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We demonstrate for the first time the existence of electrically charged BPS vortices in a Maxwell–Higgs
model supplemented with a parity-odd Lorentz-violating (LV) structure belonging to the CPT-even gauge
sector of the standard model extension and a fourth order potential (in the absence of the Chern–Simons
term). The modified first order BPS equations provide charged vortex configurations endowed with some
interesting features: localized and controllable spatial thickness, integer flux quantization, electric field
inversion and localized magnetic flux reversion. This model could possibly be applied on condensed
matter systems which support charged vortices carrying integer quantized magnetic flux, endowed with
localized flipping of the magnetic flux.

© 2012 Elsevier B.V. Open access under CC BY license.
Since the seminal works by Abrikosov [1] and Nielsen and Ole-
sen [2] showing the existence of electrically neutral vortices in
type-II superconducting systems and in field theory models, re-
spectively, these nonperturbative solutions have been a theoret-
ical issue of enduring interest. In the beginning of 90s, vortices
solutions were studied in the context of planar theories includ-
ing the Chern–Simons term [3] which turned possible the attain-
ing of electrically charged vortices [4] also supporting BPS (Bo-
gomol’nyi, Prasad, Sommerfield) solutions [5], related with the
physics of anyons and the fractional quantum Hall effect [6]. In
addition, charged BPS vortices also were found in the Maxwell–
Chern–Simons model [7]. Further studies were performed involving
nonminimal coupling [8] and new developments [9,10]. General-
ized Chern–Simons vortex solutions were recently examined in
the presence of noncanonical kinetic terms (high order deriva-
tive terms) [11] usually defined in the context of k-field theories
[12–14]. These k-defects present a compact-like support [15], an
issue of great interest currently [16]. Lately, in the context of ef-
fective field theories, it has also been demonstrated the existence
of charged BPS vortices in a generalized Maxwell–Chern–Simons–
Higgs model [17].

Lorentz-violating (LV) theories have been under attention in
the latest years. The general theoretical framework for studying
Lorentz-violation effects is the standard model extension (SME)
[18] which encompasses Lorentz-violating terms in all sectors of
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the minimal standard model. In particular, the abelian gauge sector
of this model is composed of two sectors, a CPT-odd and a CPT-
even one. The CPT-even part is described by nineteen parameters
enclosed in the rank 4 tensor, (K F )μανβ , endowed with a double
null trace and the symmetries of the Riemann tensor [19], be-
ing investigated in many respects [20]. Lorentz violation was also
considered in connection with the formation of topological defects
[21,22], with particular interest in the Higgs sector [23]. Recently,
it has been investigated the formation of stable uncharged vor-
tices in the context of the nonbirefringent Lorentz-violating and
CPT-even Maxwell–Higgs electrodynamics, also including LV terms
in the abelian Higgs sector of the SME, with new interesting re-
sults [24].

Up the moment it is known that abelian charged vortices are
only defined in models endowed with the Chern–Simons term.
This remains valid even in the context of highly nonlinear mod-
els, such as the Born–Infield electrodynamics [25]. In this Letter we
report for the first time the existence of abelian charged BPS vor-
tices in a Maxwell–Higgs electrodynamics deprived of the Chern–
Simons term and endowed with CPT-even LV terms. This achieve-
ment is ascribed to the CPT-even electrodynamics of the SME,
whose parity-odd coefficients entwine the electric and magnetic
sectors [26,27] in analogy to what happens in the models contain-
ing the Chern–Simons term. The BPS solutions are attained by con-
sidering a particular fourth order potential, and can be interpreted
as vortex solutions in a dielectric medium [28]. The charged vor-
tex solutions are localized, having spatial thickness controlled by
the LV parameter, and presenting localized magnetic flux and elec-
tric field reversion in some radial region. This phenomenon could
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be of interest in condensed matter physics, mainly in connection
with superconductivity, particularly with two-components super-
conducting systems [29].

