 mm

. (q s  .n m[n

Ž .Let M s M, m be a complex of R-modules. As the differential  onm

Ž . Ž . Ž .C M is a map of bidegree y1, 0 , the complex C M splits into a direct
sum of subcomplexes

1.7 C M s C M .Ž . Ž . Ž .[ ) , i
iG0

i Ž .We call SS M s C M the ith symmetric power of M and call the) , i
i iŽ w x.w xcomplex LL M s SS M 1 yi the ith exterior power of M. By abuse of

notation, the differential in both cases is written as  .
Ž i . Ž i . Ž iy1 .For i ) 0 the differential  : SS M ª SS M is the map S M m1 0 0

i Ž . Ž .M ª S M given by f m u ¬ m u f. Thus we obtain the first of the1 0 1
isomorphisms

1.8 H SS iM ( S iH M and H LL iM ( Hi H MŽ . Ž . Ž . Ž . Ž .0 0 0 0

for i G 0;

the second one follows in a similar manner.
Ž . Ž . � < 4For a complex of free modules F s F, w set l F s sup i F / 0 . Wei

Ž .say that F has no gaps if F / 0 for 0 F i - l F .i
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Ž .Assume that F has no gaps and that l F s m - `. Let r be the rankm
Ž . k kof F . Then by 1.2 the complexes SS F and LL F are finite free for eachm

k G 0 and

km, for even m ,kl SS F sŽ . ½ k m y 1 q min r , k , for odd m ,Ž . Ž .m
1.9Ž .

km, for odd m ,kl LL F sŽ . ½ k m y 1 q min r , k , for even m.Ž . Ž .m

Ž i .If f , . . . , f is a basis of F for s s 0, . . . , m, then the R-module SS Fs, 1 s, b s ts

Ž .has a basis given by all products in C F of the form

1.10 f c0 , 1 ??? f c0 , b0 ??? f ct , 1 ??? f ct , btŽ . Ž . Ž .0, 1 0, b t , 1 t , b0 t

with c s i , uc s t ,Ý Ýu , ¨ u , ¨

such that when u is odd the exponents c are either zero or one.u, ¨
Ž i . Ž w x.Similarly, LL F has a basis given by all products in C F 1 of the formt

Ž .1.10 , such that when u is even the exponents c are either zero or one.u, ¨
Ž . Ž .For an integer n G 1 let E n s E, e be the complex

e 6

E n : 0 ª E E ª 0,Ž . n ny1

where E s Rf and E s Rg are free R-modules on generators f and gn ny1
of degrees n and n y 1, respectively, and e is the isomorphism defined by
Ž .e f s g.

Ž .For an R-module L and an integer c g Z set Lr c s LrcL and
Ž . Ž .c R L s 0:c .L

Ž .1.11 PROPOSITION. Let M be a complex o¨er R and let n, c, t, a be
integers such that n, c G 1 and t, a G 0.

If n is e¨en, then there is a canonical exact sequence

0 ª H SS aM r c ª H SS c E n m SS aMŽ . Ž . Ž .Ž .Ž .tq1ycn t

ª c R H SS aM ª 0Ž . Ž .tycn

cŽ Ž .. aand the complex LL E n m LL M is exact.
If n is odd, then there is a canonical exact sequence

0 ª H LL aM r c ª H LL c E n m LL aMŽ . Ž . Ž .Ž .Ž .tq1ycn t

ª c R H LL aM ª 0Ž . Ž .tycn

cŽ Ž .. aand the complex SS E n m SS M is exact.
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Proof. When c G 1 we have

c cy1 c cy16

0 ª Rf Rf g ª 0, for even n , with  f s cf g ,Ž .cSS E n :Ž .Ž . cy1 c cy1 c6½ 0 ª Rfg Rg ª 0, for odd n , with  fg s g ,Ž .

Therefore we obtain canonical exact sequence of complexes

a w x c a a w x0 ª SS M cn y 1 ª SS E n m SS M ª SS M cn ª 0,Ž . Ž . Ž .Ž .
for even n;

a w x c a a w x0 ª SS M cn y c ª SS E n m SS M ª SS M cn q 1 y c ª 0,Ž . Ž . Ž .Ž .
for odd n.

cŽ Ž .. aTheir homology long exact sequences imply that SS E n m SS M is exact
when n is odd. When n is even they induce for each t G 0 the desired
canonical exact sequence in the symmetric case.

The corresponding results for the exterior case are obtained analo-
gously.

Ž .1.12 COROLLARY. Let n, k G 1 be integers.
If either n s 1 or k! is in¨ertible in R, then the acyclicity of SS k M is

kŽ Ž . .equï alent to that of SS E n [ M .
If k! is in¨ertible in R, then the complex LL k M is acyclic if and only if

kŽ Ž . .LL E n [ M is acyclic.

Ž Ž . . Ž Ž .. Ž .Proof. The canonical isomorphism C E n [ M ( C E n m C M
Ž .and the canonical decomposition 1.7 induce for each k G 0 a canonical

isomorphism of complexes

1.13 SS k E n [ M ( SS c E n m SS aM.Ž . Ž . Ž .Ž . Ž .[
aqcsk

Ž .Now apply 1.11 .
iThe proof of the assertion for LL M is analogous.

2. ACYCLICITY OF SYMMETRIC AND EXTERIOR POWERS

First we recall the notion of grade of an ideal I : R. If I is a proper
� <ideal, then set gr I s sup s there is an R-regular sequence in I of lengthR

4s ; else set gr I s `. DefineR

w xgrade I s lim gr IR X , . . . , X ,Rw X , . . . , X x 1 s1 ssª`

w xwhere R X , . . . , X is the polynomial ring over R in the indeterminates1 s
w xX , . . . , X . We refer to 12, Chaps. 5 and 6 for the properties of this1 s
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Ž � 4notion of grade denoted there by Gr I and termed true grade orR
.polynomial grade .

