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SUMMARY

A key finding of the ENCODE project is that the
enhancer landscape of mammalian cells undergoes
marked alterations during ontogeny. However, the
nature and extent of these changes are unclear.
As part of the NIH Mouse Regulome Project, we
here combined DNaseI hypersensitivity, ChIP-seq,
and ChIA-PET technologies to map the promoter-
enhancer interactomes of pluripotent ES cells and
differentiated B lymphocytes. We confirm that
enhancer usage varies widely across tissues. Unex-
pectedly, we find that this feature extends to
broadly transcribed genes, including Myc and
Pim1 cell-cycle regulators, which associate with an
entirely different set of enhancers in ES and B cells.
By means of high-resolution CpG methylomes,
genome editing, and digital footprinting, we show
that these enhancers recruit lineage-determining
factors. Furthermore, we demonstrate that the
turning on and off of enhancers during development
correlates with promoter activity. We propose that
organisms rely on a dynamic enhancer landscape
to control basic cellular functions in a tissue-specific
manner.
C

INTRODUCTION

Gene expression during development is orchestrated by pro-

moter sequences and a variety of distal cis-regulatory elements.

Key among these are enhancers, which associate with pro-

moters to increase the transcriptional output of target genes in

a tissue-specific manner (Visel et al., 2009). Enhancers are

typically distinguished from nonregulatory DNA by their hyper-

sensitivity to DNaseI digestion (Sabo et al., 2006) and binding

of chromatin modifiers. The CBP/p300 acetyltransferase for

instance mediates H3K27 acetylation of chromatin at active

enhancers (Creyghton et al., 2010). In addition, enhancers dis-

play high levels of H3K4 monomethylation (H3K4me1; Buecker

and Wysocka, 2012), and a relative depletion of H3K4me3

(Heintzman et al., 2007) and the histone variant H2AZ (Kouzine

et al., 2013). Based on these parameters, �400,000 genomic

sites displaying enhancer-like features were recently discov-

ered, spanning nearly 10% of the human genome (ENCODE

Project Consortium et al., 2012).

Enhancers control lineage identity by recruiting transcription

factors, cofactors, and RNA Polymerase II (PolII) to target genes.

They physically interact with promoters resulting in looping out of

intervening sequences (Krivega and Dean, 2012), which in some

instances can span over 1 Mb of DNA (Nobrega et al., 2003). In

contrast to promoters and insulators, which vary little across

cell types, the enhancer landscape changes considerably during

development (Thurman et al., 2012). This feature predicts that
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functional connectivity inmammalian cells (1)must display a high

degree of tissue specificity and (2) should closely reflect tran-

scriptome changes during cell differentiation. However, these

ideas have not been fully explored because of the difficulty of

mapping promoter-enhancer connections during development.

In the absence of direct approaches, enhancers have been

typically assigned to ‘‘cognate’’ promoters based on linear prox-

imity or shared chromatin states. This strategy has limitations

because enhancers do not always regulate nor share chromatin

profiles with the nearest promoter. Alternatively, chromosome

conformation capture techniques have been used to explore

regulatory interactions at predefined genomic loci. However,

the resolution of 3C-based techniques alone is insufficient to

map promoter-enhancer connectivity in entire genomes (Xie

and Ren, 2013). To overcome this challenge, the ChIA-PET pro-

tocol was recently developed (Fullwood et al., 2009). ChIA-PET

is a ChIP-based method that captures long-range chromatin in-

teractions involving or mediated by a protein of interest such as

estrogen receptor a in adenocarcinoma cells (Fullwood et al.,

2009) or RNA PolII in human cell lines (Li et al., 2012).

We here introduce the NIHMouse Regulome Project, an initia-

tive that seeks to define the 3D interplay of gene regulatory

domains in developing mouse primary cells. In this first report

we compare pluripotent embryonic stem (ES) cells and dif-

ferentiated B lymphocytes. By combining ChIA-PET, CpG

methylomes, DNaseI hypersensitivity, transcriptomes, digital

footprinting, and TALEN-mediated genome editing, our studies

reveal the dynamics of the mouse regulome during ontogeny.

RESULTS

A Comprehensive Map of Regulatory Domains and Their
Interactions in Mouse Primary Cells
To characterize the mouse regulome in primary cells we first

applied DNaseI hypersensitivity (DHS) followed by deep-

sequencing to CD43� B lymphocytes activated in the presence

of lipopolysaccharide and interleukin-4 (LPS+IL-4). From two in-

dependent experiments (268million aligned reads), we identified

90,015 high-confidence DNaseI domains in B cells. As expected,

DNaseI-seq profiles were highly reproducible between biological

replicates (Spearman’s r = 0.99; Figure S1A available online).