1. The theoretical framework

The theoretical environment in which our investigations are
developed is a modified Maxwell–Higgs model defined by the fol-
lowing Lagrangian density

L1+3 = −1

4
Fμν F μν − 1

2
κμν Fμρ Fν

ρ + |Dμφ|2

+ 1

2
(1 + κ00)∂μΨ ∂μΨ + 1

2
κμν∂μΨ ∂νΨ

− e2Ψ 2|φ|2 − U
(|φ|,Ψ )

, (1)

containing a convenient potential U (|φ|,Ψ ). The two first terms
in (1) define the nonbirefringent and CPT-even electrodynamics of
the SME, whose nine LV nonbirefringent parameters are enclosed
in the symmetric and traceless tensor, κμν , defined as

κμν = (K F )μαν
α, (2)

where (K F )μανβ is the CPT-even gauge sector of the SME, whose
properties were much investigated since 2001 [19,20]. The Higgs
field, φ, is coupled to the gauge sector by the covariant derivative,
Dμφ = ∂μφ − ie Aμφ. The neutral scalar field, Ψ , plays the role
of an auxiliary scalar field, and is analogous to the one that ap-
pears in the planar Maxwell–Chern–Simons models endowed with
charged BPS vortex configurations [7,10]. Note that the Lorentz-
violating tensor, κμν , also modifies the kinetic term of the neutral
field. The potential in Eq. (3) which assures the attainment of BPS
first order equations is defined by

U
(|φ|,Ψ ) = (ev2 − e|φ|2 − εi jκ0i∂ jΨ )2

2(1 − s)
. (3)

Observe that it is a fourth order one. Here, v is the vacuum expec-
tation value of the Higgs field, while s = tr(κi j). The potential U
possesses a nonsymmetric minimum, Ψ = 0, |φ| = v , which is re-
sponsible for providing topological charged vortex configurations.
We now analyze static solutions for the model projected in the
xy-plane, where it recovers the structure of a (1 + 2)-dimensional
theory. Remembering that in (1 + 2)-D it holds Fij = εi j B , F0i = Ei

(the magnetic field becomes a scalar), we write the stationary
Gauss’s law of the planar model related to (1) by

Li j∂i∂ j A0 + εi jκ0i∂ j B = 2e2 A0|φ|2, (4)

where

Li j = (1 + κ00)δi j − κi j, (5)

carries on the CPT-even and parity-even LV parameters. We note
that is the parity-odd parameter κ0i that couples the electric and
magnetic sectors [26,27], making possible the existence of charged
vortex configurations which are attained even in absence of the
Chern–Simons term. Otherwise, for κ0i = 0, the temporal gauge
A0 = 0 solves the Gauss’s law, yielding compact-like uncharged
vortex solutions [24].

2. BPS construction

In this section, we focus our attention on the development of
a BPS framework [5] consistent with the second order differential
equations obtained from the (1 + 2)-dimensional version of the
Lagrangian (1). We begin writing the energy density E in the sta-
tionary regime as
E = 1

2
(1 − s)B2 + U

(|φ|,Ψ ) + |D jφ|2

+ 1

2
Li j(∂i A0)(∂ j A0) + 1

2
Li j(∂iΨ )(∂ jΨ )

+ e2 A2
0|φ|2 + e2Ψ 2|φ|2. (6)

In order to attain the first order differential equations, we first
impose the following condition on the neutral field Ψ :

Ψ = ∓A0, (7)

which is similar to the ones appearing in the BPS vortex configura-
tions of the Maxwell–Chern–Simons model [9,10]. By substituting
(7) in Eq. (6), we attain

E = 1

2
(1 − s)B2 + (ev2 − e|φ|2 ± εi jκ0i∂ j A0)

2

2(1 − s)

+ |D jφ|2 + Li j(∂i A0)(∂ j A0) + 2e2 A2
0|φ|2. (8)

After converting the two first terms in quadratic form and by using
the identity

|D jφ|2 = |D±φ|2 ± e|φ|2 B ± 1

2
εab∂a Jb, (9)

where Jb is the spatial component of the current Jμ =
i[φ(Dμφ)∗ − φ∗Dμφ], the energy density takes on the form

E = 1

2
(1 − s)

[
B ∓ ev2 − e|φ|2 ± εi jκ0i∂ j A0

(1 − s)