When R is local with maximal ideal m we set depth R s grade m. It
w xfollows from 12, Chap. 6, Theorem 5 by a standard argument, that

� < Ž .4grade I s inf depth R I : p g Spec R when I is finitely generated.p
Ž .Let F s F, w be a finite free complex

w w wn ny1 16 6 6
F: 0 ª F F ??? F ª 0n ny1 0

Ž .with F / 0 for i s 0, . . . , n and let M s H F . Set b s rank F , call thei 0 i i
n Ž .ky i Ž .number r s Ý y1 b the expected rank of w , and write I w fori ksi k i s i

Ž . Ž .the ideal of s = s minors of w , where I w s 0 for s ) min b , b andi s i i iy1
Ž .I w s R for s F 0.s i

Ž .2.0 Grade conditions. For integers j, k G 1 we consider the grade
condition

kŽ . Ž .GC j : grade I w G kjr jj

and the sliding grade condition
kŽ . Ž . Ž .SGC j : grade I w G k j y 1 q 1 q t for t s 0, . . . , k y 1.r yt jj

Our main results give acyclicity criteria for the symmetric and exterior
powers of F, in terms similar to those of the Buchsbaum]Eisenbud

w xcriterion 3 .

Ž . Ž . Ž .2.1 THEOREM. Let k G 2 be an integer. Conditions i and ii below
are equï alent:

Ž . k Ž .i SS F is acyclic; grade I w G 1 for each odd j G 1; k! is in¨ert-r jj

ible in R.
Ž . kŽ .ii the grade condition GC j holds when j is e¨en; the sliding grade

kŽ .condition SGC j holds when j is odd; k! is in¨ertible in R.
They imply

Ž . i iiii SS F is a free resolution of S M for i s 1, . . . , k.
If w / 0 for some e¨en m, then all three conditions are equï alent.m

Analogously, for the exterior powers we have

Ž . Ž . Ž .2.2 THEOREM. Let k G 2 be an integer. Conditions i and ii below
are equï alent:

Ž . k Ž .i LL F is acyclic; grade I w G 1 for each e¨en j G 2; k! isr jj

in¨ertible in R.
Ž . kŽ .ii the grade condition GC j holds when j is odd; the sliding grade

kŽ .condition SGC j holds when j is e¨en; k! is in¨ertible in R.
They imply

Ž . i iiii LL F is a free resolution of H M for i s 1, . . . , k.
If w / 0 for some odd m, then all three conditions are equï alent.m
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w xThe proofs depend on the acyclicity criteria of Peskine and Szpiro 13
w x w xand Buchsbaum and Eisenbud 3 in the form given by Northcott 12 ,

which applies to arbitrary commutative rings:

Ž .2.3 The complex F is acyclic if and only if F is acyclic for allp
Ž . Ž . w xp g Spec R such that depth R - l F 12, Chap. 5, Theorem 21 .p

Ž . Ž .2.4 The complex F is acyclic if and only if grade I w G j forr jj
Ž . w xj s 1, . . . , l F 12, Chap. 6, Theorem 15 .

We start with an easy observation:

Ž . Ž . Ž . X2.5 LEMMA. Let l F s n G 1 and F ( E n [ F for some complex
X Ž X X. Ž .of free modules F s F , w . If PP denotes one of the grade conditions 2.0 ,

then PP holds for F if and only if it holds for FX.

Proof. Note that
rX s r y 1 and rX s r for i - nn n i i

and that for each integer s g Z we have

I wX s I w and I wX s I w for i - n.Ž . Ž . Ž . Ž .s n sq1 n s i s i

The lemma now follows by an elementary application of the equalities
above.

Ž . Ž .We give the proof of 2.1 . The proof of 2.2 is analogous.

Ž . Ž . Ž .Proof of Theorem 2.1. i « ii We recall that l F s n and proceed by
Ž .induction on the lexicographically ordered set of pairs n, r . As then

statement is trivially true when n s 0 for any value of r , we assume thatn
Ž . Ž .n G 1 and that the assertion holds for every pair s, r - n, r .s n

Ž . Ž . Ž k .Case a . n is odd and 1 F r - k. By 1.9 we have l SS F s kn y kn
X Ž r ny1 . Ž ky rnq1 . Y Ž r n .q r . Set G s H F m S F and G s H F mn n ny1 n

Ž ky rny1 . Ž . kS F m F . Then by 1.2 , the tail of SS F has the formny1 ny2
 X Yr kyr 6

n n0 ª H F m S F G [ G ª ??? .Ž . Ž .n ny1

Set  X s p X ( and  Y s p Y ( , where p X: GX [ GY ª GX and p Y : GX [
Y Y ŽŽ rn .G ª G are the canonical projections. Set q s rank H F mn

Ž ky rn .. Ž . q Ž X. Ž Y .S F . Then I  : Ý I  I  ; henceny1 q is0 qyi i

q
X Ygrade I  I  G grade I  G kn y k q r ,Ž . Ž . Ž .Ý qy i i q nž /

is0

where the second inequality follows from the acyclicity of SS k F and the
Ž .Buchsbaum]Eisenbud criterion 2.4 . Also, we have

q
X Y) I  I  : I w .Ž . Ž . Ž . Ž .Ý qy i i 1 n

is0
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Ž X. Ž . XIndeed, if q y i G 1, then I  : I w by the construction of  .qy i q n

Ž Y .Thus, it is enough to show that I  s 0.q
This is clear for n s 1. To see it for n ) 1, consider the multiplicative

