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Abstract

In this note we study the weak topology on paired modules over a (not necessarily commutative)
ground ring. Over QF rings we are able to recover most of the well-known properties of this topology
in the case of commutative base fields. The properties of the linear weak topology and the dense
pairings are then used to characterize pairings satisfying the so-eatleddition.
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Introduction

Let R be a commutative field/, W be vector spaces ov&with a non-degenerating-
bilinear formpg:V x W — R, P := (V, W) be the inducedr-pairing and considey &£

w* andw &£ v* as vector subspaces. For every sulisat W (respectivelyX <€ W*)
set

AN(K) = | f € W*| f(K) =0} (respectively Kex) = [){Ker(f) | f X}).
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ConsideringR with the discrete topologyR" with the product topology, the induced
relative topology oV € W* ¢ RY is called thdinear weak topology [%;;(W)] and has
basis of neighbourhoods of/0

[FX: VOAN(F) | F = {wy,...,w} C W afinite subsdt

The linear weak topology o < V* c RV is defined analogously. The closure of any
vector subspac& C V is given byX := X1, A closed (open) vector subspakec V

has the formX = K1, whereK c W is any (finite dimensional) vector subspace. The
embeddingg¥ — V* respectivelyV — W* imply that V C W* respectivelyW C v*

are dense. The properties of this topology are well-known and were studied by several
authors (e.g., [8,9,12,10]).

For the case of arbitrary base rings most of the properties of this topology (including the
characterizations of closure, closed, open and dense submodules) are not valid anymore.
The aim of this note is to study the properties of this topology induced on paired modules
over arbitrary ground rings. In particular we extend results obtained by the author [2] on
this topology from the case of commutative base rings to the arbitrary case. In contrast to
the proofs in the case of base fields, which depend heavily on the existence of bases, our
proofs are in module theoretic terms.

Throughout this not®Rk denotes ar(ot necessarily commutativassociative ring with
1z # Og. We considerR as a right (and a left) linear topological ring with the discrete
topology. The category of unitary left (righ®-modules will be denoted with M (Mg).

The category of unitargR-bimodules is denoted with M . For a right (a left)R-module
L we denote with.* (*L) the set of allR-linear mappings frond to R. If V is anR-mod-
ule, then ankR-submoduleX c V is called R-cofinite, if V/X is finitely generated as an
R-module.

Let L be a right (a left)R-module andk c L be anR-submodule. We calk C L
N-pure for some left (rightR-moduleN, if the canonical mapping ® idy : K g N —

L®r N (dy ®.:N ®gr K — N ®p L) is an embedding. We calt C L pure (in the
sense of Cohn), iK c L is N-pure for every left (right)R-moduleN.

1. Thelinear weak topology

1.1. R-pairings. A left R-pairing P = (V, W) consists of a lefR-moduleW and a right
R-moduleV with anR-linear mappingp : V — *W (equivalentlyxp : W — V*). For left
R-pairings(V, W), (V', W) a morphism(&,0): (V/, W) — (V, W) consists ofR-linear
mappingst : V — V' andd: W — W, such that

(@), w)=(v,0w") forallveVandw e W' 1)

Let P = (V, W) be a left R-pairing, V' C V be a right R-submodule,W’ c W be a
(pure) left R-submodule with(V’, W’} = 0. ThenQ := (V/V’, W’) is a left R-pairing,

(r, ) (V/V', W) — (V, W) is amorphism of lefiR-pairings and we cal) C P a (pure)

left R-subpairing The left R-pairings with the morphisms defined above build a category,
which we denote byP;. The category of righR-pairingsP, is defined analogously.
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1.2. The finite topology. ConsiderR with the discrete topology. For every sdt we

considerR4 with the product topologyand identify it with the set of all mappings from

to R. If W is a left R-module, then the induced relative topology on the rigkgubmodule
*W c RV is called thefinite topologyand make$ W a linear topological righR-module
with basis of neighbourhoods of®:

Bf(Ow) :={An(F) | F = {w1,...,wx} C W is a finite subsgt
1.3. Let P = (V, W) be a leftR-pairing and consider the riglR-submodule'w c RY
with the finite topology. Then there is a unique topologylonthe linear weak topology

V[T, (W)], such thatcp: V — *W is continuous. A basis of neighbourhoods of &
given by theneighbourhoods

BfOy):={F:=«p (An(F)) | F = {wa, ..., w} C W is afinite subsdt
The closureX of any subseX C V is then given by
X = ﬂ{X + F+| F C W is afinite subsét

Analogously one can considé¥ as a left linear topologicakR-module with the linear
weak topologyW [T} (V)], which is the finest topology oi that makesgy : W — V*
continuous (we considér* ¢ RV with the finite topology).

1.4. Lemma. Let P = (V, W) be a left R-pairing and considerV with the linear weak
topologyV [%},(W)].

(1) VI, (W)]is Hausdorff if and only itV <5 *W.

(2) If kp(V) C *W is dense ang R is W-injective, thenV ~ *W (whereV is the com-
pletion of V- w.r.t. V[Z] (W)]).

(3) The finite topology oW is Hausdorff. Ifz R is W-injective, theri W is complete.

Proof. Denote withW/ the class of all finitely generate®Ri-submodules ofV .
(1) This is evident, while

Oy =({K* 1K ew | =(D (K e Wf})l =W =Ker(cp).

(2) Consider for every lefR-submodulek <& W the R-linear mapping
g V—> *K,uv—~> [kl—> (v,k)].

Since g R is W-injective, (3 : *W — *K is surjective. By assumptiokp(V) C *W is

dense and consequently for every finitely generated Re$tubmodulek c W, the R-

linear mappingpx is surjective, henc& /K ~ *K . If we write W = lim K, as a direct
—

system{K; } 4 of its finitely generatedv-submodules, then
V:=lim V/K;- ~lim *K; ~ Homg_(lim K, R) = *W.
<~ <~ —

(3) The result follows from (1) and (2).0
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1.5. Definition. An R-moduleU is calledFP-injective if every diagram ofR-modules
0——=K——RMD

-
yA
U
with exact row andX finitely generated can be completed commutatively with sd@me
linear mapping : RN — U.

An important role in studying the linear weak topology is played by the so-called

1.6. Annihilator conditions[13, 28.1]. LetN be anR-module.

(1) For everyR-submodulel ¢ N we have
KeAn(L)=L <= N/Lis R-cogenerated.
(2) If R is N-injective, then
An(L1N L2) =An(Ly) +An(L») forall R-submoduled., Lo C N.

(3) If R is injective, or if N is finitely generated an® is FP-injective, then for every
finitely generatedR-submoduleX ¢ Hom(N, R) we have AnKéX) = X.

We call the ringR a QF ring, if Rg (equivalentlyg R) is Noetherian and a cogenerator
(e.g., [13, 48.15]).

1.7. Lemma. Let P = (V, W) be a left R-pairing and consideV with the linear weak
topologyV [}, (W)].

(1) X < X1+ for any subsefX c V. Consequently every orthogonally closed rigti
submodule o¥ is closed.

(2) If Rg is Noetherian, then all open riglR-submodules oV are R-cofinite.

(3) Let X C V be a right R-submodule, so thaV /X is R-cogenerated. IfAn(X) =
xp(X1), thenX is closed. If moreoveg R is Noetherian X c V is R-cofinite and

w V*, thenX is open.
(4) Let Rg be Artinian.
(a) A right R-submoduleX C V is open if and only if it is closed an&-cofinite.
(b) Let X C Y C V be right R-submodules. IX c V is closed andr-cofinite, then
Y C V is also closed an&-cofinite.
(5) Assume/ C *W.
(a) If gR isinjective, or ifg W is finitely generated ang R is FP-injective, then every
finitely generated righR-submoduleX c V is closed.
(b) Let Vg be finitely generated. I R is injective andRy is Noetheriane.g.,R is a
QF ring), then all right R-submodules o¥ are closed.
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Proof. (1) Letx € X be arbitrary. For everyw € X there existx,, € X andv,, € {w}*
with ¥ = x,, + v, and so(¥, w) = 0. ConsequentlX < X, If X is orthogonally closed,
thenX € X1 =X, i.e., X is closed.