]2

+ |D±φ|2 ± ev2 B ± 1

2
εab∂a Jb

+ Li j(∂i A0)(∂ j A0) + Bεi jκ0i∂ j A0 + 2e2 A2
0|φ|2. (10)

Now, we use the Gauss’s law to transform the last three terms in
a total derivative, rewriting the energy density as

E = 1

2
(1 − s)

[
B ∓ ev2 − e|φ|2 ± εi jκ0i∂ j A0

(1 − s)

]2

+ |D±φ|2 ± ev2 B + ∂aJa, (11)

where

Ja = ±1

2
εab Jb + Lab A0∂b A0 + εbaκ0b B A0. (12)

This energy density (11) is minimized by requiring that the
squared terms be null, establishing the two BPS conditions of the
model:

|D±φ| = 0, (13)

B = ±(ev2 − e|φ|2) + εi jκ0i∂ j A0

(1 − s)
. (14)

Under these BPS conditions, we attain the BPS energy density,

EBPS = ±ev2 B + ∂aJa, (15)

implying the total BPS energy,

EBPS = ±ev2
∫

d2r B = ±ev2Φ, (16)

which is proportional to the magnetic flux. It is worthwhile to note
that the second term in (15) does not contribute to the total BPS
energy, once the fields go to zero at infinity.
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3. Charged vortex configurations

Specifically, we look for radially symmetric solutions using the
standard static vortex ansatz

Aθ = −a(r) − n

er
, φ = vg(r)einθ , A0 = ω(r), (17)

that allows to write the magnetic field as

B = − a′

er
. (18)

The scalar functions a(r), g(r) and ω(r) are regular at r = 0 and
r = ∞, satisfying the appropriate boundary conditions:

g(0) = 0, a(0) = n, ω′(0) = cte, (19)

g(∞) = 1, a(∞) = 0, ω(∞) = 0, (20)

with n being the winding number of the vortex solution. The
boundary conditions above will be demonstrated explicitly in the
remain of the manuscript.

We now introduce the dimensionless variable t = evr and im-
plement the following changes:

g(r) → ḡ(t), a(r) → ā(t), ω(r) → vω̄(t),

B → ev2 B̄(t), E → v2Ē(t). (21)

Thereby, the BPS equations (13), (14) and the Gauss’s law (4) are
rewritten in a dimensionless form

ḡ′ = ± ā ḡ

t
, (22)

B̄ = − ā′

t
= ±(1 − g2) − κω̄′

(1 − s)
, (23)

(1 + λr)
(tω̄′)′

t
− κ

(t B̄)′

t
− 2ḡ2ω̄ = 0, (24)

where s = tr(κi j) = κrr + κθθ and we have defined κ = κ0θ and
λr = κ00 − κrr . Also, the signal + corresponds to n > 0 and − to
n < 0. We can also observe from Eqs. (22)–(24) that under the
change κ → −κ , the solutions go as ḡ → ḡ , ā → ā, ω̄ → −ω̄.

We now discuss the magnetic flux quantization. We first
rewrite the BPS energy density (15) in terms of the ansatz (17),
that is,

ĒBPS = ±B̄ ± (ā ḡ2)′

t
+ (1 + λr)

(tω̄ω̄′)′

t
− κ

(tω̄ B̄)′

t
. (25)

The first term is the magnetic field whose integration under
boundary conditions (19), (20) gives the magnetic flux contribution
to the BPS energy. The remaining three terms are total derivatives
whose integration under boundary conditions (19), (20) gives null
contribution to the total BPS energy. Thus,

ĒBPS = ±
∫

d2t ĒBPS = ±
∫

d2t B̄(t),

= ±2π

∞∫
0

dt t

(
− ā′

t

)
= ±2πn. (26)

This shows that the BPS vortex solutions present energy or mag-
netic flux quantization. Next, by using the BPS equations (22) and
the Gauss’s law (24), the BPS energy density (25) takes the suitable
form