Ž .set U of all nonzero divisors of R. As grade I w G 1, by adjoining anr nn

Ž .indeterminate to R we may assume that I w l U / B. Hence, in ther nn

localized sequence

Uy1wny1 y1 y16

0 ª U F U F ª U F ª ???n ny1 ny2

the image of Uy1w splits off as a nonzero free direct summand ofn
Uy1F over the total ring of fractions Uy1R of R. Therefore in theny1
induced sequence

y1Ž kyrn .U S wny1 kyr y1 kyr6

n n0 ª U S F U S FŽ . Ž .n ny1

y1Ž ky rn .the image Im U S w also splits off as a nonzero free summand ofn
1Ž ky rn . rnU S F . Furthermore, for arbitrary y g H F and x ??? x gny1 n 1 kyrn

Sky rn F we obtain an equalityn

 Y y m w x ??? w xŽ . Ž .Ž .n 1 n kyrn

kyrn $
s y m w x ??? w x ??? w x m w w x s 0,Ž . Ž . Ž . Ž . Ž .Ý n 1 n i n kyr ny1 n in

is1

$
Ž .where w x means that w x is omitted. It follows that there is anŽ .n i n i

inclusion of Uy1R-modules

Uy1 n rn F m Im Uy1 Sky rnw : Ker Uy1 Y ;Ž .Ž . Ž .n n

Ž y1 Y . Ž Y .hence I U  s 0. Therefore I  s 0, which concludes the proof ofq q
Ž .) .

Ž . Ž .From ) we obtain grade I w G kn y k q r , which is the last non-1 n n
trivial one among the inequalities to be proved. It is enough to establish

Ž .the remaining ones after localization at each prime p g Spec R with
Ž .depth R - kn y k q r . As grade I w G kn y k q r , for such a primep n 1 n n

Ž . Xthe complex F splits over R into a direct sum E n [ F of freep p
Ž . Xcomplexes. Since grade I w G 1, we have b F b ; therefore F has nor n n ny1n

Ž .gaps. Thus by 1.12 and by the inductive hypothesis, the desired inequali-
X Ž . Ž .ties hold for F . Applying 2.5 , we conclude the proof of Case a .

Ž . Ž k .Case b . n is odd and 2 F k F r . Here l SS F s kn and the end ofn
SS k F has the form

k ky16

0 ª H F H F m F ª ??? .Ž .n n ny1
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Its exactness implies by the Buchsbaum]Eisenbud criterion that
Ž . k Ž . Ž .grade I  G kn, where q s rank H F . As I  s I w by the con-q n 1 1 n

Ž . Ž . Ž .struction of  , this yields I  : I w ; hence grade I w G kn. It isq 1 n 1 n
enough to show the desired inequalities after localization at each prime

Ž .p g Spec R with depth R - kn. However, for such a prime the complexp
Ž .F splits as a direct sum just as in the proof of Case a , and the argumentp

given there applies.

Ž . Ž . Ž .2.6 Remark. If n s 1, then the proof of the implication i « ii is
complete and has not used the assumption that k! is invertible in R.

Ž . Ž k . kCase c . n is even. In this case l SS F s kn and the tail of SS F has
the form

k ky16
0 ª S F S F m F ª ??? .Ž .n n ny1

Ž .Since it is acyclic, the Buchsbaum]Eisenbud criterion gives grade I  Gq
k Ž . Ž . Ž .kn, where q s rank S F . As I  : I  s I w , we obtainn q 1 1 n

Ž .grade I w G kn. It is enough to show the desired inequalities after1 n
Ž . Xlocalization at each prime p g Spec R with depth R - kn. Note that Fp

k b q k y 1nŽ .has gaps only if b G 2 and b s 1. Since rank S F s andb y 1n ny1 n n

ky1 b q k y 2 knŽŽ . . Ž .rank S F m F s b , the acyclicity of SS F yieldsb y 1n ny1 ny1n

b q k y 1 b q k y 2n nF b ,ny1ž / ž /b y 1 b y 1n n

Ž .which reduces to b q k y 1 F kb , that is, to b F k b y 1 q 1.n ny1 n ny1
X Ž .Thus b s 1 implies b s 1; hence F has no gaps. Therefore by 1.12ny1 n

and by the induction hypothesis the desired inequalities hold for FX.
Ž . Ž . Ž .Applying 2.5 , we conclude the proof of the implication i « ii .

Ž . Ž .ii « i We induct again on the lexicographically ordered set of pairs
Ž .n, r . When n s 0 our statement is trivially true for any value of r . Letn n

Ž . Ž .n G 1 and assume the assertion is true for any pair s, r - n, r .s n

Ž . Ž . kCase a . n is odd and 1 F r - k. Then by 1.9 the complex SS F hasn
Ž . Ž .length k n y 1 q r . Let p g Spec R be such that depth R - kn y kn p

q r . We haven

grade I w s grade I w G kn y k q r ,Ž . Ž .1 n r yŽ r y1. n nn n

where the inequality holds by assumption. Therefore the localized complex
Ž . XF splits into a direct sum of free complexes over R as F ( E n [ F .p p p

Ž . XSince grade I w G 1, we have b F b ; therefore F has no gaps. Asr n n ny1n
Ž .grade does not decrease under localization, by 2.5 the inductive hypothe-
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X Ž . Ž k .sis holds for F . Thus by 1.12 we obtain that SS F is acyclic for everyp
Ž k . kprime p with depth R - l SS F . Therefore the complex SS F is acyclicp

Ž .by 2.3 and we are done in this case.