(2) Let X C V be an open righR-submodule. By definition there exists a finitely gen-
erated leftR-submodulek ¢ W, such thatk+ c X. If Ry is Noetherian, theriKy is
finitely generated, henck ¢ V is R-cofinite. Consequentl¥ c V is R-cofinite.

(3) Let X C V be a rightR-submodule, so tha¥'/ X is R-cogenerated. If AGX) =
xp(X1), then it follows by 1.6(1) that

X =KeAn(X) =Ke(xp(X')) =X+

By (1) X is closed. Assume now thatR is NoetherianX C V is R-cofinite andW &
V*. Then by assumptioiX+ = An(X) ~ (V/X)* is finitely generated irg M and so
X = (X1t is open.

(4) AssumeRp to be Artinian and leX C V be a rightR-submodule.

(a) Every openR-submoduleX C V is closed without any assumptions @&and isR-
cofinite by (2). On the other hand, |&t C V be R-cofinite and closed. SincRg is
Artinian V/ X is finitely cogenerated (e.g., [13, 31.4]), hence open by [4, 1.8].

(b) Let X C V be R-cofinite and closed. TheX is by (a) open and s& D X is open,
hence closed. Obviously c V is R-cofinite.

(5) LetV &L+ W be an embedding.

(a) If X c V is a finitely generated righk-submodule, then we have under our assump-
tions and applying 1.6(3X - = V N AnKe(X) = X, henceX is closed by (1).

(b) SinceVy is finitely generated an@t g is Noetherianall right R-submodules o¥/ are
finitely generated. Since, by assumpti@IR is injective, the result follows by (a). O

Closed and open submodules

For a left R-pairing (V, W) we characterize in what follows the closed (the open)
R-submodules o w.r.t. V[T (W)] in caseRg, is an injective cogeneratoR(a QF ring).

1.8. Theorem. Let P = (V, W) be a leftR-pairing and consideVV with the linear weak
topologyV[%},(W)]. AssumeR to be an injective cogenerator.

(1) The closure of a righR-submoduleX C V is given byX = X1+,

(2) LetX C Y C V be right R-submodules. Thek is dense it if and only if Xt = y+.
It w &£ v*, thenX c V is dense if and only ik = 0.

(3) LetR be a QF ring andX c V be anR-cofinite right R-submodule. TheX is closed
if and only ifAn(X) = xp(X1).

(4) The class of closeft-submodules oV is given by

{K* | K c W is anarbitraryleft R-submodulé.
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(5) If Risa QF-ring andw & y*isan embedding, then the class of ogesubmodules
of V is given by

{K+ | K c W is afinitely generatedeft R-submodulg.

Proof. (1) By Lemma 1.7(1)X € X11. On the other hand, lét € X\ X be arbitrary.
Then there exists by 1.6(1) a finitely generated RfsubmoduleK c W, such thaty ¢

X + K+ =KeAn(X + K1). Consequently there exisiss V*, such thas(X + K1) =0

ands () # 0. By assumptiorRy, is injective and it follows from 1.6(3) thdte An(K+) =

AnKe(xp(K)) = xp(K),i.e.,6 = xp(w) for somew € K. So

0=(v,w)=xp(w)(®) =8() #0,

a contradiction. It follows then thaf = X+.

(2) X c Y is dense if and only if¢ =Y and the result follows from (1).

(3) Let R be a QF ring andX C V be anR-cofinite right R-submodule. LetX be
closed, i.e..X = X by (1). SincegR is Noetherianp(X+) € An(X) ~ (V/X)* is
finitely generated ik M. SinceRp, is injective, we have by 1.6(3):

An(X) = AnKe An(X) = AnKe An(X*)
=AnKeAn(Ke(xp (X)) = xp(X1).