To identifyDHSsites associatedwith gene regulatorydomains,

we next mapped Nipbl, Med12, and p300 by ChIP-seq (Fig-

ure 1A). We chose the cohesin-loading factor Nipbl and the

Med12 component of mediator because they demarcate en-

hancers tethered with core promoters (Kagey et al., 2010). Like-

wise, the transcription regulator p300 occupies a subset of

active promoters and enhancers (Chen et al., 2008). There was

a considerable, although incomplete, overlap in the recruitment

of these factors in B cells (Figures 1A and S1B). Active promoters

were thus identified as Nipbl+, Med12+, or p300+ DHS sites

that overlapped with ENSEMBL-annotated transcription start

sites (TSSs). Based on this strategy we identified 17,004

DHS promoter elements associated with 16,931 genes, 49,763

enhancer elements, and an additional 23,248 that did not overlap

with either (Figure 1B). Promoters were in general H3K4me1-
lowH3K4me3high H2AZhigh, whereas the opposite signature

demarcated enhancer domains (Figure 1A; Kouzine et al.,
1508 Cell 155, 1507–1520, December 19, 2013 ª2013 Elsevier Inc.
2013). DHS analysis of mouse ES cells uncovered a similar num-

ber of DHS promoters (16,771) and an increased number of en-

hancers (62,766, Figure 1B).

To directly map the promoter-enhancer interactome, we

applied chromatin interaction analysis by paired-end-tag se-

quencing (ChIA-PET; Fullwood et al., 2009; Zhang et al.,

2012), which combines PolII ChIP with 3C technology (Figures

1C, S2A). We generated two independent B cell ChIA-PET

libraries, from which �15 million reads were uniquely aligned

and classified into two separate data sets: 5.7 million reads of

PolII chromatin occupancy, and 9.2 million reads clustered

into 14,247 high-confidence PolII long-range cis interactions

or PETs (Figure 1D and Table S1). Both data sets were corre-

lated between replicates (Spearman’s r > 0.83, Figures S2B

and S2C).

Attesting to the specificity of ChIA-PET, most PolII long-range

interactions (13,070, 92%) were linked to at least one gene reg-

ulatory domain (Figure S1C). Furthermore, of 16,931 B cell pro-

moters associated with DHS domains, 6,890 were involved in

PolII long-range interactions. In general, these genes were tran-

scribed 2-fold higher (p < 2 3 1016, Figure S1D) and recruited

more PolII (p < 2 3 1016, Figure S1E) than nonanchored ones.

We also detected 6,813 DHS enhancer domains involved in PolII

interactions. Of these, 71%were active (H3K27Ac+), whereas up

to 60% of nonanchored ones were poised (H3K27Ac�, Fig-

ure S1F). In general, the number of ChIA-PET interactions per

regulatory site was proportional to the extent of DNaseI digestion

(Figure S1G). Thus, ChIA-PET preferentially detects PolII long-

range interactions involving H3K27Ac+ enhancers and transcrip-

tionally active promoters.

As previously shown (Li et al., 2012), PolII interactions fell into

four distinct groups: (1) intragenic, connecting promoters to

gene bodies; (2) extragenic, connecting promoters to distal

regulatory elements; (3) intergenic, tethering promoters from

different genes; and (4) enhancer-enhancer interactions (Fig-

ure S1H). Examples of these are provided in Figure 1D for the

Atp5j-Mir155 gene locus. Consistent with high expression of

Mir155 in activated B cells (Kuchen et al., 2010), its promoter

was associated with 83 long-range interaction tags (Figure 1D,

upper). Of these, 70 were extragenic, involving 5 upstream

enhancer domains, while 13were intragenic, connecting the pro-

moter to downstream sequences. An additional 23 PolII long-

range interactions interconnected the 5 enhancers upstream of

Mir155. In contrast to B cells, ES cells actively transcribe

Mrpl39, Jam2, and Atp5j but express little Mir155 mRNA (Fig-

ure 1D, lower). Consistent with this, we identified 30 intergenic

connections between Mrpl39, Jam2, and Atp5j promoters in

ES cells, whereas few connections involved Mir155 (Figure 1D).

As in previous ChIA-PET studies, both direct and indirect inter-

actions were considered in our analysis (Figure S1I).

TALEN-Mediated Validation of Promoter-Enhancer
Connectivity
ChIA-PET confirmed established connections between gene

regulatory domains. For instance, the pluripotent gene Sox2

was associated in ES cells with a series of enhancers recently

described by 5C studies (Figure S3A; Phillips-Cremins et al.,

2013). Likewise, the immunoglobulin heavy chain (Igh) 30Ea
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Figure 1. Characterization of Regulatory Domains and Their Interactions in Mouse Primary B and ES Cells

(A) Pax5 locus in activated B cells displaying DNaseI hypersensitivity (DHS); recruitment of Nipbl, Med12, and p300; and chromatin marks H2AZ, H3K4me1, and

H3K4me3.

(B) Bar graphs showing the number of DHS islands in B and ES cells overlapping with promoters (TSS+, white), enhancers (TSS-, Nipbl+, or Med12+, or p300+,

red), or nonoverlapping (blue).

(C) The ChIA-PET protocol combines PolII ChIPwith conformation capturing techniques tomap the interaction of active promoters with gene regulatory domains.

(D) Examples of ChIA-PET clusters at theMir155 locus in activated B cells (red connectors) or ES cells (blue connectors). Each connector links two or more long-

range interactions (PETs) separated by <500 bps (Figure S2A). ChIP-seq data are represented as reads per kb per million sequences (RPKM). Promoters (P) and

enhancers (E) are boxed and the number of total PETs is provided in parenthesis. Interactions between enhancers and Mir155 are represented by semi-circle

connectors. mRNA expression is provided for B and ES cells as RPKM values (+, strand transcription in green; �, strand in blue).