Ž . Ž k . Ž .Case b . n is odd and k F r . Then l SS F s kn and, as in Case a ,n
Ž . Ž . Ž .take p g Spec R with depth R - nk. Since I w = I w , we getp 1 n r ykq1 nn

grade I w G grade I w G kn,Ž . Ž .1 n r ykq1 nn

where the second inequality is one of our assumptions. The rest of the
Ž .argument is the same as in Case a from this implication.

Ž . Ž . Ž .2.7 Remark. If n s 1, then the proof of the implication ii « i is
complete and has not used the assumption that k! is invertible in R.

Ž . Ž k . Ž .Case c . n is even. Then l SS F s nk. As above, take p g Spec R
Ž . Ž .with depth R - nk. Since r G 1, we have grade I w G grade I w Gp n 1 n r nn

Ž .kn, and the argument from Case a completes the proof of the implication
Ž . Ž . Ž . Ž .ii « i and, hence, of the equivalence of i and ii .
Ž . Ž . Ž .ii « iii This implication follows directly from the implication ii «

Ž . Ž .i , once we note that if 2 F i F k and ii holds for k, then it holds for i.
Assume next that w / 0 for some even m.m
Ž . Ž . Ž .iii « i Since F is acyclic, by 2.4 we have for every j G 1 that

Ž .grade I w G j G 1; in particular this holds for every odd j G 3. There-r jj

Ž .fore the proof of the theorem will be complete once we show that iii
implies k! is invertible in R.

Assume that p F k is a prime number, which is not a unit in R. Take a
prime ideal p = pR with depth R s grade pR F 1. As m G 2, the acyclic-p

1 Ž . Ž .ity of F s SS F and 2.4 yield r G 0 and grade I w G 1. Ifm r my1my 1

r s 0, then r s rank F and w must be injective, contradictingm my1 my1 my1
Ž .the fact that Ker w s Im w / 0. Thus r G 1, therefore grade I wmy 1 m m 1 m

Ž . XG 2, yielding a decomposition of F over R in the form E m [ F . Asp p
Ž . pŽ Ž .. Ž .iii holds for F , the complex SS E m is acyclic by 1.13 , hence exact.p

Ž .Thus 1.11 implies that p is a unit in R , yielding the desired contradic-p

tion.
The proof of the theorem is now complete.

We conclude this section with variations on the preceding theorems.

Ž .2.8 THEOREM. Let k G 2 be an integer. Assume that k s 2 or that
Ž . Ž . Ž .Supp M s Spec R . If grade I w G 2 for some e¨en m, then1 m

Ž . k Ž .i- SS F is acyclic and grade I w G 1 for each odd integer j G 1r jj
Ž . Ž . Ž .is equï alent to each one of the conditions ii and iii from 2.1 .
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Ž . Ž .Proof. In view of 2.1 , it suffices to show that i- implies k! is
invertible in R.

Assume that p F k is a prime number, which is not invertible in R.
Take a prime ideal p = pR with depth R s grade pR F 1. Asp

Ž . Ž . X Ž .grade I w G 2, it follows that F ( E m [ F over R . By 1.13 we1 m p p
k k iŽ Ž .. ky i Xhave the decomposition SS F ( [ SS E m m SS F ; thus the com-p is0

kŽ Ž .. pŽ Ž .. kyp X Ž .plexes SS E m and SS E m m SS F are acyclic. Now 1.11 yields
that k is invertible in R and the multiplication by p g p R is anp p

Ž kyp X. kypisomorphism on H SS F s S M . If k s 2, then 2 s p s k is in-0 p

vertible in R, contradicting our assumption on p and concluding the proof
Ž . Ž . kypin this case. If Supp M s Spec R , then S M is nonzero and finitelyp
Ž .generated over R because M is nonzero and finitely generated , andp p

Nakayama’s lemma gives the desired contradiction.

By a similar argument we obtain

Ž .2.9 THEOREM. Let k G 2 be an integer. Assume that k s 2 or that
Ž . Ž . Ž .Supp M s Spec R . If grade I w G 2 for some odd m, then1 m

Ž . k Ž .i- LL F is acyclic and grade I w G 1 for each e¨en integer j G 2r jj

Ž . Ž . Ž .is equï alent to each one of the conditions ii and iii from 2.2 .

3. DIVIDED POWERS

Recall that A is a dï ided powers algebra if it is a strictly commutative
graded R-algebra such that to every element x g A of positive evenn
degree n and to every integer k G 0 there is associated an element
x Žk . g A , called the kth dï ided power of x, whose list of definingk n

w x w xproperties can be found in 5, Sect. 7 or 6, Chap. 1, Sect. 7 . In addition,
for such an algebra we set x Žk . s x k when x is homogeneous of zero or
odd degree.

A differential  of a divided powers R-algebra A is said to be compati-
ble with the dï ided powers structure if for every k G 0 and every homoge-

Ž Žk .. Žky1. Ž .neous element x g A of positive even degree we have  x s x  x .
In the first part of this section we consider the divided powers DG

Ž . Ž .algebra D M of a complex M s M, m and some of its relevant proper-
ties. Their proofs are analogous to the proofs of the corresponding

Ž .statements for C M and are omitted.
Let m G 2 be an even integer and let M be a graded R-module such

� 4that M s M m . Fix a free graded presentation

w p6 6

F G M ª 0
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� 4 � 4 Ž .of M, such that G s G m and F s F m . If M is free, set G M to be the
w x Žfree divided powers algebra of M as defined in 5, Sect. 8.4 where it is

Ž .. Ž .called S M . In the general case let I be the ideal in G G generated by
� Ž .Žk . < 4 Ž . Ž .the elements w f f g F and k G 1 and set G M s G G rI.