On the other hand, if AfX) = xp(X 1), then it follows by Lemma 1.7(3) thaX is closed
and we are done.
(4) Follows from (1) and Lemma 1.7(1).

(5) Let R be a QF ring andv Zyvefkcwisa finitely generated lefR-sub-
module, therk - c V is open by definition. On the other hand Xfc V is an open right
R-submodule, the is closed, i.e.X = X+. By Lemma 1.7(2)X C V is R-cofinite and

soxt & An(X) >~ (V/X)* is finitely generated ip M. O

1.9. Corallary. Let (V, W), (V’, W) be left R-pairings and conside’ and V' with
the linear weak topology [T} (W)], V'[Z] (W')] respectively. Let&,0): (V' W) —
(V, W) be a morphism of lefR-pairings.

(1) If K’ c W’ is a left R-submodule, thea~1(K’+) = (9(K’))*. In particular, £ : V —
V' is continuous. In particulart ~(¥’) ¢ V is closed for every closed rigit-sub-
moduley’ Cc V'.

(2) If Ry is an injective cogenerator, thegT1(Y’) C V is orthogonally closed for every
closed rightR-submodule’’ c V',

Proof. (1) Trivial.

(2) If Y/ c V' is closed, then it follows by Theorem 1.8(3) th&t= K’ for some
R-submodulek’ ¢ W'. It follows then by (1) that ~1(yY') = ¢ 1(K'1) = (0(K")*, i.e.,
£~1(y") c V is orthogonally closed. O
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1.10. Proposition. Let W, W’ be left R-modules and consideftW, *W’ with the fi-
nite topology. Let? € Homg_(W’, W) and consider the morphism of leR-pairings
0%,0): ("W, W) — (*W, W).

(1) 6*~L(An(K")) = An(6(K")) for every left R-submoduleK’ c W’. In particular
0* . *W — *W’ is continuous.
(2) If xR is W-injective, thend*(An(K)) = An(—1(K)) for every left R-submodule
KCWw.
(3) If R is an injective cogenerator angR is W-injective(e.g.,R is a QF-ring), then
(@) 0*: *W — *W' is linearly closed ite., 9*(X) c *W’ is closed for every closed
right R-submoduleX c *W).
(b) 6*(X) =0*(X) for every rightR-submoduleX c *W.
(c) Ke(@*(X)) =0~1(Ke(X)) for every rightR-submodulex c *W.
(d) For R-submodulesXy, ..., Xy C *W we haveX1+ -+ Xy = X1+ --- + Xx.
Hence everyinite sum of closed righR-submodules ofW is closed.

Proof. (1) Trivial.
(2) Letk € W be aleftR-submodule. Clearlg*(An(K)) € An(#~1(K)). On the other
hand, consider th&-linear mapping

0— W /0Y(K) <> W/K. )

By assumptiorg R is W-injective and so it ig¥ /K -injective (e.g., [13, 16.2]). Hence (2)
induces the epimorphism

“(W/K) -5 (W0~ 1(K)) — 0,

or equivalently the epimorphism

An(K) -5 An(6=2(K)) — 0.

(3) Let Rg be an injective cogenerator ap®k be W-injective.

(a) The result follows from Theorem 1.8(1), Lemma 1.7(1) and (2).

(b) LetX c *W be a rightR-submodule. By (a§* is linearly closed, sé*(X) € 6*(X).
By (1) #*~1(6%(X)) is closed and it follows thak C #*~1(6%(X)), i.e., 6*(X) C
0*(X) and the result follows.

(c) For every rightR-submoduleX C *W we get by the results above:

Ke(6* (X)) = Ke AnKe(6*(X)) = Ke(6*(X))
=Ke(6*(X)) = Ke(6*(AnKe(X)))
=6"(KeAnKe(X)) = 671 (Ke(X)).

