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Abstract

A fraction whose numerator is one is called a unit fraction. Unit fractions have been the source of one of the most intriguing
mysteries about the mathematics of antiquity. Except for 2/3, the ancient Egyptians expressed all fractions as sums of unit fractions.
In particular, The Rhind Mathematical Papyrus (RMP) contains the decomposition of 2/n as the sum of unit fractions for odd n

ranging from 5 to 101. The way 2/n was decomposed has been widely debated and no general method that works for all n has ever
been discovered. In this paper we provide an elementary procedure that reproduces the decompositions as found in the RMP.
© 2007 Elsevier Inc. All rights reserved.

Résumé

Une fraction dont le numérateur est égale à 1 est appelée fraction unitée. Les fractions unitées ont été la source de l’une des
plus intriguants mystères des mathématiques de l’antiquité. Apart la fraction 2/3 les egyptiens de l’antiquité ont exprimé toutes
les fractions comme la somme de fractions unitées. En particulier Le Papyrus Mathématique de Rhind (The Rhind Mathematical
Papyrus) contient la décomposition de la fraction 2/n comme la somme de fractions unitées pour n impair variant entre 5 et 101.
La façon d’exprimer ces fractions unitées a été largement débatue mais personne n’a réussi à donner une méthode générale pour
exprimer toutes ces fractions. Dans ce papier nous proposons une procédure élémentaire qui reproduit les décompositions trouvées
dans le Papyrus Mathématique de Rhind.
© 2007 Elsevier Inc. All rights reserved.
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1. Background

In 1858 the Scottish antiquary Henry Rhind purchased an ancient papyrus roll in the Egyptian city of Luxor.
Ahmes, the scribe of the papyrus, tells us that it was copied around 1650 BCE, but its content belonged to an older
period, possibly 1800 BCE or earlier. The papyrus contains a series of mathematical problems written in the cursive
hieratic script, suitable for writing on papyri, rather than the more elaborate hieroglyphic form, reserved for carving
on stones. In this ancient script (written from right to left), the reciprocal of a natural number is indicated by placing
a dot over the number. These reciprocals, commonly called unit fractions by modern writers, played a crucial role
in ancient Egyptian arithmetic. Except for two-thirds, which has a symbol of its own, all fractions were decomposed
into unit fractions. The unit fractions, along with two-thirds, are collectively known as Egyptian fractions. In modern
texts, it is customary to write n for the reciprocal of n and 3 for two-thirds. Also, 2:n is the standard notation for what
Ahmes writes as “Call 2 out of n.” A more descriptive translation (see van der Waerden, 1980, 259) would be “What
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part is 2 of n?” The relevance of 2:n stems from the fact that duplication was, as we shall see, one of the Egyptians’
basic mathematical operations, and so the double of n was one of the most prevalent types of fractions they had to
break into unit fractions.

The Rhind Mathematical Papyrus (RMP) opens by expressing 2:n for odd n from 5 to 101 as the sum of two, three,
or four unit fractions. The Egyptians avoided the trivial equality 2:n = n + n because it leads to a futile amassment
of unit fractions. Rather they decomposed 2:n into a minimal number of carefully picked unit fractions. In Table 1
(henceforth referred to as “the 2:n-table” or simply “the table”), we list the decompositions as they appear in the
Rhind Papyrus [Chace et al., 1927, Plates 2–33]. A decomposition of 3 is added for completeness.1 The absence of
mathematical signs from the table is in accordance with the Egyptian way of writing mathematical texts. However, in
the original the answer is written in a slightly different form. For example, the result of dividing 2 by 47 is given by
Ahmes as

47 30 1 2 15 141 3 470 10

Observe that the boldfaced (red in the original) numbers add up to 2/47, giving the required decomposition. The
answer is verified as follows: First, take 30 of 47. This yields 1+2+15, which is 3+10 short of 2. Since 3×47 = 141
and 10 × 47 = 470, or equivalently 141 of 47 is 3 and 470 of 47 is 10, the decomposition 2:47 = 30 + 141 + 470
follows immediately.

Let n be the number to be decomposed, that is, the number for which we wish to express 2:n as the sum of unit
fractions. Now, define a to be the first unit fraction in the decomposition of n, M to be the result of taking a of n, and
R to be the complement of M to 2. Then for n = 47, we have a = 30, M = 1 + 2 + 15, and R = 3 + 10. From this,
we see that decomposing n is a straightforward exercise provided that a, M , and R have been found. But before we
say how this may have been done, let us review the sort of mathematics that was available to the Egyptians during the
times of Ahmes. This will be important because it would give us an idea of the level of mathematical sophistication
that can be employed in reconstructing the table.2

The Egyptians used base 10 to express their numbers. Their symbols for 1, 10, and 100 are shown in Fig. 1. They
also had symbols for the other powers of 10 up to 1,000,000. The numbers from 1 to 9 were expressed by grouping
together the corresponding number of ones; see [Gillings, 1972, 5; van der Waerden, 1954, 17–18] for more on the
Egyptian number system. Starting from right to left, 11 was written as 10 followed by 1. For example, the symbols in
Fig. 1, written sequentially as a single number, amount to 111. Clearly, the number 10, its multiples, and its powers
played a central role in such a number system. Indeed, following the 2:n-table, Ahmes decomposes n:10 for n from 2
to 9. Besides 10, twelve and its multiples were also of special utility. It seems that the ancient Egyptians were the first
to divide the day into 24 hours, 12 for daytime and 12 for nighttime [Neugebauer, 1969, 81]. Twelve was a number
of choice because it is the smallest number that has 2, 3, 4, and 6 as divisors, and so m/12 is a unit fraction when m

is one of those divisors. It follows that a unit fraction whose denominator is a multiple of 12 is desirable because it
facilitates breaking other nonunit fractions into unit fractions.

The RMP clearly shows that the Egyptian method of multiplication was based on duplication and addition. For
example, in RPM 32 the calculation of 12 × 12 proceeds like this:

1 12
2 24

/4 48
/8 96

Result: 144

1 At the beginning of the RMP, the result of 2 divided by 3 was written as 3. But elsewhere in the papyrus, the equality 3 = 2 + 6 was often used.

The general rule for finding 3 of the reciprocal of an odd fraction is given in problem 61B of the Rhind Papyrus (RMP 61B). To get 3 of 5, RMP
61B states: “Make its 2 times and its 6 times; this is 3 of it. One does the same for every odd fraction that may occur.” That is, 3 of n is 2n + 6n.