Ž . aWe observe that G M s 0 when m does not divide k and write G Mk m
Ž .for the R-module G M .am

Ž � 4. Ž � 4.Let now M be an arbitrary graded R-module. Set D M 0 s S M 0 ;
Ž � 4. Ž � 4. Ž � 4.for odd m set D M m s L M m ; for even m G 2 set D M m s

Ž � 4.G M m ; in general set

� 4D M s D M m .Ž . Ž .m
mG0

Ž .We endow D M with the canonical grading

D M s Da0 M m ??? m Dat M ,Ž . [t 0 t
a q2 a q ??? qta st1 2 t

where

SaM , for j s 0;¡ j

aa ~H M , for odd j;D M s jj
a¢G M , for even j G 2;j

Ž .and consider M as a graded submodule of D M .
w xAn argument analogous to that of 5, Sect. 11, Theorem 3 yields:

Ž . Ž .3.1 PROPOSITION. The R-algebra D M has a canonical structure of a
dï ided powers algebra. If t : M ª A is a homomorphism of degree zero of the
graded R-module M into a dï ided powers R-algebra A, then there exists a
unique canonical extension of t to a homomorphism of dï ided powers

Ž . <R-algera u : D M ª A, such that t s u .M

Ž .A canonical bigraded R-module structure on D M is given by

3.2 D M s Da0 M m ??? m Dai M .Ž . Ž . [t , i 0 i
a q2 a q ??? qta st1 2 t
a qa q ??? qa si0 1 t

Ž .In this bigrading M s D M for each i.i i, 1

Ž . Ž .3.3 PROPOSITION. Let M s M, m be a complex with differential m.
Then m extends uniquely to a compatible with the dï ided powers structure

Ž .differential  of the algebra D M .m

Ž .Proof. The proof is mutatis mutandis that of 1.3 . The only new point
Ž . Ž .w x Ž .is that the algebra D M [ D M 1 with multiplication defined as in 1.4



ACYCLICITY OF SYMMETRIC AND EXTERIOR POWERS 1127

Ž .Žk . Ž Žk . Žky1. .has a canonical system of divided powers, given by a, x s a , a x
Ž . w Ž .xfor k G 1 and a, x of even positive degree; cf. the proof of 11, 2.2 .

Ž . Ž Ž . .We call D M s D M ,  the dï ided powers DG algebra of them

complex M. Note that  is a map of bigraded R-modules of bidegreem

Ž .y1, 0 .

Ž . Ž .3.4 BASE CHANGE. For a complex of R-modules M s M, m and a
homomorphism of commutatï e rings r : R ª Q the canonical extension

u : D M m Q ª D M m QŽ . Ž .Q R R R

Ž .of the canonical inclusion M m Q ª D M m Q is an isomorphism ofR R R
dï ided powers DG algebras o¨er Q which is compatible with the bigrading. In

y1 Ž .particular, for a multiplicatï ely closed set U in R we ha¨e U D M (R
Ž y1 .y1D U M canonically.U R

Ž . Ž .3.5 PROPOSITION. For complexes of R-modules M s M, m and N s
Ž .N, n , the canonical extension

q : D M [ N ª D M m D NŽ . Ž . Ž .

Ž . Ž .of the inclusion of graded R-modules t : M [ N ª D M m D N , gï en by
Ž .t u, ¨ s u m 1 q 1 m ¨ , is an isomorphism of dï ided powers DG algebras

o¨er R, which is compatible with the bigrading.

Ž .Let M s M, m be a complex of R-modules. As the differential  onm

Ž . Ž . Ž .D M is a map of bidegree y1, 0 , the complex D M splits into a direct
sum of subcomplexes

D M s D M .Ž . Ž .[ ) , i
iG0

i Ž . iWe write GG M for the subcomplex D M and DD M for the complex) , i
iŽ w x.w xGG M 1 yi . By abuse of notation, the differential in both cases is

denoted by  .

Ž . Ž . i i3.6 Remarks. a If M s 0 for t G 2, then GG M s SS M for eacht
i G 0.
Ž . ib When F is a finite complex of free modules, the complexes DD F

Ž . icoincide up to the sign of the differentials with the complexes C#F
w xconstructed by Lebelt 11, Sect. 1 .

Ž iy1 . i iFor i G 1 the differentials  : S M m M ª S M of GG M and  :1 0 1 0 1
Ž iy1 . i i Ž . Ž .n M m M ª n M of DD M are given by f m u ¬ m u f. Thus0 1 0 1
we obtain isomorphisms

H GG iM ( S iH M and H DD iM ( Hi H M for i G 0.Ž . Ž . Ž . Ž .0 0 0 0
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Ž . Ž .Let F s F, w be a finite free complex with no gaps and with l F s m.
Ž . k kBy 3.2 the complexes GG F and DD F are finite free for each k G 0 and

km, for even m ,kl GG F sŽ . ½ k m y 1 q min r , k , for odd m ,Ž . Ž .m
3.7Ž .

km, for odd m ,kl DD F sŽ . ½ k m y 1 q min r , k , for even m.Ž . Ž .m

Ž i .If f , . . . , f is a basis of F for s s 0, . . . , m, then the R-module GG Fs, 1 s, b s ts
Ž .has a basis given by the set of products in D F of the form

3.8 f Žc0 , 1. ??? f Žc0 , b0
. ??? f Žct , 1. ??? f Žct , bt

.Ž . Ž . Ž .0, 1 0, b t , 1 t , b0 t

with c s i , uc s t ,Ý Ýu , ¨ u , ¨

such that when u is odd, the exponents c are either zero or one.u, ¨
Ž i . Ž w x.Similarly, DD F has a basis given by the set of products in D F 1 oft

Ž .the form 3.8 , such that when u is even, the exponents c are either zerou, ¨
or one.