(d) LetXy,..., Xx C *W be rightR-submodules. By Theorem 1.8(1) and inductiorkon
in 1.6(2) we have
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k k k
> Xi=An Ke(ZXi) = An(ﬂ Ke(X,-))
i=1 i=1 i=1

k k
=) AnKe(X)=)_X;. O
i=1

i=1

2. Thea-condition

In a joint work with Gomez-Torrecillas and Lobillo [3] we presented the so-called
a-conditionfor pairings of modules over commutative rings, which has shown to be a nat-
ural assumption in the author’s studydiality theoremg$or Hopf algebras [2]. Recently
that condition has shown to be a natural assumption in the study of the category of right
(left) comodules of @oring C as a full subcategory of the category right (left) modules of
its dual ring *C (C*) (e.g., [1]). In this section we consider this condition for pairings over
arbitrary (not necessarily commutative) rings and give examples of pairings satisfying it.
In particular we extend our observations in [2] on such pairings from the commutative case
to the arbitrary one.

2.1. Thecategory Py. We say a leftR-pairing P = (V, W) satisfies thex-condition(or
P is ana-pairing) iff for every right R-moduleM the following mapping is injective

ab M ®gr W — Hom_g(V, M),

Zmi®wil—>[vr—>2mi(v,wi)]. 3)
With P C P, we denote thefull subcategory of leftR-pairings satisfying thex-
condition (we call theséeft «-pairings). We call a left R-pairing P = (V, W) dense

if kp(V) C *W is dense w.r.t. the finite topology. The subcategoryight «-pairings
P& C P, is defined analogously.

2.2. Remark. Let P = (V, W) € P*. ThenW & V*, henceg W is in particularR-co-
generated. I is an arbitrary rightR-module, then we have for every rigRtsubmodule
N C M the commutative diagram

P

N®r W N Hom_g(V,N)
(v Qidy
MQr W 7 Hom_z(V, M)
Xy

By assumptiomﬁ is injective and saV C M is W-pure. By our choicéV is an arbitrary
R-module, hencg W is flat. If g W is finitely presented oR is left perfect, therg W is
projective.

An important observation faz-pairings is
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2.3.Lemma. Let P = (V, W) e P . For every rightR-moduleM and everyR-submodule
N C M we have for arbitrary)_"m; @ w; e M Qg W:

Y mi®weN®W <+ Y mivw)eNforalveV. (4)

Proof. By Remark 2.2z W is flat and we get the commutative diagram with exact rows

0— sN®r W__W8dw Mo, w___ 78w _M/N@g W g

,

Obviously> m; (v, w;) € N for all v € V if and only if

Zm[ Quw; € Ker((v, ) oa,ﬁ,) = Ker(a,ﬁ/N o(mr® idw))
=Ker(m Qidy) =N Qr W. a

2.4. Proposition.

(1) Let P = (V, W) be a leftR-pairing.

(a) LetW’ c W be a leftR-submodule and consider the induced Rfpairing P’ :=
(V,W').If P" € P, thenW' C W is pure. If P € P{*, thenP’ € P/ if and only if
W' C W is pure.

(b) Let V' C V be a right R-submodule,W’ c W be a left R-submodule with
(V/, Wy = 0 and consider the leftR-subpairing Q := (V/V’,W’) of P. If
P € Pp, thenQ e Py if and only if W' C W is pure. In particularP} is closed
under pure leftR-subpairings.

(2) Let 2 = (Y, W) be a leftR-pairing, V be a right R-module,£:V — Y be anR-
linear mapping,P := (V, W) be the induced lefR-pairing and consider the following
statements

(i) 2 ePandP isdense
(i) 2 P and&(V)CY isdense W.LtY [T (W)
(i) PePl;
(iv) PeP}andW & yrisan embedding.
The following implications are always truéi) = (ii) = (iii) = (iv). If Rg is an
injective cogenerator, thefi)—(iv) are equivalent.