2 A portion of the 2:n-table covering the odd numbers from 3 to 21 appears in fragment UC 32159 of the Lahun Papyrus, a contemporary of the
RMP. The decompositions given are identical to those in the RMP; see [Imhausen and Ritter, 2004]. The agreement between the two tables shows
that the decompositions used were not arbitrarily chosen.
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Table 1
The division of 2 by odd n from n = 3 to n = 101

n a M R 2:n

3 2 1 2 2 2 6
5 3 1 3 3 3 15
7 4 1 2 4 4 4 28
9 6 1 2 2 6 18

11 6 1 3 6 6 6 66
13 8 1 2 8 4 8 8 52 104
15 10 1 2 2 10 30
17 12 1 3 12 3 4 12 51 68
19 12 1 2 12 4 6 12 76 114
21 14 1 2 2 14 42
23 12 1 3 4 12 12 276
25 15 1 3 3 15 75
27 18 1 2 2 18 54
29 24 1 6 24 2 6 8 24 58 174 232
31 20 1 2 20 4 5 20 124 155
33 22 1 2 2 22 66
35 30 1 6 3 6 30 42
37 24 1 2 24 3 8 24 111 296
39 26 1 2 2 26 78
41 24 1 3 24 6 8 24 246 328
43 42 1 42 2 3 7 42 86 129 301
45 30 1 2 2 30 90
47 30 1 2 15 3 10 30 141 470
49 28 1 2 4 4 28 196
51 34 1 2 2 34 102
53 30 1 3 10 6 15 30 318 795
55 30 1 3 6 6 30 330
57 38 1 2 2 38 114
59 36 1 2 12 18 4 9 36 236 531
61 40 1 2 40 4 8 10 40 244 488 610
63 42 1 2 2 42 126
65 39 1 3 3 39 195
67 40 1 2 8 20 5 8 40 335 536
69 46 1 2 2 46 138
71 40 1 2 4 40 8 10 40 568 710
73 60 1 6 20 3 4 5 60 219 292 365
75 50 1 2 2 50 150
77 44 1 2 4 4 44 308
79 60 1 4 15 3 4 10 60 237 316 790
81 54 1 2 2 54 162
83 60 1 3 20 4 5 6 60 332 415 498
85 51 1 3 3 51 255
87 58 1 2 2 58 174
89 60 1 3 10 20 4 6 10 60 356 534 890
91 70 1 5 10 3 30 70 130
93 62 1 2 2 62 186
95 60 1 2 12 4 6 60 380 570
97 56 1 2 8 14 28 7 8 56 679 776
99 66 1 2 2 66 198

101 101 1 2 3 6 101 202 303 606

Note. Here M is the result of taking a of n and R is the complement of M to 2.
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Fig. 1. Hieroglyphic symbols for 1, 10, and 100.

Starting with one, each number in the left column is twice the number above it. The right column consists of the
products of 12 with the corresponding numbers in the left column. The strokes near 4 and 8 indicate the numbers to
be added. Since 4 + 8 = 12, the final answer is 48 + 96 = 144. This doubling process was the most common way to
multiply two numbers. Sometimes the process was accelerated by using multiples of 10. In working out 2:23 Ahmes
computes 12 × 23 by writing

1 23
/10 230
/ 2 46

Result: 276

Division was carried out in a similar fashion. For example, to divide 15 by 5 the scribe would say something like:
“Multiply 5 so as to get 15.” The calculation is done as follows:

/1 5
/2 10

Result: 3

When the division of m by n did not yield a whole number, the Egyptians resorted to unit fractions. Following [van der
Waerden, 1980, 260], we illustrate the Egyptian method of division by computing 19:8 and 16:3. The calculations are
parts of problems 24 and 25 of the RMP:

19:8 1 8 16:3 /1 3
/2 16 2 6
2 4 /4 12

/4 2 3 2
/8 1 /3 1

Result: 2 4 8 Result: 5 3

To divide 19 by 8 one operates on 8 to reach 19. Since the double of 8 is 3 less than 19, we must operate on 8
to obtain 3. This is done by taking a half, a quarter, and an eighth of 8, yielding 4, 2, and 1. Since 2 + 1 = 3, the
division of 19 by 8 yields 2 + 4 + 8. In modern terms, 19/8 is first written as 2 + 3/8 and then 3/8 is broken into
4 and 8. A similar process is applied to 16:3. In this case, one might think that taking 3 of 3 before taking 3 of 3 is
an oversight on the part of Ahmes, but in reality this was more the rule than the exception.3 From these and other
examples, we find that taking the kth part of n was the basic tool used in calculating m:n, where the most common
values of k are those that can be obtained from 2 and 3 (and to a lesser extent 10) by the process of halving.

2. Modern methods for reconstructing the 2:n-table

Ever since it was discovered, many writers (professionals and amateurs) have attempted to reconstruct the 2:n-table
of the RMP. The usual flaw with most of these attempts is that by using modern symbolism to explain the table the
specific structure of the ancient text is lost, and consequently a simple manipulation of the modern form of the source
may not be easily applied to the ancient form, which more often than not makes the whole process questionable.

3 The Egyptians constantly took two-thirds of a number knowing that 3 is the reciprocal of 1+2. In other words, if 2/3 of x is y, then x = y+y/2.

This equality is evident in RMP 33, where 3 of 42 is 28 and 28 of 42 is 1 + 2.



A.A. Abdulaziz / Historia Mathematica 35 (2008) 1–18 5
Therefore, one should be overly cautious when ancient mathematical texts are to be analyzed by means of modern
notation.

Various authors [Boyer, 1989, 13; Knorr, 1982, 140; and others] have noted that for an odd integer n one can always
find a 2-term decomposition of 2:n using the equality

2 : n = 1

(n + 1)/2
+ 1

n(n + 1)/2
. (1)

If n is replaced by a prime p then this is the only nontrivial 2-term decomposition of 2:p; see [Bruins, 1981, 283].
Yet the Egyptian decomposition of 2:n does not agree with (1) except for a few prime values of n (the remaining
primes are decomposed as the sum of three or four unit fractions). This led some modern writers [Brown, 1995;
Gardner, 2005] to propose a method in which 2:pq is decomposed as q times the decomposition of 2:p. For example,
applying (1) to p = 3 yields 3 = 2 + 6 and thus the decomposition of every multiple of 3 can be carried out as

2 : 3q = 1

q
×

(
1

2
+ 1

6

)
= 1

2q
+ 1

6q
. (2)

If 2+6 is accepted as the standard decomposition of 3, then it is true that the Egyptian decomposition of 2:p for every
prime p up to 11 satisfies (1), and by choosing an appropriate p the decomposition

2 : pq = 1

q

[
1

(p + 1)/2
+ 1

p(p + 1)/2

]
(3)

covers every composite number n in the table. In other words, the method argues that the Egyptians used (1) to
decompose the primes 3, 5, 7, and 11, and then decomposed the multiples of those primes according to (3). That the
Egyptians stopped using this process at p = 11 was interpreted as a sign that they had used some sort of prime sieve,
like that of Eratosthenes [Brown, 1995]. This view was taken in light of the fact that 11 is the first prime whose square
is greater than 101, the last entry of the table. One problem with this argument is that if n is a composite number
in the table then n can always be written as pq with p a prime less than or equal to seven. Another problem is that
the method does not give a convincing explanation of why the prime 23, even though it is greater than 11, is also
decomposed according to (1).