Ž .3.9 PROPOSITION. Let M be a complex o¨er R, and let n, c, t, a be
integers such that n, c G 1 and t, a G 0.

cŽ Ž .. a cŽ Ž .. aThe complexes DD E 1 m DD M and GG E 1 m GG M are exact.
If n G 2 is e¨en, then there is a canonical exact sequence

0 ª H DDaM r c ª H DDc E n m DDaMŽ . Ž . Ž .Ž .Ž .tycnq1 t

ª c R H DDaM ª 0Ž . Ž .tycn

cŽ Ž .. aand the complex GG E n m GG M is exact.
If n G 3 is odd, then there is a canonical exact sequence

0 ª H GG aM r c ª H GG c E n m GG aMŽ . Ž . Ž .Ž .Ž .tycnq1 t

ª c R H GG aM ª 0Ž . Ž .tycn

cŽ Ž .. aand the complex DD E n m DD M is exact.
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Proof. Use that when c G 1 we have

cy1 c cy1 c6¡0 ª Rfg Rg ª 0, for ns1, with  fg sg ,Ž .
Žc. Žcy1.6

0 ª Rf Rf g ª 0, for even n G 2, with
Žc. Žcy1.c ~  f s f g ,GG E n :Ž .Ž . Ž .

Žcy1. Žc.6

0 ª Rfg Rg ª 0, for odd n G 3, with
Žcy1. Žc.¢  fg s cg ,Ž .

Ž .and argue as in 1.11 .

Ž .3.10 COROLLARY. Let n, k G 1 be integers.
If either n F 2 of k! is in¨ertible in R, then the acyclicity of GG k M is

kŽ Ž . .equï alent to that of GG E n [ N .
If either n s 1 or k! is in¨ertible in R, then the acyclicity of DDk M is

kŽ Ž . .equï alent to that of DD E n [ M .

Ž .The following theorems, in which F s F, w is a finite free complex
Ž .with no gaps and M s H F , are the main results of this section. The0

initial proofs are replaced by more direct ones, suggested by the referee.

Ž . Ž . Ž .3.11 THEOREM. Let k G 2 be an integer. Conditions i and ii below
are equï alent:

Ž . k Ž .i GG F is acyclic; grade I w G 1 for each odd j G 1; k! is in¨ert-r jj

ible in R.
Ž . kŽ .ii the grade condition GC j holds when j is e¨en; the sliding grade

kŽ .condition SGC j holds when j is odd; k! is in¨ertible in R.
They imply

Ž . i iiii GG F is a free resolution of S M for i s 1, . . . , k.
If w / 0 for some odd m G 3, then all three conditions are equï alent.m

Ž . Ž .Proof. Consider the canonical extension C F ª D F of the inclusion
Ž .F ª D F . When k! is invertible in R and 1 F i F k, the induced map of

complexes SS i F ª GG i F is an isomorphism, with inverse given in the
Ž . Ž .notation of 1.10 and 3.8 by

t t1Žc . Žc . c cj , 1 j , b j , 1 j , bj jf ??? f ¬ f ??? f .Ł Ł ž /j , 1 j , b j , 1 j , bž / tj jŁ c ! ??? c !Ž .js0 js0js1 j , 1 j , bj

Ž . Ž . Ž . Ž .Thus the implications i m ii « iii follow from 2.1 . For the implica-
Ž . Ž . Ž .tion iii « i one argues as in the corresponding implication of 2.1 .
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Remark. Another way to obtain Theorem 3.11 is by going through the
Ž . Ž . Ž .proof of 2.1 with 3.10 substituting 1.12 .

An analogous argument yields

Ž . Ž . Ž .3.12 THEOREM. Let k G 2 be an integer. Conditions i and ii below
are equï alent:

Ž . k Ž .i DD F is acyclic; grade I w G 1 for each e¨en j G 2; k! isr jj

in¨ertible in R.
Ž . kŽ .ii the grade condition GC j holds when j is odd; the sliding grade

kŽ .condition SGC j holds when j is e¨en; k! is in¨ertible in R.
They imply

Ž . i iiii DD F is a free resolution of H M for i s 1, . . . , k.
If w / 0 for some e¨en m, then all three conditions are equï alent.m

Ž . w Ž .xIn view of Remark 3.6 b , the preceding theorem generalizes 11, 3.1a .
Ž . Ž .Corresponding to 2.8 and 2.9 we have

Ž .3.13 THEOREM. Let k G 2 be an integer. Assume that k s 2 or that
Ž . Ž . Ž .Supp M s Spec R . If grade I w G 2 for some odd m G 3, then1 m

Ž . k Ž .i- GG F is acyclic and grade I w G 1 for each odd integer j G 1r jj

Ž . Ž . Ž .is equï alent to each one of the conditions ii and iii from 3.11 .

Ž .3.14 THEOREM. Let k G 2 be an integer. Assume that k s 2 or that
Ž . Ž . Ž .Supp M s Spec R . If grade I w G 2 for some e¨en m, then1 m

Ž . k Ž .i- DD F is acyclic and grade I w G 1 for each e¨en integer j G 2r jj

Ž . Ž . Ž .is equï alent to each one of the conditions ii and iii from 3.12 .

4. COMPLEXES OF LENGTH AT MOST 2

For complexes of length at most 2 we have acyclicity criteria, which do
not involve conditions on the additive torsion of R.

Ž .The proof of Theorem 4.1 is obtained by using 3.10 in the same way as
Ž . Ž .1.12 was used in the proof of 2.1 ; cf. Remarks 2.6 and 2.7.