See also Figures S1, S2, and S3, and Table S1.
enhancer was found in spatial proximity to transcribed Igm, Igg1,

and Igε in B cells only (Figure S3B). We also found evidence of

Igm-Igg1 associations, representing either synapses between
C

the recombining genes (Wuerffel et al., 2007) or fully recombined

DNA. At the Igk locus, theVJk-50Ek domainwas connected to the

previously characterized 30Ek and Ed enhancers (Figure 2A; Liu
ell 155, 1507–1520, December 19, 2013 ª2013 Elsevier Inc. 1509
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Figure 2. In Vivo Validation of ChIA-PET by Genome Editing

(A) ChIA-PET at the Igk locus identifies previously characterized 50Ek, 30Ek, and Ed enhancers, as well as new enhancers E4 and E5. Number of PETs associated

with each regulatory domain (boxed) are provided in parenthesis. The DHS activated B cell track is also provided (black).

(legend continued on next page)
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et al., 2002; Meyer and Neuberger, 1989). Unexpectedly, the

analysis uncovered two additional enhancers located 8 kb (E4)

and 15 kb (E5) downstream of Ed (Figure 2A).

We also found additional enhancers (E1-E2) associated with

the activation induced deaminase (AID) gene Aicda (Figure 2B).

The three enhancers previously shown to regulate AID transcrip-

tion in vivo were also linked by PolII long-range interactions in

the analysis (E3-E5, Figure 2B; Crouch et al., 2007; Huong

et al., 2013; Sayegh et al., 2003). The Apobec1 promoter and

a sixth enhancer located in Apobec1 intron 2 were also clus-

tered (Figure 2B). To validate ChIA-PET associations, we

deleted E1 and E2 in CH12 mouse lymphoma cells. We chose

this B cell line because upon activation it transcribes high levels

of AID and undergoes efficient Igm-Iga recombination (Naka-

mura et al., 1996). To facilitate homozygous gene targeting,

knockout constructs were cotransfected with enhancer-specific

transcription activator-like effector nucleases (TALENs), assem-

bled via a solid-phase high-throughput system (Reyon et al.,

2012; Figure S4A). Upon activation, wild-type CH12 cells

increased AID mRNA expression �5-fold and recombined to

IgA (15%, Figures 2C and 2D). Deletion of E1 or E2 however

markedly reduced AID transcription and IgA expression (Figures

2C and 2D), consistent with the notion that the extent of

switching is proportional to AID expression (Takizawa et al.,

2008). Transcription of Apobec1 was also impaired in the

mutant cells, whereas noninteracting Ezh2 and Cd83 genes

were unaffected (Figure 2C). Importantly, E1�/� and E2�/� cells

displayed an overall reduction in Nipbl and PolII occupancy at

all regulatory domains within the Aicda locus, including the

Apobec1 promoter (Figure 2E and S4B). In contrast, this effect

was not observed at the Foxj2-Necap1 locus, �190 kb down-

stream of Apobec1 (Figure 2E and S4B). Thus, E1 and E2

regulate AID and Apobec1 transcription by controlling local

recruitment of PolII.

To further validate the ChIA-PET results, we targeted

additional regulatory elements associated with the Pou2af1

(OCA-B), and Cd79a genes. We uncovered an intronic enhancer

(E3) �15 kb downstream of OCA-B TSS required for transcrip-

tional upregulation upon B cell activation but dispensable for

basal transcription in nonstimulated cells (Figure S4C). This

activity is consistent with the reported dynamics and signaling

requirements of OCA-B expression during B cell differentiation

(Casellas et al., 2002; Qin et al., 1998). A similar analysis

confirmed the presence of enhancer elements that augment

basal Cd79a transcription (Figure S4D). Additional gene target-

ing experiments within the Pim1 oncogene locus are discussed

below (Figure 5). Taken together, these results demonstrate

that at least a fraction of PolII long-range interactions, as defined

by ChIA-PET, represent functional promoter-enhancer connec-

tions in B lymphocytes.
(B) Regulatory map of the Aicda-Apobec1 locus in activated B cells. Deletion of s

targeting cassettes (cyan) and TALEN endonucleases.

(C) qPCR analysis of Aicda, Apobec1, Ezh2, and Cd83 expression in wild-type (W

SEM (n = 6). p values were < 0.0001 (Aicda), and = 0.008 (Apobec1).

(D) Flow cytometry analysis of recombination to IgA in activated WT, DE1, or DE

(E) Nipbl (black) andPolII (red) occupancy at theAicda-Apobec1 andFoxj2-Necap1

See also Figure S4 and Table S3.

C

Single- and Higher-Order Gene Clusters in Primary
Mouse Cells
Up to 54% of genes recruiting PolII in activated B cells were

associated with long-range interactions (6,890 of 12,652). Of

these, 1,231 (18%) represented single promoters tethered to at

least one enhancer (Figure 3A). These clusters created complex

architectures and spanned an average of 78 kb of genomic DNA

(Figure S5A). The most elaborate of this group was the Gpr183

promoter, which was connected either directly or indirectly to

12 enhancers via 76 long-range interactions (Figure 3A). Another

example was Cd83, which displayed 158 PolII intragenic and

extragenic connections (Figure 3B).