Equation (3) yields the decomposition found in the RMP for all n = pq except 35, 91, and 95. In all cases, p is
taken to be the smallest prime factor of n except for n = 55, where p was taken to be 11 instead of 5. As for 2:35 and
2:91, they are decomposed according to

2 : pq = 2

p + q
×

(
1

p
+ 1

q

)
. (4)

In [Brown, 1995], it is suggested that this is related to the arithmetic and harmonic means4 of p and q . Finally, 2:95
was decomposed as 5 times the decomposition of 19. This yields

2 : 95 = 5 × (
12 + 76 + 114

) = 60 + 380 + 570.

For the remaining primes (p � 13), a method that was first discovered by F. Hultsch in 1895 and then rediscovered
by E.M. Bruins in 1945 does the job [Gardner, 2005]. It amounts to finding a number a (usually highly composite)
such that p/2 < a < p and 2a − p is equal to the sum of two or three divisors of a. Since

2

p
− 1

a
= 2a − p

ap
or

2

p
= 1

a
+ 2a − p

ap
, (5)

4 For the numbers p and q , the arithmetic mean is A = (p + q)/2 and the harmonic mean is H = 2/(p + q). It follows that 2/pq = 2/AH .
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the decomposition can be easily completed once the divisors of a have been found. For example, to find a decompo-
sition of 2:37, take a to be the highly composite number 24. Then 2a − p = 2 × 24 − 37 = 11. Since 24 is divisible
by 8 and 3, whose sum is 11, we can write

2 : 37 = 1

24
+ 1

37
×

(
8

24
+ 3

24

)
= 24 + 37 × (

3 + 8
) = 24 + 111 + 296,

agreeing with the decomposition of Ahmes. The problem with this method is that it does not specify how the number a

was chosen. Moreover, it uses (modern) mathematical techniques that are not explicitly mentioned in extant Egyptian
sources.

A more source-based method is summarized by B. van der Waerden in his article The (2:n) Table in the Rhind
Papyrus [van der Waerden, 1980]. The method divides the 50 entries in the table into five groups, the first of which is
decomposed according to (2). The second group is decomposed by using the Egyptian method of division (see previous
section), and the third group is decomposed by multiplying the denominators of a decomposition in the second group
by an appropriate number. The fourth group is decomposed using the so-called auxiliary numbers, and the fifth group
consists of the exceptional cases 35, 91, and 101. Even though the method is based on Egyptian techniques, I think
that it is unnecessary to divide the table into such a large number of groups.

Another attempt to systematically decompose 2:n was given by R.J. Gillings in his Book Mathematics in the Time
of the Pharaohs [Gillings, 1972]. By considering all possible decompositions of 2:n, Gillings argued that Ahmes
made his choice according to a canon of five precepts. In short, Precept 1 eliminates denominators with more than
three digits; Precept 2 excludes decompositions of more than four terms; Precept 3 forbids the trivial decomposition;
Precept 4 asserts that the smallness of the first number is the main consideration; and Precept 5 presumes that even
numbers are preferred to odd numbers. Although the first three precepts are generally held to be true, the overall
method drew Gillings into a debate with M. Bruckheimer and Y. Salomon [Bruckheimer and Salomon, 1977; Gillings,
1978]. For one thing, Gillings gives a total of 22,295 possible decompositions, while the number given by Bruckheimer
and Salomon is approximately 28,000. Other minor and not so minor shortcomings on the part of Gillings are also
cited. But E.M. Bruins went a step further in his criticism of Gillings’ method by challenging the precepts themselves.
According to Bruins [1975, 249], Ahmes had no predilection for even numbers, which contradicts Precept 5. On that
point, I believe that it is Gillings rather than Bruins who was the one on the right track. However, in [Bruins, 1981,
287] a more serious criticism of Precept 4 is given by citing numerous cases where the precept is violated. In this
respect, the reader will see that the truth is more like the opposite of Gillings’ Precept 4.

More recently, A. Imhausen, based on the work of J. Ritter, has developed a method that stresses the algorithmic
structure of Egyptian mathematics, see [Imhausen, 2002, 2003; Ritter, 1995]. For a given problem, the method estab-
lishes a numerical and a symbolical algorithm. While the numerical algorithm stays close to the source by preserving
the numbers used in the original problem, the symbolical algorithm provides the structure of the problem and thus
makes it readily comparable to other problems. The method is promising but it has only been applied to problem
texts and not to table texts. Applying the method to table texts, the 2:n-table in this case, is problematic, since the
decomposition of 2:n does not yield a unique answer. This difficulty can be easily overcome if some other piece of
information, in particular the first term a, is known a priori5 (I will show that it is this first number a, more than
anything else, that holds the key to unlocking the 2:n-table). Unfortunately, nowhere in the RMP does Ahmes tell us
how a was chosen. For this reason, finding a will be at the core of the method for decomposing 2:n that I will propose
in the following section.

3. A new method for reconstructing the 2:n-table

Although the Egyptians did not allow the trivial decomposition n+n or a decomposition with an exceedingly large
denominator, they still had many possible ways to decompose 2:n. Even today, the way 2:n was decomposed has not
been fully understood. The lack of original sources makes it extremely difficult to determine the exact process through
which the ancient Egyptians duplicated the odd fractions from 3 to 101. However, it is the opinion of this author that

5 If a is also known, then the method can be applied, but its impact will be greatly reduced since the ensuing numerical algorithm is more or less
given by Ahmes after each decomposition.
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the techniques used in the method described below are more closely related to the original procedure than any of the
previously proposed methods for composing the 2:n-table.