ĒBPS = (1 − s)B̄2 + 2
ā2 ḡ2

t2
+ 2ḡ2ω̄

2 + (1 + λr)
(
ω̄′)2

, (27)

which is positive-definite for

s < 1, λr > −1. (28)
3.1. Asymptotic behavior

The asymptotic behavior for t → 0 is obtained solving Eqs. (22)–
(24) using power-series method. Thus, we attain

ḡ(t) = Gtn + · · · , (29)

ā(t) = n − 1

2

(1 + λr)

(1 − s)(1 + λr) + κ2
t2 + · · · , (30)

ω̄(t) = ω0 + κ

(1 − s)(1 + λr) + κ2
t + · · · . (31)

From Eqs. (30) and (18), the magnetic field in the origin (t = 0) is
given by

B̄(0) = (1 + λr)

(1 − s)(1 + λr) + κ2
, (32)

while Eq. (31) yields the electric field ω̄′ at t = 0,

ω̄′(0) = κ

(1 − s)(1 + λr) + κ2
, (33)

which establishes the second boundary condition for the field ω̄(t).
We should note that the denominator in the last two equations is
positive-definite due to the energy positivity conditions established
in Eq. (28): (1 − s)(1 + λr) + κ2 > 0. Hence, the physical fields are
well defined in the origin whenever conditions (28) are satisfied.

In the sequel we study the asymptotic behavior for t → +∞,
for which it holds ḡ = 1 − δg1, ā = ±δa1, ω̄ = ±δω1, with δg1,
δa1, δω1 being small corrections to be computed. After replacing
such forms in Eqs. (22)–(24), and solving the linearized set of dif-
ferential equations, we obtain

δg1 ∼ t−1/2e−βt ∼ δω1, δa1 ∼ t1/2e−βt, (34)

where β is given as

β =
√

2 + λr − s ± √
(λr + s)2 − 4κ2

(1 − s)(1 + λr) + κ2
. (35)

Here, (+) correspond to λr + s > 0 and (−) to λr + s < 0, such that
in the limit κ = 0 we get the asymptotic behavior for the BPS un-
charged vortex, β = √

2/(1 − s), see Ref. [24]. We now analyze the
β parameter. First, the condition 2 + λr − s > 0 is guaranteed be-
cause of the energy positivity condition (28). The same holds for
the denominator (1 − s)(1 + λr) + κ2 > 0. On the other hand, the
term inside the square root in the numerator, (λr + s)2 −4κ2, is not
definite-positive. Thus, we have a region |λr + s| � 2κ where β is
a positive real number, yielding an exponentially decaying asymp-
totic behavior. On the other hand, in the region |λr + s| < 2κ the
parameter β becomes a complex number with positive real part,
which implies a sinusoidal behavior modulated by an exponen-
tially decay factor.

3.2. Numerical solutions

We now analyze the case where β is a real number by setting
λr = 0 and s = 2κ , so that β = √

2/(1 − κ). Consequently, the only
free parameter is κ , whose values assuring a positive-definite en-
ergy density are κ < 1/2, in accordance with the condition (28).

In Figs. 1–5 we present some profiles (for the winding number
n = 1) generated by numerical integration of Eqs. (22)–(24) using
the Maple 13 libraries for solving the coupled nonlinear differential
equations. In all figures the value κ = 0 reproduces the profile of
the Maxwell–Higgs vortex [2] which is depicted by a solid black
line. The legends given in Fig. 1 hold for all figures.

Figs. 1 and 2 depict the numerical results obtained for the Higgs
field and vector potential, whose profiles are drawn around the
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Fig. 1. Scalar field ḡ(t) (solid black line, κ = 0, is the BPS solution for the Maxwell–
Higgs model).

Fig. 2. Vector potential ā(t).

ones corresponding to the Maxwell–Higgs model. These profiles
become wider and wider for κ < 0 and increasing |κ |, reach-
ing more slowly the respective saturation region. Otherwise, for
0 < κ < 1/2 it continuously shrinks approaching the minimum
thickness when κ approaches to 1/2. Moreover, the vector poten-
tial profile displays a novelty: for 0 < κ < 1/2 it assumes negative
values over a small region of the radial axis (see insertion in Fig. 2),
which is obviously associated with a localized magnetic flux inver-
sion. This inversion becomes more pronounced for κ values near
to 1/2. Also, the region presenting localized magnetic flux inver-
sion is a little shifted to the origin when κ tends to 1/2.