Among single-promoter gene clusters, we found examples

of the recently dubbed superenhancer domains (Whyte et al.,

2013), whichwere defined based on clustering of gene regulatory

domains: e.g., mir290/295 and Sox2 loci (Figures S5B and S3A).

However, the vast majority of anchored genes (5,606, 81%)

formed higher-order multigene complexes (1,481 B cell clusters,

Figure 3C), which could not be easily deduced as interacting

based on visual inspection of DHS island distribution. The

average span of these clusters was 179 kb (Figure S5A). Its prime

example in B cells was theRela cluster in chromosome 19, which

was composed of 66 genes and 398 long-range interactions (Fig-

ure 3C). Promoters linked by intergenic connections displayed

higher PolII density and mRNA synthesis relative to genes from

single-promoter clusters or not anchored to other domains (Fig-

ure S5C). Furthermore, families of genes coexpressed during

ontogeny were overrepresented in the multiple-promoter gene

group (see Experimental Procedures). Among these we found

themajor histocompatibility complexH2-Mb cluster (Fisher exact

test p = 1.33 1014), theHist1h histone family (p = 7.73 1082), and

the lymphoid signalingGimapcluster (p= 7.631014, FigureS5D).

In contrast to promoters, which readily formed higher-order

complexes, the vast majority of enhancers (�90%) were linked

to a single promoter, and less than 2% of all enhancers were

linked to more than two promoters (Table S1). One exception

was an enhancer downstream of Gimap6, which was directly

linked to seven promoters (Figure S5D).

Transcriptional Correlation between lncRNA and
Associated Coding Genes
Long noncoding RNAs (lncRNA) are a new class of RNAs

believed to play regulatory functions (Batista and Chang, 2013).

ChIA-PET identified hundreds of associations between protein-

coding and lncRNA genes in multiple-promoter clusters. For

instance, lncRNA E(ENSMUSG)85930 is extensively associated

with Clec2d and to a lesser extent with Cd69 (Figure 3D). Other

examples involving genes key for B cell development included

Ptprcap-E90702, Cd81-E59277, and Bcl11a-E123592 pairs

(Figure S5E). lncRNAs are believed to modulate transcription of
elected enhancers (E1 and E2) was carried out in CH12 B cells using knockout

T), and E1, or E2 deleted (D) CH12 cells. Data are represented as the mean ±

2 cells.

loci inWTorDE2 cells. The two loci are separated on chromosome 6by 188 kb.
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Figure 3. Gene Clusters Identified by

ChIA-PET

(A) Single-promoter clusters in activated B cells

connecting 1,231 gene promoters to at least

one enhancer. Right: e.g., the Gpr183 promoter

(blue circle) is linked to 12 enhancers (red circles)

via 76 interactions. PETs anchored outside en-

hancers are represented with gray circles. Circles

are sized according to the absolute number of

anchored PETs.

(B) Interactions at the Cd83 single gene cluster.

(C) Multipromoter clusters (n = 1,481) identified in

B cells. The Rela cluster display 398 interactions

involving 66 genes.

(D) PolII connections between lncRNA E85930,

Clec2d, and Cd69. Promoters and enhancers are

boxed and number of PETs are provided in

parenthesis.

(E) Transcription levels of genes associated with

trace (no detectable FPKM), low (<0.9 FPKM), or

highly transcribed lncRNAs (R0.9 FPKM).

See also Figure S5.
neighboring genes by promoting local topological changes in

chromatin (Ponting et al., 2009). Consequently, transcription of

lncRNAs and their targeted genes is often coordinated (Guil

and Esteller, 2012). To test this idea across the genome we

measured expression of lncRNAs and their interacting protein-

coding genes as defined by ChIA-PET. We found that genes

associated with highly abundant lncRNAs were transcribed at

higher levels than those associated with lncRNAs detected at

low or trace levels (p < 0.05, Figure 3E). These findings are

consistent with the proposal that transcription of lincRNAs and

their targets can be coordinated. Whether the same scenario

applies to promoter-promoter clusters not involving lncRNA

remains to be determined.

Broadly Expressed Genes Are Linked to Cell-Type-
Specific Enhancers
As expected, genes differentially expressed in B and ES cells

were linked to tissue-specific regulatory elements. The pluripo-
1512 Cell 155, 1507–1520, December 19, 2013 ª2013 Elsevier Inc.
tent gene Sox2 for instance was associ-

ated with ES-cell-specific enhancers

(Figure S3A). Conversely, the B-cell-spe-

cific Cd79b gene was only anchored to

enhancers in the B cell compartment

(Figure S6A).