Ž .4.1 THEOREM. Let F be a finite free complex with no gaps and with
Ž . Ž .l F s 1. Set M s H F and let k G 1 be an integer. The following are0

equï alent:

Ž . i ii DD F is a free resolution of H M for i s 1, . . . , k.
Ž . kii DD F is acyclic.
Ž . Ž .iii grade I w G k.r 11
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Ž . Ž .In the case when R is Noetherian, the equivalence of i and iii in the
wpreceding result is due to Lebelt 9, Corollary 1 to Theorem 5 and

xCorollary to Theorem 13 .
An analogous argument yields

Ž .4.2 THEOREM. Let F be a finite free complex with no gaps and with
Ž . Ž .l F F 2. Set M s H F and let k G 1 be an integer. The following are0

equï alent:

Ž . i ii GG F is a free resoltuion of S M for i s 1, . . . , k.
Ž . k Ž .ii GG F is acyclic and grade I w G 1.r 11

Ž . Ž . Ž .iii grade I w G 2k; grade I w G 1 q t for t s 0, . . . , k y 1.r 2 r yt 12 1

Ž .In the case when l F F 1, Theorem 4.2 is due to Avramov; cf. the proof
w xof 2, Proposition 1 .

Remark. As noted by the referee, for a finite free complex F of length
Ž . i Žat most 2 the DG algebra D F and the complexes GG F are defined for

. w xpurposes different from the above in 7 , where they are called SF and
S F, respectively.i

5. PROJECTIVE DIMENSION 1

Throughout this section the ring R is assumed to be Noetherian.
Let q G 1 be an integer. An R-module M is said to be q-torsion-free if

every R-regular sequence of length F q is also M-regular. If M is finite
and of finite projective dimension, then M is q-torsion-free precisely when

Ž . Ž .the inequality depth M G min q, depth R holds for each p g Spec Rp p
w Ž .x1, 4.25 . In this case the property of being q-torsion-free localizes.

Let U be the set of all nonzero divisors of R. We say that the finite
R-module M has rank r if Uy1M is a free Uy1R-module of rank r. If

w
s mR ª R ª M ª 0 is a free presentation of M, the k th Fitting invariant

Ž . Ž .of M is the ideal F M s I w of minors of order m y k q 1 of w.k mykq1
Ž .When the ring R is local and F s F, w is a minimal free resolution of

Ž .M, we write b M s rank F for the first Betti number of M.1 1
The next theorem is the main result of this section.

Ž . Ž . � Ž . <5.1 THEOREM. For a finite R-module M set b M s sup b M p g1 p
Ž .4Spec R and let q G 1 be an integer. If pd M s 1, then the following twoR

t Ž Ž . .conditions are equï alent and imply pd S M F min b M , t for each t G 1:R

Ž . ti S M is q-torsion-free for each t G 1.
Ž . t Ž .ii S M is q-torsion-free for t s 1, . . . , b M .

If in addition M has rank r, then they are also equï alent to
Ž . Ž . Ž .iii grade F M G t q q for t s 1, . . . , b M .rq t
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Remark. When R is a Cohen]Macaulay domain and q s 1, the equiv-
Ž . Ž . w xalence of conditions i and iii above is due to Huneke 8, Theorem 1.1 .

Ž . wUnder the assumptions of 5.1 , this equivalence is due to Avramov 2,
xProposition 4 .

For the proof of the theorem we need an elementary characterization of
q-torsion-freeness:

Ž . Ž . Ž .5.2 LEMMA. Let F s F, w be a free complex. Set M s H F and let0
q G 1 be an integer. The following two conditions are equï alent:

Ž .i The module M is q-torsion-free and F is a resolution of M.
Ž . Ž .ii For e¨ery R-regular sequence x s x , . . . , x of length s F q the1 s

Ž . Ž . Ž .complex Fr x F is an Rr x -free resolution of the module Mr x M.

Ž .Proof. By induction on q, it suffices to treat the case x s x . The1
assertion is trivial if R contains no regular elements. If x s x g R is an1
R-regular element, consider the exact sequence of complexes

x 6

0 ª F F ª FrxF ª 0.

Ž .We have H FrxF s MrxM and, if F is a resolution of M, then the0 xŽ . Ž . Ž .homology exact sequence yields H FrxF s ker M ª M and H FrxF1 i
s 0 for i G 2. Thus F is a resolution of M and x is M-regular if and only
if F is a resolution of M and FrxF is a resolution of MrxM.

Ž .The next two lemmas contain the main ingredients of the proof of 5.1 .

Ž .5.3 LEMMA. Let M be a finite R-module, let P be a finite projectï e
R-module, and let q, b G 1 be integers.

t Ž .The R-modules S M are q-torsion-free resp. of finite projectï e dimension
tŽ .for t s 1, . . . , b if and only if the R-modules S M [ P are q-torsion-free

Ž .resp. of finite projectï e dimension for t s 1, . . . , b.

Proof. As P is a direct summand of a finite free R-module F, we have
theh split inclusions M ¨ M [ P ¨ M [ F. They in turn induce for
t s 1, . . . , b the split inclusions

t
t t t i tyiS M ¨ S M [ P ¨ S M [ F ( S M m S F .Ž . Ž . Ž .[

is0

Since each SkF is a finite free R-module, the assertion of the lemma is
immediate from the fact that a finite direct sum of R-modules is q-

Ž .torsion-free resp. of finite projective dimension if and only if each direct
Ž .summand is q-torsion-free resp. of finite projective dimension .
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Consider a complex of length 1,
wk m6

)) F: 0 ª R R ª 0,Ž .