3.1. Basic concepts

Since only odd values of n appear in the table, it is safe to assume that the Egyptians were aware of the fact that
2:2n is the same as n. It follows that a unit fraction with an even denominator can be easily duplicated, and hence that
an even unit fraction is preferable to one with an odd denominator. Not counting 2/3, the table has 103 even fractions
and only 24 odd fractions. It can also be assumed that the Egyptians did not allow the denominator of a unit fraction to
get arbitrarily large. For now, let us adopt Gillings’ Precept 1 that no denominator should be as large as one thousand.6

This holds for all entries in the table, where the greatest term (denominator) is 890. Indeed, only 13 terms exceed 500,
10 of which are even.

In RMP 16, we find the identity 2 + 3 + 6 = 1. Multiplying both sides of the identity by n leads to the equality

n = 2n + 3n + 6n. (6)

RMP 17–20 leave no doubt that the Egyptians were aware of this equality, which is equivalent to saying that a half,
a third and a sixth of any number add up to the number itself.7 Adding n to both sides of (6), one obtains the decom-
position

2 : n = n + 2n + 3n + 6n. (7)

A particular case of (7) can be clearly seen in the last entry of the table, where 2:101 is decomposed as

101 + 202 + 303 + 606.

In fact, Ahmes worked out this decomposition by calculating 2 of 101, 3 of 101, and 6 of 101 before adding the results
to 101. Since the first fraction of the decomposition is 101 and the last three fractions add up to 101, we clearly see
that the Egyptians refrained from using the trivial decomposition n + n.

It is immediately clear to anyone reading the Rhind Papyrus that RMP 16–20 form a set of closely related problems
and that the same is true for RMP 21–23. The latter set deals with problems of a different nature, called problems in
completion. For instance, RMP 22 says “Complete 3 + 30 to 1.” The solution can be reworded as follows: 3 of 30 is
20 and 30 of 30 is 1, making a total of 21. Since 30 exceeds 21 by 9, multiply by 30 to get 9. That is,

1 30
/10 3
/ 5 6

Result: 9

Since 3 + 6 = 9, we must add 5 + 10 to complete the whole. For a proof, add 3, 5, 10, and 30 to get 1. As parts of 30,
these fractions are 20, 6, 3, and 1, a total of 30.

RPM 22 gives us a deep insight into Egyptian arithmetic. What Ahmes has done is equivalent to writing 3 + 30
as 21/30, and since 30 − 21 = 9, he then breaks 9/30 into 5 + 10. Note that it was easy to break 9/30 since 9 is
the sum of 6 and 3, both of which are divisors of 30. Extant Egyptian sources are replete with examples where the
non-Egyptian fraction m:n is decomposed by writing m as the sum of distinct divisors of n. Another common way
used by the Egyptians to break a non-Egyptian fraction is to write it as 3 plus a unit fraction. For example, in the

6 Quoting [Bruins, 1981, 283]: “It is clear that the Rhind decompositions are expressed using the number symbols for 1, 10, 100 only, i.e., all

parts are greater than 1000.”
7 In RMP 18, we have 6 + 9 + 18 = 3. Also, by ignoring the red auxiliaries in RMP 19, one can clearly see that a total of 6 at the bottom of the

second column is given as the sum of 12, 18, and 36 on top of it. Doing the same in RMP 20, one obtains the equality 24 + 36 + 72 = 12.
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Table 2
Egyptian or reducible fractions of the form (k − 1)/k

k 2 3 4 6 12

(k − 1)/k 2 3 2 4 3 6 3 4

decomposition of 2:53 the answer to taking 30 of 53 is given as 1 + 3 + 10. Since 53/30 = 1 + 23/30, Ahmes could
easily find the answer by writing 23/30 as (20+3)/30 = 3+10. These two ways of breaking a non-Egyptian fraction
were constantly used by Egyptian scribes. Formally, a non-Egyptian fraction m:n will be called reducible if it can be
written as the sum of two unit fractions or as the sum of a unit fraction and 3, where the denominator of each unit
fraction is a divisor of n. When the reducible fraction m:n is not written as the sum of two Egyptian fractions, it will
be denoted by m/n.

The Egyptian expression for 3 literally means “the two part,” making 3 “the third part” that completes the whole.
Originally, the Egyptians also had a symbol for 3/4, which was later replaced by 2 + 4; see [van der Waerden, 1954,
19–20]. If we agree to call the fraction 3/4 “the three part” and its complement 4 “the fourth part,” and so on, then for
2 � k � 101, k is the complement of an Egyptian or reducible fraction only if k is one of the numbers listed in Table 2.
Observe that 5/6 was decomposed as (4 + 1)/6 = 3 + 6 although it could have been broken as (3 + 2)/6 = 2 + 3.
In fact, both forms are used in the RMP. For instance, in computing 2:11, Ahmes writes 6 of 11 as 1 + 3 + 6, while in
working out 2:17 he writes 6 of 17 as 2 + 2 + 3. Similarly, he breaks 7/10 as 3 + 30 in the n:10-table following the
decomposition of 2:101 and as 2+5 in RMP 54. This flexibility in expressing the same fraction in two different forms
should be on the mind of anyone trying to reconstruct the 2:n-table.

Before we proceed with our method of deciphering the table, a few remarks are in order. First, we divide the
entries in the table into two groups, G1 and G2 (this division is artificial and is only done to make our task easier).
The group G1 consists of the 29 entries that are expressed as the sum of two unit fractions along with n = 95. We
include 95 in G1 because its last two fractions, 380 and 570, add up to 228, a unit fraction different from 95. The
group G2 consists of the remaining 20 entries, which are expressed as the sums of three or four unit fractions. Second,
our method handles both groups without having to distinguish between prime and composite numbers. Moreover, the
method of decomposing the elements of G2 will be a natural extension of the method used to decompose the elements
of G1. Third, we will provide a plain rule to determine the first fraction in each decomposition. Finally, we will only
use techniques that are, in some form or another, explicitly mentioned in the RMP.

3.2. The group G1

Let n be an element of G1. Then finding an acceptable (2-term) decomposition of 2:n is equivalent to finding two
numbers a and b such that 2/n = a + b. Since using the same fraction twice is not allowed, we can assume that
a < n < b. On the other end, a must be greater than n/2, since otherwise a will be greater than 2/n. Therefore, we
must have n/2 < a < n. Let M and R be as defined in Section 1, that is (using modern notation), M = n/a and
R = 2 − M . If Q is the fractional part of M , then Q = (n − a)/a and R is the complement of Q to 1. Since the
decomposition of n is completely determined by a, Q and R, we will naturally concentrate on these parts of the
decomposition. In fact, we shall show that the vast majority of the elements of G1 are decomposed as 2:n = a + kn,
where a is the largest number for which (k − 1)/k (the reduced form of Q) belongs to the set of Egyptian fractions
{2,3} or the set of reducible fractions {3/4,5/6,11/12}.