We next turned our attention to genes

transcribed in both cell types. Of 6,890

promoters anchored by ChIA-PET in

B cells, 4,854 (70%) were also anchored

in ES cells (Figure 4A, Venn diagram). As

an example, the Hexim1-2 genes were

linked to the same downstream enhancer

(E1) in B and ES cells (Figure 4B). Surpris-

ingly, most anchored promoters in the

two cell types (4,430, 94%) were associ-

ated with at least one additional tissue-

specific enhancer (Figure 4A, lower pie
chart). A striking example was the Myc proto-oncogene, which

displayed a completely different enhancer landscape in ES and

B cells (Figure 4C). In B cells, Myc was linked to ten enhancers

(E5-E14) located near or downstream of exon 3 of the lncRNA

Pvt1, whereas in ES cells all enhancers associated with Myc

(E1-E4) were found upstream of this site (Figure 4C). Other ex-

amples included Tgif1, Smad7, and Malat1, which were prefer-

entially linked to ES-cell-specific enhancers, whereas Swap70,

Etv5, and Pim1 were tethered to a greater number of enhancers

in B lymphocytes (Figure 4D).

To explore whether changes in the enhancer landscape

impacts transcription of this gene group, we measured their

expression by calculating mRNA copy numbers per cell. Genes

that turned on or off a single tissue-specific enhancer displayed

little or no changes in transcription levels in the two cell types

(Figure 4E). However, as genes interacted with two or more addi-

tional enhancers their expression was significantly different (p <

93 1010, Figure 4E).Myc, for instance, was transcribed�4 times



higher in B cells than in ES cells (Table S2). This observation is

consistent with the notion that, in general, transcription levels

of a given promoter are commensurate with the number of reg-

ulatory domains it is regulated by (Li et al., 2012). On the basis

of these findings we conclude that (1) broadly expressed genes

can be regulated by cell-type-specific enhancers and (2) the

turning on and off of enhancers during ontogeny impacts tran-

scription levels.

Dynamic CpG Methylation of Cell-Type-Specific
Regulatory Domains
Cellular differentiation is accompanied by changes in DNA

methylation at promoters and distal regulatory domains (Shen

et al., 2013; Song et al., 2013; Stadler et al., 2011; Ziller et al.,

2013). To explore whether the dynamics of DNA methylation

correlate with differential enhancer usage, we applied bisulphite

sequencing (Bis-Seq) and generated methylome libraries at

single-nucleotide resolution. Bis-Seq of activated B cells pro-

vided a total of 148 billion mappable methylome bases.We com-

plemented this data set with Bis-Seq libraries from mouse ES

cells (Stadler et al., 2011) and calculated the percentage of

CpG methylation at gene regulatory domains. With few excep-

tions, activated B-cell-specific enhancers were highly methyl-

ated in ES cells (>80% of CpGs), whereas enhancers common

to both cell types displayed a broad range of CpG methylation

levels (Figure 5A). High methylation was also observed at ES

cell-specific enhancers in activated lymphocytes, whereas B

cell enhancers displayed low methylation levels (Figure 5A).

Importantly, the level of CpG methylation was lower at active

than at poised enhancers (p < 33 1016, Figure 5A). As expected,

promoters of silent genes displayed on average higher CpG

methylation than active ones (p < 2.23 1016, Figure 5A). Methyl-

ation levels were also inversely proportional to the extent of

ChIA-PET signals (Figure S6B). Thus, enhancers are highly

methylated when inactive, but become demethylated during

development concomitant with the presence of tissue-specific

PolII interactions.

We explore in Figure 5B transcriptional regulation of the Pim1

oncogene, whose promoter is tethered to an entirely different set

of enhancers in activated B cells and ES cells. The analysis

shows a direct correlation between CpG demethylation and

enhancer usage. For instance, B cell enhancers E2 and E5 and

ES cell enhancers E6 and E7 display nearly complete CpG

demethylation in a cell-type-specific manner (Figure 5B). To

confirm that these enhancers truly promote Pim1 transcription,

we targeted E2 and E6 in CH12 B cells and ES cells, respectively.

As measured by qPCR, we found a significant decrease in Pim1

mRNA levels in the targeted cells, whereas expression of Brd2,

Mtch1, and Gapdh was unaffected (Figure 5C). Attempts to

delete E2 and E6 in the cell type where they are inactive were

unsuccessful (not shown), likely due to the inability of TALENs

to target methylated DNA (Bultmann et al., 2012).

In ES cells, B-cell-specific enhancers, including those linked to

broadly expressed genes, were hypermethylated (Figure S6C).

To examine at which stage during B lymphopoiesis these

regulatory elements become demethylated, we generatedmeth-

ylome libraries from bone marrow hematopoietic stem cells

(KSL), B lymphoid precursors (CLP), and peripheral G0 resting
C

B cells. Of 1,518 B-cell-specific enhancers that were linked by

long-range interactions and hypomethylated during activation,

only 82 (5%) were also hypomethylated in ES cells (Figure 5D).

However, in KSL precursors nearly half (714, 47%) of activated

B cell enhancers were already demethylated (Figure 5D). This

group included Pim1 enhancers E2, E3, and E5, which displayed

nearly identical CpG methylation levels in KSL, CLP, G0 resting,

and cycling B cells (Figure S6D). As KSLs develop into CLP B cell

precursors, demethylation was observed in 61% (926) of B cell

enhancers. In resting G0 B cells, this number increased to 80%

(1,207, Figure 5D). At this stage of development, the overall

mean methylation was comparable between activated B cell

enhancers and those functional both in B and ES cells (Fig-

ure S6C). Thus, most activated B cell enhancers, including those

associated with broadly expressed genes, are demethylated by

the time naive lymphocytes migrate from the bone marrow to the

periphery. This finding is consistent with the notion that the

genome of G0 lymphocytes is primed for activation and that

most genes expressed during the humoral immune response

are transcribed at basal levels in the naive compartment (Kou-

zine et al., 2013; Nie et al., 2012). At the same time, it is important

to point out that �20% of activated B cell enhancers do not

become fully demethylated until activation occurs. Among these,

we find Pim1 E4 and Aicda E3 and E4 (Figures S6D and S6E).