Ž .where k G 1 and m G 1, and set M s H F .0

Ž .5.4 LEMMA. Let q, b G 1 be integers. The following are equï alent:

Ž . ti F is acyclic, and S M is q-torsion-free for t s 1, . . . , b.
Ž . t tii GG F is acyclic and S M is q-torsion-free for t s 1, . . . , b.
Ž . b biii GG F is acyclic and S M is q-torsion-free.
Ž . Ž .iv For each R-regular sequence x s x , . . . , x of length s F q there1 s

Ž Ž ..are inequalities grade I w m Rr x G 1 q t for t s 0, . . . , b y 1.R rŽx. kyt

Ž . Ž .v grade I w G 1 q t q q for t s 0, . . . , b y 1.R kyt

Ž . Ž .Proof. v m iv is immediate from the basic properties of grade; cf.,
w xe.g., 12, Chap. 5, Theorems 15 and 19 .

Ž . Ž . Ž . Ž t . Ž .iv « ii By 4.2 the complexes GG F m Rr x are acyclic for t s
1, . . . , b and for every R-regular sequence x of length s F q. This implies
Ž . Ž .ii by 5.2 .
Ž . Ž .ii « iii is trivial.
Ž . Ž . Ž . Ž b . Ž .iii « iv By 5.2 the complexes GG F m Rr x are acyclic for every

Ž . Ž .R-regular sequence x of length s F q. This implies iv by 4.2 .
Ž . Ž .ii « i is trivial.
Ž . Ž .i « ii We induct on b. The case b s 1 is trivial. Assume that b G 2

and that the implication holds for b y 1. The induction hypothesis shows
that GG t F is acyclic for t s 1, . . . , b y 1. In view of the already established

Ž . Ž . Ž .implication ii « v this gives grade I w G 1 q t q q G 1 q t for t sky t
0, . . . , b y 2. Thus

grade I w G grade I w G 1 q b y 2 q q G 1 q b y 1 ;Ž . Ž . Ž . Ž .kybq1 kybq2

b Ž .hence GG F is acyclic by 4.2 .

Ž . Ž .Proof of Theorem 5.1. i « ii is obvious.
Ž . Ž . Ž .ii « i If R is local, then k s b M in the minimal free resolution

Ž . Ž . Ž Ž .. Ž .)) of M, and by 5.4 condition 5.4 v holds with b s b M . Therefore
Ž Ž .. Ž Ž ..condition 5.4 v holds for each b G 1. Since it implies condition 5.4 ii ,

we obtain the desired conclusion in the local case.
Ž . tBy the argument above, ii implies also the acyclicity of GG F for each

Ž . t Ž Ž . .t G 1; in particular, 3.7 gives pd S M F min b M , t for each t G 1,R
which establishes the assertion on the projective dimensions in the local
case.

Now consider the general case. As pd M s 1, there exists a projectiveR
module P such that M [ P has a finite free resolution of minimal length
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Ž . Ž . Ž . Ž .of the form )) . By 5.3 condition ii holds for M [ P. Thus 5.4
Ž . timplies for t s 1, . . . , b M that the complex GG F is a free resolution of

tŽ . tŽ .S M [ P . In particular S M [ P has finite projective dimension over R
Ž . Ž . tfor t s 1, . . . , b M and 5.3 yields finite projective dimension of S M for

Ž .t s 1, . . . , b M .
As pointed out in the beginning of this section, for finite modules of

finite projective dimension the property of being q-torsion-free is local.
Thus the already considered local case yields for each t G 1 and each

Ž . Ž t . Ž t .p g Spec R that S M is q-torsion-free over R and that pd S M Fp p R pp

Ž Ž . .min b M , t .
Ž . t Ž Ž . .Therefore ii implies pd S M F min b M , t for each t G 1; in partic-R

ular, the torsion-freeness of the symmetric powers of M can be calculated
Ž . Ž .locally. With this, the proofs of i m ii and of the assertion on the

projective dimensions are complete.
Assume next that M has rank r.
Ž . Ž . Ž .iii m ii By the argument above, condition ii localizes. As the same

Ž . Ž .holds for condition iii , we may assume that R is local and then k s b M
Ž . Ž . Ž .in the minimal resolution )) of M. Rewriting iii gives grade I w Gky t
Ž . Ž . Ž .1 q t q q for t s 0, . . . , b M y 1, which is equivalent to ii by 5.4 .

6. EXAMPLES

Ž .The first example shows that the assumption ‘‘grade I w G 1 for eachr jj
Ž Ž ..odd j G 1’’ in condition 2.1 i does not follow from the other two

assumptions made there:

Ž .6.1 EXAMPLE. The complex of free R-modules
Ž .0 1 6

F: 0 ª Rg [ Rg Rh ª 01 1

Ž . 2is not acyclic and has grade I w s 0, yet SS F is the exact complexr 11

y1ž /0 Ž .0 1 26 6

0 ª R g g R g h [ R g h Rh ª 0.Ž . Ž . Ž .1 2 1 2

w xIn 14, Sect. 2 Weyman associates to an integer i and a finite complex
Ž .of free modules F s F, w a graded R-module L F, together with ani

endomorphism d of L F of degree y1. However, this construction doesi
not in general produce a complex:

Ž .6.2 EXAMPLE. Consider the exact complex F of length 2 of free
R-modules:

1ž /1 Ž .1 y16 6

0 ª Re Rf [ Rf Rg ª 0.1 2
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w xThe construction in 14, Sect .2 gives L F in the form2

1 y1
1 0

d s3 1 1ž /
0 1 Ž2. Ž2.6

0 ª R e m f [ R e m f R e m g [ Rf [ R f f [ RfŽ . Ž . Ž . Ž .1 2 1 1 2 2

y1 1 y1 0
d s2 ž /y1 0 1 y1 6

R f m g [ R f m g ª 0Ž . Ž .1 2

in which

y1 0d ( d s / 0.2 3 ž /0 1
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