It is clear from the definitions of Q and R that the easiest numbers to decompose are those for which Q = R = 2.
These correspond to the multiples of 3. In fact, if n is a multiple of 3 and a is taken to be 3 of n, then n:a = 1 + 2 and
so Q = R = 2. Since 2n of n is 2, we obtain the decomposition

2 : n = a + 2n, a = 2n/3. (8)

There is ample evidence that the Egyptians were aware of this way of finding 2:n when n is a multiple of 3. This view
is supported by the fact that all multiples of 3 are decomposed according to (8). However, we shall see that even if the
Egyptians did not use (8) to decompose the multiples of 3, our general method will in no way be affected.
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The next numbers to decompose are those for which Q = 3 and R = 3. These correspond to the multiples of 5. In
this case, taking a to be 3 times 5 of n yields Q = 3 and R = 3. Hence, we have the decomposition

2 : n = a + 3n, a = 3n/5. (9)

Although Ahmes may have been aware of this decomposition, we will see that he did not use it for all
multiples of 5 not covered by (8). One drawback of this decomposition is that it produces odd unit frac-
tions, and we mentioned earlier that the Egyptians preferred even fractions because they can easily be dupli-
cated.

Equations (8) and (9) are special cases of a more general method that decomposes all the elements of G1. If n is
an element of G1 not covered by (8) or (9), that is, Q is not an Egyptian fraction, then the method amounts to finding
the largest a that yields a reducible Q whose complement R is a unit fraction. In other words, starting from n − 1
downward, let a be the first number such that a of n is equivalent to 1 + (k − 1)/k for k = 4, 6, or 12. Since kn of n

is k, we have a of n plus kn of n equal to 1 + (k − 1)/k + 1/k = 2. It follows that

2 : n = a + kn. (10)

It is no coincidence that n is an element of G1 if and only if there exists a first number a such that (n − a)/a is
equivalent to (k − 1)/k, where k is one of the entries in Table 2. These are the only values of k for which the fraction
(k − 1)/k is Egyptian or reducible. They lead to the decomposition of the multiples of the primes 3, 5, 7, 11, and 23,
respectively. This shows that the decomposition process need not differentiate between prime and composite values
of n. It follows that the relation between 11 being the largest prime decomposed using (1) and 101 being the last entry
in the table (see Section 2) is somewhat contrived.

We illustrate our procedure with two examples. First, we take n = 15. Then we must have 8 � a � 14. But only
a = 10 and a = 9 yield an Egyptian or reducible Q whose complement R is a unit fraction. The corresponding
decompositions are

∗10 2 2 10 30
9 3 3 9 45

The four columns represent a, Q, R, and the resulting set of unit fractions; the asterisk (∗) indicates the decomposition
given by Ahmes. Since 15 is divisible by 3, the chosen decomposition could have been obtained using (8). By doing
so, no further decomposition need be considered. But even if the decomposition 9 + 45 was also considered it would
be ignored because it consists of odd fractions. Next, we take n = 77. Then the only acceptable decompositions are

∗44 2 4 4 44 308
42 3 6 6 42 462

Since both decompositions consist of even terms, Ahmes chose, as always, the one with the largest a.
Stopping after the first (largest) a is found, the search process terminates with the desired decomposition for all

elements of G1 except 35, 55, 91, and 95, which we call irregular. For each of the irregular elements, Table 3 lists
the (regular) decomposition produced by the method described above, followed by the decomposition found in the
RMP. The last column lists all other 2-term decompositions such that n/2 < a < n and the second term b is less
than 1000. Observe that for each of the multiples of 5 in Table 3, our procedure yields a pair of odd unit fractions
satisfying (9), while the decomposition found in the RMP consists of even fractions. It could be that this is why the
regular decompositions were overlooked. As for the other elements of G1 with odd decompositions, namely 5, 25,
65, and 85, no even 2-term decomposition exists for any a in the proper range. But there is more. The four entries
in Table 3 have something quite subtle in common. They are the only nonmultiples of 3 that have a decomposition
where both Q and R can be expressed as the sum of at most two Egyptian fractions and n/R is a whole number. The
meaning of the last statement will be clear as we take a closer look at the irregular entries. In each case, we will find
that the choice made by Ahmes is hard to surpass.
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Table 3
The irregular elements of G1

n Regular RMP Other decompositions

35 21 105 30 42 20 140, 18 630
55 33 165 30 330 40 88
91 52 364 70 130 49 637
95 57 285 60 380 570 60 228, 50 950

Take n = 35. From Table 3 we see that there are four 2-term decompositions. However, the decomposition 18+630
will not be considered, since it yields R = 17:18, which is not reducible. Therefore, the acceptable decompositions
are

∗30 6 5/6 30 42
21 3 3 21 105
20 2 4 4 20 140

The regular decomposition (a = 21) was dismissed because it is the sum of two odd fractions. Since the other two
decompositions consist of even terms, Ahmes chose the decomposition with the largest first term (a = 30). Had the
remainder 5/6 of the chosen decomposition been written as 2 + 3, we would get the decomposition 30 + 70 + 105.
Instead Ahmes treated 5/6 like a single fraction, and this is why he went to some length to explain how the second
denominator was obtained. He wrote (boldface indicates red)

35 30 1 6 42 3 6
6 7 5

The auxiliary numbers 6, 7, and 5 in the second row are not shown in any other decomposition. They are used to find
the number b that solves the equation b of 35 is 5/6. The extra piece of information is needed because up to this point
R has been the sum of unit fractions and so finding the remaining terms was straightforward. For instance, if R = k

then b = kn, and the same is true when R is the sum of two or three parts. But in this case, R = 5/6 and so 1/R = 6/5.
Solving for b, we get

b = 6

5
× 35 = 6 × 7 = 42.

The exact way of calculating b may never be known, but it is reasonable to say that this is the closest Ahmes got to
using a fraction in the modern sense.