Digital Genomic Footprinting Characterizes TF Binding
in the Mouse Genome
The observation that cell-type-specific enhancers can promote

transcription of broadly expressed genes implies that factors

driving lineage specification are involved in this regulation. To

explore this idea, we sought to comprehensively catalog tran-

scription factor occupancy in mouse B lymphocytes and ES

cells. To this end, we took advantage of the fact that transcription

factors protect their binding sites from DNaseI cleavage, leaving

nucleotide-resolution footprints within DHS islands (Neph et al.,

2012). Figure 6A, for instance, shows four DNaseI footprints at

the Pold4 gene promoter in G0 and cycling B cells. Importantly,

these footprints overlap with recognizable binding motifs for

transcription factors PU.1, Ebf1, Egr1, and Sp1 (Figure 6A). By

applying an established algorithm (Baek et al., 2012), we de-

tected 706,669 high-confidence (FDR < 5%) footprints within

75,917 B cell DHS domains (70% of total DHS). To link these

footprints to known transcription factor recognition sequences,

we examined all empirically defined DNA binding motifs,

compiled by HOMER, UniPROBE, JASPAR, and similar data-

bases. We found a significant enrichment in transcription factor

binding motifs within DHS footprints (p < 1 3 106, Figure S7A).

Altogether, we linked 247 distinct transcription factor DNA

motifs to 122,505 footprints in B cells (Table S1). In addition,

de novo motif discovery yielded 18 new binding sites that did

not match known recognition sequences (Table S1). A similar

analysis linked 306 DNA motifs to 346,284 footprints in ES cells

(Table S1).

Figure 6B shows examples of cleavage profiles for tran-

scription factors Irf8, Sp1, Nrf1, PU.1, and CTCF (an extended

view of footprints is provided in Figure S7B). Importantly, ChIP-

seq analysis showed a correlation between PU.1 and CTCF

occupancy, their DNA binding motifs, and cognate footprints
ell 155, 1507–1520, December 19, 2013 ª2013 Elsevier Inc. 1513
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Figure 4. Tissue-Specific Enhancers Contribute to the Transcriptional Regulation of Broadly Expressed Genes

(A) Venn diagram showing the number of ChIA-PET anchored promoters in B cells (left), ES cells (right), or in both cell types (middle). For the latter group, the pie

chart below shows the number of promoters linked to the same (yellow) or to at least one cell-type-specific enhancer (gray).

(B) Acbd4 and Hexim1/2 gene promoters associate with the same downstream enhancer (E1) in B and ES cells.

(C) TheMyc oncogene is linked to an entirely different set of enhancers in ES (blue) and B (red) cells. Enhancers are numbered from 1–10 based on proximity to the

Myc promoter (P1).

(legend continued on next page)
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Figure 5. DNA Demethylation Demarcates

Differential Enhancer Usage

(A) CpG methylation at regulatory elements in B

and ES cells.

(B) DNA demethylation at the Pim1mouse locus in

B (upper) and ES (lower) cells. Demethylation was

calculated by subtracting normalized ES cell

methylation values from the activated B cell Bis-

Seq and vice versa.

(C) Bar graph showing qPCR analysis of Brd2,

Mtch1, and Pim1 expression in WT (black) or DE2

(red) CH12 cells. Same analysis for WT or DE6

(blue) ES cells. Data are represented as the

mean ± SEM (n = 6). Pim1 p < 0.005 in B cells and

p < 0.003 in ES cells.

(D) Bar graph represents the fraction (%) of 1,518

activated B cell enhancers that are CpG deme-

thylated in ES, KSL, CLP, and G0 resting (r) B cells.

Absolute numbers of demethylated enhancers are

provided on top of each bar.
(Figure 6C). Similar results were obtained with Irf8 and Ebf1 (not

shown). To confirm that footprinting profiles truly reflect the

morphology of DNA-protein interactions, we turned to available

transcription factor:DNA cocrystal structures. For instance,

consistent with the published Ebf1:DNA structure (Treiber

et al., 2010), backbone phosphates in direct contact with Ebf1

amino acids via hydrogen bounds (in red in Figure 6D) were the

most protected from DNaseI cleavage, whereas more exposed

residues (in cyan) displayed by comparison greater suscepti-

bility to digestion. Similarly, for the cRel (NF-kB) factor DNaseI
(D) Genes classified by the total number of tissue-specific enhancers they interact with. Individual examples

(red) and ES-cell-specific (blue) enhancers is provided in parenthesis.

(E) Box plot providing changes in mRNA copy number for genes that are anchored both in B and ES cells and

(blue), R2 B-cell-specific enhancers (red), or genes in between (gray). See also Figure S6 and Table S2.