Proof. (1) The result follows from the commutativity of the following diagram for every
right R-moduleM

9]
Mg W M Hom_g(V/V', M)
idM®LW/\L OlP/
M
MRrW Hom_z(V, M)
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(2) Consider for every righR-moduleM the commutative diagram

2
Mg W M Hom_g (Y, M)
by l«s,M)
Hom_gz(V, M)
(i) = (i) trivial.

(ii) = (iii) Let 2 € P and assume that(V) C Y is dense. Le® "/ _1m; ® w; €
Ker(a]f;). By assumption for every € Y there exists some, € V, such thako (y)(w;) =
kp(vy)(w;) fori=1,...,n and it follows then that

aﬁ(Zmi ® w,-)(y) = milywi) =) mifvy, w;)
i=1 i=1 i=1
:ai[(i:mi ®w,~>(vy) =0.

i=1

SoKeleF) = Ker(a$}) =0, i.e..af injective. TheR-moduleM is by our choice arbitrary
and soP € P'.

(i) = (iv) Trivial.

Let Rz be an injective cogenerator.

vy=(@0Ifw & y*isan embedding, then it follows by Theorem 1.8(1) thatV) =
AnKe(kp(V)) =An(V1) = An{Oy} = *W, i.e., P is a dense lefR-pairing. O

Over Noetherian rings we have the following interesting observation:

2.5. Proposition. Let V be a right R-module, R[V] be the free rightR-module with
basisV, W c V* be a left R-submodule and consider the Igttpairing P := (V, W).
AssumeRg to be Noetherian.

(1) For every rightR-moduleM the following mapping is injective
BuM@rR" > M", m®fr[vemf@)] (5)

i.e., P:=(R[V],RY) is a lefta-pairing.

(2) Let M be an arbitrary rightR-module. Then the canonical mappiasaﬁ, MQRrW —
Hom_x(V, M) is injective if and only ifW c RV is M-pure. If moreoveV is pro-
jective, them/@ is injective if and only ifW C V* is M-pure.

(3) The following statements are equivalent

(i) PeP!:
(i) «f is injective for everyfinitely presentejiright R-module);
(i) W c RY is pure.
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Proof. (1) LetM be an arbitrary righR-module and write/ as a direct limit of its finitely
generatedR-submodules\f =lim M, (e.g., [13, 24.7]). For every € A the R-module
- A

M,_is finitely presented ioM g and so
B, M, ®@r RV — M)

is an isomorphism (e.g., [13, 25.4]). Moreover, for everg A the restriction offy, on
M, coincides withgy,, and so the following mapping is injective:

ﬂlei_r)nﬁMA:Ii_r)nM)\@RRV—HiEMAVCMV.

Obviously P € P if and only if By is injective is for everyM € Mp.

(2) The first statement follows by (1). If moreovek, is projective, then the exact se-
quenceR[V] — V — 0 splits, hencd’* ¢ RY is pure (direct summand) and we are done.
(3) By [13, 34.5],W c R" is pure if and only ifW c R" is M-pure for every finitely

presented righR-moduleM . The result follows then from (2). O

2.6. Definition. The ring R is called right §em) hereditaryiff every (finitely generated)
right ideal is projective.

2.7. Lemma. Let Rr be Noetherian and hereditary arid be a right R-module. Then

(1) P:=(V,V*) e P?.
(2) LetW < V* be aleftR-module andP := (W, V). ThenP e P/ ifand only if W C V*
is a pure R-submodule.