Next, we consider n = 91, since it is similar to the case of n = 35. In this case, the decomposition 49 + 637 is
ignored because it leads to the nonreducible Q = 42:49. The remaining decompositions are

∗70 5 10 7/10 70 130
52 2 4 4 52 364

Again, the chosen decomposition may be expressed as follows (Ahmes did not write the auxiliary numbers 10, 13,
and 7):

91 70 1 5 10 130 3 30
10 13 7

By writing R = 7/10 as 2 + 5 instead of 3 + 30, Ahmes could have obtained the decomposition 70 + 182 + 455. But
as in the case of n = 35, there is no benefit in choosing a 3-term decomposition with an odd fraction over a 2-term
decomposition with even denominators.
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We have seen that in working out 2:35, Ahmes wrote the numbers 5, 6, and 7 below 42, 35, and 30. Since 5 × 42 =
6 × 35 = 7 × 30 = 210, it could be that he had found the least common multiple of the three numbers. The same
idea is (implicitly) used in the decomposition of 91, but in no other decomposition. Moreover, in the process of
computing 2:91, Ahmes wrote the word find before taking 70 of 91, and again before taking 130 of 91. It is the only
decomposition in which the word find is written twice.8 For both 35 and 91, we see a conspicuous alteration of the
normal procedure. In fact, 35 and 91 are the only elements of G1 for which a is greater than 3 of n and b is not
a multiple of n.

Now for n = 55, the possible decompositions are

40 4 8 5/8 40 88
33 3 3 33 165

∗30 3 6 6 30 330

Ahmes picked the decomposition 30 + 330 over the regular decomposition 33 + 165 because the former consists of
even denominators. Of course, Ahmes could have chosen the decomposition with the largest first term (40 + 88 in this
case) as he had done for 35 and 91. However, one advantage of the decomposition 30 + 330 over the decomposition
40 + 88 is that 330 is a multiple of 55 while 88 is not. Since the second denominator of every regular decomposition
is a multiple of n, it makes sense to replace the odd decomposition of 55 by a regular-like decomposition with even
terms. Furthermore, by writing R = 5/8 as 2 + 8, we see that the decomposition 40 + 88 is equivalent to the even
regular-like decomposition 40 + 110 + 440. From the two even regular-like decompositions, clearly 30 + 330 is
preferable to 40 + 110 + 440.

Lastly, we consider n = 95. In this case, the decomposition 50 + 950 is dismissed because it does not produce
a reducible Q, and so the acceptable decompositions are

60 2 12 5/12 60 228
57 3 3 57 285

The regular decomposition 57 + 285 is ignored because it consists of odd fractions. Ahmes’ only remaining choice
is 60 + 228. But since 5/12 can be written as the sum of the two even fractions 4 and 6, Ahmes chose the equivalent
3-term decomposition 60+380+570. Unlike the cases of 35 and 91, in this case both 380 and 570 are even multiples
of 95 and so it was worthwhile to choose the 3-term decomposition. Ahmes was stuck with this decomposition because
he could not find another regular-like decomposition of two even terms, as he did for n = 55.

The above analysis forces us to appreciate the ingenious techniques that must have been used in decomposing the
irregular entries. The argument that similar techniques were used by the Egyptians can be strengthened by analyzing
the three multiples of 3 for which a similar situation occurs.9 The corresponding decompositions are listed in Table 4.
For example, the second term of the irregular decomposition 2:15 = 12+20 could be obtained by dividing 15 by 3 and
then multiplying the result by 4. Now, writing 3/4 as 2+4, we get the equivalent decomposition 12+30+60. Ahmes
did not use the last decompositions, since 2:15 has the even regular decomposition 10 + 30. This is in total agreement

Table 4
Multiples of 3 for which n/R is a whole number

n a Q R 2:n

15 12 4 3/4 12 20
45 36 4 3/4 36 60
75 60 4 3/4 60 100

8 Excluding the multiples of 3, Ahmes wrote the word find before taking a of n for every n from 43 to 89. He did the same for each entry between

90 and 100, but only for n = 91 did he also write the word find before taking b of n.
9 The decompositions 2:39 = 24 + 104 and 2:51 = 30 + 170 are not counted because their first terms, 24 and 30, are smaller than 26 and 34, the

respective first terms of the regular decompositions.
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with the decomposition of n = 55. Of course, it could be that Ahmes did not notice the irregular decomposition
because, as a multiple of 3, 15 may have been decomposed according to (8).

3.3. The group G2

If n is an element of G2, then n cannot have a 2-term decomposition where Q and R satisfy the conditions that
Q is reducible and R is a unit fraction. As a natural next step, Ahmes kept the condition that Q is reducible but
allowed R to be the sum of two or three unit fractions. If still no decomposition was found, then Ahmes allowed Q

to be the sum of three or four unit fractions.10 As a last resort, he decomposed 2:n according to (7). For every n, we
shall first list the possible 3-term decompositions and then, if necessary, the 4-term decompositions (decompositions
with parts less then 1000 will not be listed). By carefully examining these decompositions, we will show that except
in extreme cases Ahmes did not choose a decomposition if it has a term greater than 10n. As in the case of G1, the
chosen decomposition is usually the one with the largest a, and a decomposition of even terms (unless it has a part
of R less than 10) will always be preferred to a decomposition of the same order with one or more odd fractions.

If we apply the above rules to G2, then the desired decomposition is obtained in almost every case. Because of the
many possible situations that could arise, we will make sure to analyze each and every element of G2. By doing so,
the underlying procedure will become more clearly visible. Starting with n = 13, the possible 3-term decompositions
are

10 5 10 2 5 10 26 65
∗8 2 8 4 8 8 52 104

Since the first decomposition has an odd term, the second decomposition was picked because it has only even fractions.
For n = 17, we have the three decompositions

∗12 3 12 3 4 12 51 68
12 3 12 2 12 12 34 204
10 2 5 5 10 10 85 170

Observe that the first two decompositions have the same first number, a = 12. Now, the second decomposition was
not chosen because Ahmes did not permit R to have parts smaller than 10. Since the other two decompositions have
an odd fraction each, Ahmes preferred the one with the larger first term (or smaller last denominator).

For n = 19, we have

∗12 2 12 4 6 12 76 114
12 2 12 3 12 12 57 228

Since Q and thus R (respectively, 7/12 and 5/12) are the same in both decompositions, Ahmes chose to break R as
4 + 6 rather than 3 + 12 because the former consists of even numbers. In addition, both terms of 4 + 6 are less than
10 while the second term of 3 + 12 is greater than 10. This is important, since in the decomposition of 17 Ahmes
wrote Q = 5/12 as 3 + 12. Similarly, he wrote R = 7/12 as 3 + 4 in the decomposition of 17 but wrote Q = 7/12
as 2 + 12 in the decomposition of 19. All of this shows that keeping the terms of R less than 10 was an essential part
of determining how 2:n is to be decomposed. On the other hand, Ahmes was more flexible in breaking Q, since it
would have no effect on the eventual decomposition of 2:n. For this reason, we only listed one form of Q = 5/12 in
the decomposition of n = 17, while we listed both forms of R = 5/12 in the decompositions of n = 19.