Cell 155, 1507–1520, De
cleavage paralleled the topology of the

protein-DNA interphase with a marked

depression at DNA binding motif (Fig-

ure 6E; Huang et al., 2001). We conclude

that DNaseI cleavage profiles can reca-

pitulate the structural features of tran-

scription factor:DNA interactions, and

thus they reflect the occupancy of gene

regulatory proteins across the genome.

Lineage-Determining Factors
Regulate Transcription of Broadly
Expressed Genes
Having validated the genomic footprint-

ing approach, we next turned to the

question of whether lineage-specific fac-

tors associate with enhancers controlling

transcription of broadly expressed genes.

To this end we classified B and ES cells

enhancers into three groups: (1) those

shared between the two cell types and

linked to the same promoter as deter-
mined by ChIA-PET, (2) cell-type-specific enhancers bound to

promoters active both in B and ES cells, and (3) cell-type-

specific enhancers linked to cell-type-specific promoters (Fig-

ure 7A). Within the B cell compartment, all transcription factors

analyzed were associated with the three enhancer groups.

Ebf1, Oct2, and E2A footprints for instance showed no signifi-

cant differences in their distribution regardless of enhancer

specificity (Figure 7B). Other factors, such as E2f2 and Foxo1

displayed statistical significant biases for shared and cell-type-

specific enhancers, respectively (Figure 7B). However, even in
are highlighted and the number of B-cell-specific

that associate with%2 ES-cell-specific enhancers

cember 19, 2013 ª2013 Elsevier Inc. 1515
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Figure 6. Digital Genomic Footprinting

(A) Characterization of footprints at the Pold4 promoter in primary resting or cycling CH12 B cells. Transcription factor binding motifs overlapping with each

footprint are shown below the graph (red rectangles). Tracks were configured to display the maximum (light gray) and one standard deviation above the mean

(dark gray).

(B) Examples of footprints overlapping with Irf8, Sp1, Nrf1, PU.1, and CTCF DNA recognition motifs.

(C) Composite of PU.1 and CTCF ChIP-seq (blue data points, upper graphs) and cumulative footprinting (lower graphs) associated with cognate binding motifs

(middle logos) in B cells. The absolute number of motif occurrences is provided. Grey data points represent ChIP-seq signals at footprints not associated with

PU.1 or CTCF motifs.

(D) The cocrystal structure of Ebf1 bound to its DNA ligand is compared to its cognate footprint profile. Motif nucleotides least sensitive to cleavage are depicted in

red; most sensitive residues are depicted in cyan.

(E) Similar analysis as in (D) for the NFkB-cRel dimer.
these cases, footprints were not excluded from any enhancer

group. A similar distribution was observed in ES cells (Fig-

ure S7C). Thus, lineage specification factors associate both

with tissue-specific and broadly active enhancers. Confirming
1516 Cell 155, 1507–1520, December 19, 2013 ª2013 Elsevier Inc.
this finding, ChIP-seq analysis of the pluripotent factors Nanog,

Oct4, and Sox2 showed occupancy of B and ES cell shared

enhancers at theUbe2g1 locus aswell as binding to ES-cell-spe-

cific enhancers at theMyc locus (Figure 7C). A global analysis of
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Irf4, Irf8, Pu.1, Ebf1, and Stat6 ChIP-seq from B cells also

corroborated the results (data not shown). We conclude that

transcription factors driving lineage specification associate

with regulatory elements of broadly expressed genes. We point

out that the functional significance of TF recruitment as defined

by digital footprinting remains to be empirically determined. At

the same time, our findings are consistent with the notion that

broadly expressed genes can be regulated in a tissue-specific

manner.

DISCUSSION

We have here characterized the first interactomes of gene regu-

latory domains in primary cells. The data provide a wealth of

information from the mouse genome with thousands of pro-

moter-enhancer pairs. Even for loci that have been extensively

studied, the analysis uncovered new connectivities. At the Igk

locus, for instance, we identified novel enhancers linked to

50Ek, the regulatory domain fromwhich NF-kBwas originally iso-

lated 27 years ago (Sen and Baltimore, 1986). ChIA-PET also un-

covered three additional enhancers tethered at a long distance

(up to 50 kb) to the AID gene promoter; the previously character-

ized AID enhancers are all located within 15 kb of the TSS. Thus,

one clear advantage of ChIA-PET lies in its ability to identify long-

range interactions, even when they leapfrog noninteracting

genes, as is the case for 65% of all enhancers (Table S1). A strik-

ing example is apair of giant enhancers linked toPax5byskipping

over �250 kb of DNA containing the Zcchc7 gene (Figure S7D).

Like other conformation capturing techniques, ChIA-PET does

not directly address functionality of chromatin interactions. This

can only be determined empirically by other means. Typically,

enhancer activity is defined by luciferase-based plasmids or

LacZ transgenes. However, these experimental approaches

only provide an incomplete view of transcriptional regulation

because they either lack proper chromatin structure or the influ-

ence of neighboring enhancers, insulators, and silencers is not

taken into account. Conversely, genome editing provides a

means to measure the impact of enhancer deletion in the phys-

iological context. Inmost cases, we found that cognate promoter

activity was partially reduced following enhancer ablation, sup-

porting the model that the contribution of individual enhancers

to gene expression is additive in nature. Examples of this cate-

gory were enhancers linked to the Cd79a, Pou2af1, and Pim1.