Proof. AssumeRy to be Noetherian and hereditary. It follows then by [13, 26.6] that
rR4 is flat for every setA. Moreover we have by [13, 39.13] that @kcogenerated left
R-modules are flat. Consider noR{ V], the free rightR-module with basisV, and the
exact sequence of riglt-modules

0— Ker(r) — R[V] =V — 0, (6)

with ¢ the embedding map ant the canonical epimorphism. Then (6) induces the exact
sequence of lefR-modules

0— V* 2 RV S im(*) — 0. @)

Since In(t*) € Ker(w)*, Im(.*) is an R-cogenerated lefkR-module, hence flat. Conse-
quentlyV* < R" is pure (e.g., [13, 36.6]). By Proposition 2.5(1) the canonical mapping
By M®r RV — MY isinjective for everyM € My and the result follows then from the
commutativity of the following diagram

M ®r W4>Hom_R(V MY —— yV

Id®lwl Dtﬁ] / O

M@rV*———>M®@r R
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2.8. Lemma. Let V, W be R-bimodules.

Q) If P=(V,W), PP =(V',W’) are lefta-pairings, thenP @; P':= (V' Qr V, W Q¢
W') is a lefta-pairing with

kpe (V' @ v)(w @ w) = (v, wv', w)) ={(v', w)v, w).

) IfP=(V,W), P =(V', W) arerighta-pairings, thenP ®, P' := (VQr V', W Qg
W) is a righta-pairing with

Kkpig,p(V @ V)W @w)=(v, (v, w)w)= (v w),w)

Proof. We prove (1). The proof of (2) is similar. For arbitraty € My consider the
following commutative diagram

PP’

Mg W W il Hom_z(V ®x V', M)

O‘If/I@RW\L Tll

Hom_z(V', M Q¢ W)WHom_R(V’, Hom_g(V, M))
Sy

where¢! is the canonical isomorphism. By assumption ihéinear mapping&ﬁmw and

b are injective and saj®” is injective. The last statement is obviousz

2.9. Corallary. Let Rg be Noetherian.

(1) Let X, X' be sets,E € RX be a right R-submodule ande’ < RX' be a left R-
submodule. £’ € RX" is E-pure, then the following mapping is injective

s E@rE' — (RX)Y,  fof e [®x) e @] (8)

(2) Letw, W’ be R-bimodules X C *W, X’ C *W’ be R-subbimodules and consider the
canonicalR-linear mappings

kK:X'@rX—> *(Wer W) and
X WerW — (X' ®r X)".
If Wg is flat andKe(X)g C Wg is pure, then
Ke(r (X' ®r X)) = Ke(X) @r W' + W ®@r Ke(X'). 9)

Proof. (1) SinceRy is coherentg R is flat in g M by [13, 26.6]. The result follows then
from Proposition 2.5(1).



J.Y. Abuhlail / Topology and its Applications 149 (2005) 161-175 173
(2) Consider the embeddings:= W/Ke(X) — X*, E' := W//Ke(X) — RX and
the commutative diagram

Wer W X X'®r X)*

g’ W/Ke(X) @k RX'— X* ®x R(X\ |
/ 'BX*

W/Ke(X) @ W'/ Ke(X) p = (XX

It follows by assumptions that¥// Ke(X) is flat in Mg and g RX' is flat (e.g., [13, 36.5,
26.6]). MoreovelBy+ is injective by Lemma 2.5, hendds injective. It follows then by [5,
[1-3.6] that

Ke(k (X ®r X')) :=Ker(x) =Ker(§ o (r ® ))
=Ker(ry @ mx) =Ke(X) @ W'+ W Q@ Ke(X). O

2.10. We say a left (respectively a righ®-moduleW satisfies the:-condition if (*W, W)
(respectively(W*, W)) satisfies thex-condition. Such modules were callediversally
torsionlessby Garfinkel [7].

2.11. Locally projective modules. An R-module W is calledlocally projective(in the
sense of Zimmermann-Huisgen [14]) iff for every diagramRemodules
0——=F——=W
, 8
gty vg
L—>N—>0
with exact rows F finitely generated as aR-module and evergR-linear mapping; : W —
N there exists amk-linear mappingg’: W — L, such that the entstanding parallelogram
is commutative. By [7, Theorem 3.2], [14, Theorem 2M],is locally projective if and
only if W satisfies thex-condition. These modules are calledntent modules [11]. It
follows directly from the definition that every projectiv&module is locally projective,
hence satisfies the-condition.