One may wonder why Ahmes did not decompose 2:19 as

10 3 5 30 10 10 190

10 When we say that Q (or R) is the sum of unit fractions, we mean that its numerator is equal to the sum of distinct divisors of its denominator.
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This is even more surprising knowing that Q = 9:10 = 3 + 5 + 30 is an entry of the n:10-table. Similarly, 2:13 can be
decomposed as

7 3 7 21 7 7 91

It could be that Ahmes did not use these decompositions because nowhere in the table was Q allowed to be written as 3
plus two unit fractions. More importantly, the last term of Q in both decompositions is equal to 3a. Since every term of
Q different from 3 is a divisor of a for every entry in the table, we believe that this is the most likely reason for rejecting
these decompositions. Interestingly, these decompositions of 13 and 19 are found in the (Greek) Akhmîm papyrus of
around 400 CE; see [Knorr, 1982, 144]. However, even in the Akhmîm papyrus, the decomposition 2:17 = 9 + 153
cannot be found. In this case, there is no easy way to break Q = 8:9. For instance, taking 3 of 9 yields 6 with
a remainder of 2:9, an unwelcome return to the 2:n-table.

For n = 29, we have

20 4 5 2 20 20 58 580
18 2 9 3 18 18 87 522

Since the first decomposition is the sum of even numbers, it should have been the one picked by Ahmes. But the
second term of R is larger than 10 in both decompositions and so none of them was acceptable. Consequently, Ahmes
searched for a third term beside a, obtaining the decompositions

∗24 6 24 2 6 8 24 58 174 232
24 6 24 2 4 24 24 58 116 696
20 2 20 4 5 10 20 116 145 290

Obviously, the first decomposition is the one to choose.
For n = 31, we have

∗20 2 20 4 5 20 124 155
18 3 18 6 9 18 186 279

Since each of the two decompositions has an odd number, the first one is chosen because it has a larger first term.
For n = 37, the only possible decomposition is

∗24 2 24 3 8 24 111 296

As expected, this is the decomposition found in the RMP.
For n = 41, we have

∗24 3 24 6 8 24 246 328
24 3 24 4 24 24 164 984

The choice in this case is plain.
For n = 43, Ahmes did not choose one of the decompositions11

30 3 10 2 15 30 86 645
24 3 8 8 12 24 344 516

11 The decomposition 24 + 258 + 1032 is not listed because its smallest part is less than 1000. Such decompositions will always be ignored.
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because in both cases the largest term of R is larger than 10. Looking for higher order decompositions, we find

∗42 42 2 3 7 42 86 129 301
36 6 36 2 4 18 36 86 172 774
30 3 10 3 6 15 30 129 258 645
28 2 28 4 7 14 28 172 301 602

It is true that the chosen decomposition has four terms, one of which is odd, but it has the advantage that it is the only
decomposition for which the largest term of R is less than 10. Moreover, Q = 42 is the simplest of all cases.

For n = 47, we have

∗30 2 15 3 10 30 141 470
28 3 84 4 14 28 188 658

Although the chosen decomposition has an odd fraction, it was picked because the remainder R of the other decompo-
sition has a part less than 10. Strictly speaking, the second decomposition should not even be listed since Q = 3 + 84
has a term greater than a = 28 and so it is not reducible.

For n = 53, the sole 3-term decomposition is

∗30 3 10 6 15 30 318 795

Since 15, the largest term of R, is greater than 10, Ahmes should have searched for a 4-term decomposition. He would
obtain

48 12 48 2 3 16 48 106 159 848

But the largest term of R in this decomposition is 16, forcing Ahmes to accept the previous decomposition. There is
one more possibility that Ahmes could have considered. Namely,

36 3 12 18 4 6 9 36 212 318 477

However, this would mean that Q must be broken into three unit fractions, something that Ahmes had not done so far.
Also, it would increase the number of terms from 3 to 4. It seems that Ahmes made a reasonable choice despite the
fact that the largest term of R in the chosen decomposition is greater than 10.

The only other case where a number greater than 10 was used in breaking R is in the decomposition of 23, a member
of G1. In that case, the possible choices (including the possibility where Q is broken into three unit fractions) are

20 10 20 2 4 10 20 46 92 230
18 6 9 2 6 18 18 46 138 414
16 4 8 16 2 16 16 46 368

∗12 3 4 12 12 276

Clearly, the last decomposition is the most attractive even though its last term is slightly larger than the last term of
the first decomposition. In addition, the chosen decomposition has a reducible Q of the form (k − 1)/k, an important
property that no decomposition of any element of G2 could have.

For n = 59, no 3-term or 4-term decompositions with a reducible Q exist. Hence, Ahmes searched for a decompo-
sition where Q may be broken as the sum of three unit fractions. This yields the 3-term decomposition

∗36 2 12 18 4 9 36 236 531

Observe that Ahmes did not break Q into three unit fractions until it became absolutely necessary to do so (see
n = 53). But having done this once, he did not hesitate doing it again.
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For n = 61, there are no 3-term decompositions, and the 4-term decompositions are

48 4 48 2 6 16 48 122 366 976
45 3 45 3 5 9 45 183 305 549

∗40 2 40 4 8 10 40 244 488 610

The first decomposition is dismissed since 16 (the last term of R) is larger than 10, and the second is discarded because
it has odd numbers. The third decomposition is the one given by Ahmes.

For n = 67, the only 3-term or 4-term decomposition is

∗40 3 120 5 8 40 335 536

Ahmes picked this decomposition but he wrote Q = 27/40 as 2 + 8 + 20 instead of 3 + 120. Again, Ahmes avoided
the latter form of Q because its second term is not a divisor of 40, a necessary condition for the reducibility of Q.

For n = 71, the sole 3-term decomposition is

42 3 42 6 7 42 426 497

Unfortunately, this is not the decomposition found in the RMP. But by now Ahmes had allowed Q to be written as the
sum of three unit fractions, which gave him the decomposition

∗40 2 4 40 8 10 40 568 710

It is this even-term decomposition that appears in the table. Of course, it could be that Ahmes picked this decomposi-
tion because he may have broken Q = 3+42 of the other decomposition as 2+7+21 or 2+6+42, both of which have
the same number of terms as Q of the chosen decomposition. It turned out that allowing Q to be written as the sum
of three unit fractions from 59 on would lead to the same decompositions as when Q is reducible, except in this case.