Fig. 3 depicts the magnetic field behavior. The profiles are
lumps centered at the origin whose amplitudes are proportional
to (1 − κ)−2. For κ < 0 and increasing values of |κ |, the magnetic
field profile becomes increasingly wider with continuously dimin-
ishing amplitude. For 0 < κ < 1/2, the profile becomes narrower
and higher for an increasing κ , reaching its maximum value for
κ = 1/2. A close zoom on the profiles corresponding to κ closer to
1/2 (see insertion in Fig. 3) reveals that the magnetic field flips its
signal, showing explicitly localized magnetic flux reversion.

In a first view, Fig. 3 seems to show that the magnetic flux
varies with the value of κ . Note, however, that the magnetic flux
is calculated by integrating 2πt B̄(t), as showed in Eq. (26). An ex-
plicit plot of the function 2πt B̄(t) clearly shows that for every
κ < 1/2 the magnetic flux is the same independently of the lo-
calized magnetic field reversion. This result is in accordance with
the properties of the BPS vortex solutions.

Fig. 4 shows that electric field profiles also are lumps centered
at the origin with amplitudes proportional to κ/(1 − κ)2, having
a minimum value for κ = −1 and maximal value for κ = 1/2.
As it occurs with the magnetic field, the electric profiles become
Fig. 3. Magnetic field B̄(t).

Fig. 4. Electric field ω̄′(t).

Fig. 5. Energy density Ē(t).

narrower and higher while κ increases tending to 1/2. Now, the
difference is that, for κ < 0, the profiles become negative (as pre-
dicted after BPS equations). A close zoom along the t-axis (see
insertion in Fig. 4), however, reveals that the electric field under-
goes inversion both for positive and negative values of κ . Such
reversion is ubiquitous in all profiles.

The BPS energy density (27) is exhibited in Fig. 5, having pro-
files very similar to the magnetic field ones, being more localized
and possessing a higher amplitude, however. As the BPS energy
density is positive-definite, no inversion regions are observed, nat-
urally.

By looking at the profiles of the BPS solutions it is observed
that the spatial thickness is controlled by the Lorentz-violating
parameter, allowing to obtain compact-like defects as in the un-
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charged case analyzed in Ref. [24]. The present model is being
regarded as an effective electrodynamics, which subjected to the
usual vortex ansatz, provides vortex solutions in a dielectric con-
tinuum [28], as already mentioned in Ref. [24]. This interpretation
allows to consider Lorentz-violating parameters with magnitude
above the values stated by the known vacuum upper-bounds.

These charged vortex configurations are endowed with several
interesting features, as space localization (exponentially decaying
behavior), integer magnetic flux quantization, magnetic flux and
electric field reversion. Specifically, the localized magnetic flux in-
version is a very interesting phenomenon, with sensitive appeal
in condensed matter superconducting systems. Recently, a mag-
netic inversion was reported in the context of fractional vortices in
superconductors described the two-component Ginzburg–Landau
(TCGL) model [29]. In it, the magnetic flux is fractionally quantized
and delocalized, presenting a 1/r4 decaying behavior, and a subtle
reversion. Such scenario, however, differs from the one described
by our theoretical model, which provides a localized magnetic flux
of controllable extent, exhibiting flux inversion just for the param-
eters that yields narrower (compact-like) profiles.

One should still note that the set of parameters here analyzed
is only one of the many theoretical possibilities available. So, it
can exist a set of parameters for which the magnetic flux might
undergo a more accentuated reversion, reaching more apprecia-
ble flipping magnitudes. Such behavior could be associated with
a complex β parameter, yielding oscillating solutions which be-
come less localized (and more similar with the ones of Ref. [29]).
Another interesting way is to investigate this theoretical system in
the presence of Lorentz-violating terms in the Higgs sector. Such
analysis are under progress with results being reported elsewhere.
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