On the other hand, the targeting of AID 50 enhancers E1 or E2

nearly entirely abolished AID expression and activity, a result

that is reminiscent of those obtained upon deletion of AID

enhancers E3 and E5 in BAC transgenic mice (Crouch et al.,

2007; Huong et al., 2013), or by interference with E4 activity in

primary B cells (Sayegh et al., 2003). Thus, rather than working

in additive fashion, AID gene regulatory elements seem to syner-

gize or act as a cooperative unit. Conceivably, the local topology

of the Aicda-Apobec1 locus requires activation of all enhancers

for optimal transcription to occur. This strategy may be useful for

genes that require tight regulation as AID, whose expression is

strictly limited to activated B cells to minimize its well known

tumorigenic activity (Casellas et al., 2009). Consistent with this

model, our methylome analysis indicates that the AID locus is

not completely demethylated until B cells are activated.
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A direct comparison between the B and ES cell interactomes

revealed that up to 95% of genes anchored in both cell types

are associated with at least one tissue-specific enhancer.

Transcription modularity, the mechanism whereby genes accu-

mulate regulatory elements during ontogeny, is a well-described

phenomenon that controls the spatiotemporal expression of

developmental genes (Davidson, 2001; Visel et al., 2007). For

instance, the cardiac homeobox gene Nkx2-5 is targeted to spe-

cific subregions of the developing heart by turning on additional

cis-regulatory domains over time (Schwartz and Olson, 1999).

Similarly, expression of the human apolipoprotein E gene is trig-

gered in hepatocytes and astrocytes by enhancers only active in

those tissues (Grehan et al., 2001). Our studies demonstrate that

the turning on and off of enhancers is not a singularity of devel-

opmental gene loci. Instead, it is a widespread mechanism that

regulates broadly expressed genes involved in basic cellular

functions, such as cell-cycle initiation (Myc), signal transduction

(b-catenin), and cellular motility (Malat1).

Mechanistically, we show that the changing enhancer land-

scape in mammalian development results from the unbiased

recruitment of lineage-determining factors, which associate

with enhancers anchored not only to tissue-specific promoters

but also to constitutively active ones. Based on these observa-

tions we propose a ‘‘relay race’’ model of transcriptional regula-

tion, whereby broadly active genes make use of tissue-specific

cis-regulatory elements and transcription factors as cells prog-

ress through development (Figure 7D). For genes that only

replace a subset of their regulatory domains, transcription is

roughly maintained at comparable levels in different cell types.

However, as the number of connected enhancers fluctuates

considerably, promoter activity can be significantly altered.

We can think of at least two reasons why higher organisms

modulate the enhancer landscape of broadly expressed genes.

First, as aforementioned, it enables fine-tuning of protein output,

which in turns controls protein activity. Second, it places basic

cellular functions under the control of tissue-specific factors. In

the B cell compartment, these strategies are perhaps best illus-

trated during the immune response to invading pathogens. In

this microenvironment B lymphocytes move rapidly from a G0,

quiescent state to one of the fastest proliferative rates among

eukaryotic cells (Liu et al., 1991). Key in this process isMycwhich,

along with TFIIH, triggers a�10-fold amplification of the lympho-

cyte transcriptome concomitant with cell-cycle entry (Kouzine

et al., 2013; Nie et al., 2012). Thus, vis-à-vis proliferation B cells

differ substantially from continuously dividing ES cells, in that

they must rapidly engage a burst of Myc expression and activity

during the immune response tocopewith fast dividingpathogens.

Our studies imply that this unique response ismediated, at least in

part, by the large number of cis- and trans-responsive elements

that associate with theMyc promoter in the B cell compartment.

EXPERIMENTAL PROCEDURES

Cell Isolation and Culture

Hematopoietic stem cells were isolated from the bone marrow of 25 6-week-

old C57BL6 mice (Jackson Laboratory). Cells were purified following Ema

et al.’s protocol (PMID: 17406558). KSL (KIT+, SCA1+, Lin-, IL-7R-) and CLP

(KIT+, SCA1+, Lin-, IL-7R+) cells were sorted using MoFlo Legacy (Beckman

Coulter) and BD FACSAria III. Resting splenic B cells were isolated from



6- to 8-week-old wild-type C57BL6/J mice with anti-CD43 Microbeads (anti-

Ly48; Miltenyi Biotech) and were activated for 48-60 hr with LPS (50 mg/ml;

Sigma), IL-4 (5 ng/ml; Sigma) and 0.5 mg/ml of anti-CD180 (RP105) antibody

(RP/14, BD PharMingen). E14 tg2A mouse embryonic stem cells were main-

tained as described in (PMID:18555785). Switchable IgM+/IgA+ murine

CH12-F3 Ly-1+ B cell lymphoma line was maintained and passaged every

2 days in RPMI 1640 supplemented with 10% FBS (ATCC), 1% penicillin/

streptomycin (Invitrogen), 55 mM 2-b mercaptoethanol (Invitrogen). All cells

were maintained at 37�C and 5% CO2 in a humidified incubator.
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