For n = 73, no 3-term decomposition exists, and so we are left with the 4-term decompositions

∗60 6 20 3 4 5 60 219 292 365
60 6 20 2 5 12 60 146 365 876

The first decomposition is clearly the better choice.
For n = 79, there are no 3-term decompositions and the 4-term decompositions are

∗60 4 15 3 4 10 60 237 316 790
60 4 15 2 10 12 60 158 790 948

The first decomposition agrees with the one in the table. Note that the second decomposition was dismissed despite
the fact that it consists of even numbers. This is so because the largest term of R is 12, a number greater than 10.

For n = 83, Ahmes’ search for a 3-term decomposition was fruitless. Looking for higher order decompositions he
found

∗60 3 20 4 5 6 60 332 415 498
60 3 20 3 5 12 60 249 415 996

Clearly, the first decomposition is the one to choose.
For n = 89, there are no 3-term nor 4-term decompositions unless we break Q into three unit fractions. This yields

the decomposition

∗60 3 10 20 4 6 10 60 356 534 890

found in the RMP.
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For n = 97, we must break Q into four unit fractions in order to obtain the lone decomposition

∗56 2 8 14 28 7 8 56 697 776

Again, this is the decomposition given by Ahmes.
For n = 101, there are no 3-term nor 4-term decompositions, even if we break Q into four unit fractions. This

forced Ahmes to choose the default decomposition 101 + 202 + 303 + 606, obtained from (7) by setting n = 101. It
should be mentioned that 101 has the decomposition

60 3 60 4 15 60 404 1515

which could have been chosen by Ahmes. In this case, having the largest term of R equal to 15 would have been
acceptable (as in the case of 53) had it not forced the smallest part to be less than 1000. This not only is in
agreement with our rules for decomposing the elements of G2, but also explains why 101 was the last number
considered by Ahmes. Of course, it could be that after finding a decomposition for each odd number from 3 to
99, the scribe gave the decomposition of 101 as a prototype of how to decompose every odd number beyond one
hundred.12 The use of the powers of 10 as upper bounds is totally in line with the Egyptian way of doing mathema-
tics.

Finally, suppose that we allow Q to be the sum of up to four Egyptian fractions, where the denominator of
each unit fraction is a divisor of a. Then we would still get the same chosen decomposition for every element
of G2, provided that the number of terms is not increased. In addition, applying the same rules to G1 does not
lead to any change in the regular decompositions, proving that the table can and should be treated as a single en-
tity.

4. The 2:n-table revisited

A better understanding of the table as a whole can be reached by looking at the set of decompositions chosen by
Ahmes as a subset of the set of all possible decompositions. We will see that the number of choices available for the
ancient Egyptians is but a small fraction of the number of choices at the disposal of a modern calculator. We will
also see that the Egyptian way of expressing 2:n holds the advantage over its decimal equivalent that it always admits
a finite (unit-fraction) expansion.

Let n be an odd number less than 100 and a be the first term in the decomposition of n. Then starting from n

downward, the first choice for a is n − 1 and the last choice is (n + 1)/2, making a total of (n − 1)/2 choices. Sum-
ming up over the odd numbers from 3 to 99, we get a grand total of 1225 choices for a. Now, call a decomposition
of at most four parts, none smaller than 1000, acceptable if Q = (n − a)/a can be written as the sum of up to four
unit fractions or as the sum of a unit fraction and 3. Then the 1225 choices for a produce a set of only 255 ac-
ceptable decompositions, far less than the roughly 28,000 possible decompositions produced by a modern computer.
More importantly, the set of acceptable decompositions contains the decomposition given by Ahmes for every num-
ber except 35 and 91. For these exceptional numbers, Ahmes gives the decompositions 30 + 42 and 70 + 130, while
the set of acceptable decompositions contains the equivalent decompositions 30 + 70 + 105 and 70 + 182 + 455.
Moreover, if we decompose the multiples of 3 according to (8), then we are left with only 143 acceptable decom-
positions for the 32 nonmultiples of 3, an average of less than five decompositions per number. It follows that once
the procedure is understood then reconstructing the table is no longer the difficult task it appeared to be. An expe-
rienced scribe can certainly complete the job in a day or two. The scribe need not consider every value of a, since
he will soon realize that a number with too few divisors, especially a prime number, does not make a good choice
for a. In fact, a is a multiple of either 10 or 12 for every element of G2 except n = 13, 43, 97, and 101. It hap-
pens that for n = 97 and n = 101, one cannot find an acceptable decomposition whose first term is a multiple of 10
or 12.

12 Observe that the condition that no part should be less than 1000 is contained in the condition that no term should be larger than 10n, provided
that we stop at n = 99.
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Let a and n be as above. Then one can argue that the Egyptians applied the following systemic method to break
2:n into unit fractions. As a first step, the scribe tries to find a number k greater than 1 and less than 11 satisfying the
equation

2 : n = a + kn. (11a)

If the previous step fails to produce a decomposition of n, the scribe searches for a second number l such that k <

l � 10 and

2 : n = a + kn + ln. (11b)

If still no decomposition is found, the scribe introduces a third number m, where k < l < m � 10 and

2 : n = a + kn + ln + mn. (11c)

In all cases (except n = 71), a was chosen so that Q = (n − a)/a would be equivalent to an Egyptian or reducible
fraction, and only when this could not be done did the scribe allow Q to be the sum of three or four unit fractions.

It is remarkable that every entry in the table up to 100, apart from 23, 35, 53 and 91, satisfies exactly one of (11a)
to (11c). This means that the Egyptians decomposed n in such a way that k, l, and m are integers greater than 1 and
no larger than 10, the underlying base. As for 35 and 91, they are the only values of n having a decomposition where
a term other than a is a noninteger multiple of n. Their respective values of k are 6/5 and 10/7. On the other hand,
23 and 53 are the only entries having a decomposition with a term greater than 10n. For n = 23 the last (second) term
is 12n, while for n = 53 the last (third) term is 15n.

Looking at the 2:n-table in this way, we see that the Egyptians used a number system quite similar to our decimal
system, but they avoided the use of infinite sums. Rather than writing

2

n
= a1

10
+ a2

102
+ a3

103
+ a4

104
+ · · · , 0 � ai � 9, (11)

they expressed 2/n (excluding n = 23, 35, 53 and 91) as

2

n
= 1

a
+ 1

kn
+ 1

ln
+ 1

mn
, 2 � k < l < m � 10, (12)

where the third and fourth terms are used only if needed. The Egyptians preferred their system because it gives a finite
yet exact representation of 2/n. One might become more sympathetic to their point of view by knowing that among
the entries in the table only 2/5 and 2/25 have finite decimal expansions. We think that taking this new insight into
consideration should drastically change the way Egyptian arithmetic has been perceived.
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