Before proceeding, we would like to remark that some of following results on the
a-condition and locally projective modules appeared in the recent manuscript [6, 42.9—
42.12].

2.12. Proposition. Let W be a leftR-module.
(1) If gW is locally projective, then every pure leR-submodulek c W is locally pro-

jective. Ifg R is W-injective, then every locally projective-submodule o is a pure
left R-submodule.
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(2) Let Rg be Noetherian. ThepW is locally projective if and only igW cz R*V is a
pure R-submodule.

Proof. (1) Standard.
(2) This follows from Propositions 2.5(2).0

2.13. Corallary. If Rg is an injective cogenerator, then for every Igftpairing (V, W) the
following statements are equivalent

(i) grW islocally projective andP is dense.
(i) W satisfies thex-condition andP is dense.
(i) (V, W) is a lefta-pairing.

(iv) W satisfies thex-condition andW — V*.

If R a QF ring, then(i)—(iv) are moreover equivalent to

(v) rW is projective and — V*.
(vi) W c RV is a pureR-submodule.

Over semisimple rings we recover the characterizations of dense pairings over commu-
tative base fields:

2.14. Corodllary. Let P = (V, W) be a leftR-pairing. If R is semisimple, then
Pisdense< W C V* < P is alefta -pairing.

Acknowledgement

The author would like to thank the referee for his or her remarks and for pointing out
some typos in a previous version of this note.

References

[1] J.Y. Abuhlail, Rational modules for corings, Comm. Algebra 31 (12) (2003) 5793-5840.

[2] J.Y. Abuhlail, Dualitatstheoreme fiir Hopf-Algebren lber Ringen, Ph.D. Dissertation, Heinrich-Heine Uni-
versitat, Dusseldorf, Germany, 2001, http://www.ulb.uni-duesseldorf.de/diss/mathnat/2001/abuhlail.html.

[3] J.Y. Abuhlail, J. Gémez-Torrecillas, F. Lobillo, Duality and rational modules in Hopf algebras over commu-
tative rings, J. Algebra 240 (2001) 165-184.

[4] J. Berning, Beziehungen zwischen links-linearen Toplogien und Modulkategorien, Dissertation, Heinrich-
Heine Universitat, Dusseldorf, Germany, 1994.

[5] N. Bourbaki, Elements of Mathematics, Algebra |, Hermann, Paris, 1974.

[6] T. Brzezihski, R. Wisbauer, Corings and Comodules, London Mathematical Society Lecture Note Series,
vol. 309, Cambridge University Press, Cambridge, 2003.

[7] G. Garfinkel, Universally torsionless and trace modules, J. Amer. Math. Soc. 215 (1976) 119-144.

[8] G. Kothe, Topologische lineare Raume |, Die Grundlagen der Mathematischen Wissenschaften, vol. 107,
Springer, Berlin, 1966.



J.Y. Abuhlail / Topology and its Applications 149 (2005) 161-175 175

[9] J. Kelley, I. Namioka, Linear Topological Spaces, Graduate Texts in Mathematics, vol. 36, Springer, Berlin,

1976, Reprint of the Van Nostrand edition.

[10] L. Lambe, D. Radford, Introduction to the Quantum Yang—Baxter Equation and Quantum Groups: An Al-
gebraic Approach, Mathematics and Its Applications, vol. 423, Kluwer Academic, Dordrecht, 1997.

[11] J. Ohm, D. Rush, Content modules and algebras, Math. Scand. 31 (1972) 49-68.

[12] D. Radford, Coreflexive coalgebras, J. Algebra 26 (1973) 512-535.

[13] R. Wisbauer, Foundations of Module and Ring Theory, a Handbook for Study and Research, Algebra, Logic
and Applications, vol. 3, Gordon and Breach, Philadelphia, PA, 1991.

[14] B. Zimmermann-Huisgen, Pure submodules of direct products of free modules, Math. Ann. 224 (1976)
233-245.



