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Objective: Scavenger receptor-class B type I (SR-BI), the receptor for HDL-cholesterol, plays a key role
in HDL metabolism, whole body cholesterol homeostasis, and reverse cholesterol transport. We investi-
gated the in vivo impact of hepatic SR-BI inhibition on lipoprotein metabolism and the development of
atherosclerosis employing RNA interference.
Methods: Small hairpin RNA plasmid specific for rabbit SR-BI was complexed with galactosylated poly-l-
lysine, allowing an organ-selective, receptor-mediated gene transfer. Rabbits were fed a cholesterol-rich
diet, and were injected with plasmid-complexes once a week.
Results: After 2 weeks of treatment hepatic SR-BI mRNA levels were reduced by 80% accompanied by
reduced SR-BI protein levels and a modulation of the lipoprotein profile. Rabbits treated with SR-BI-
specific plasmid-complexes displayed higher cholesteryl ester transfer from HDL to apoB-containing
lipoproteins, lower HDL-cholesterol, and higher VLDL-cholesterol levels, when compared to controls. In
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provided by Elsevier - Publish
a long-term study, this gene therapeutic intervention led to a similar modulation of the lipoprotein profile,
to lower total cholesterol levels, and most importantly to a 50% reduction of the relative atherosclerotic
lesion area.
Conclusion: Our results are another indication that the role of SR-BI in lipoprotein metabolism and athero-
genesis in rabbits – a CETP-expressing animal model displaying a manlike lipoprotein profile may be
different from the one found in rodents.
. Introduction

The first high-density lipoprotein (HDL) receptor to be discov-
red was the scavenger receptor-class B type I (SR-BI) [1]. The
elivery of HDL cholesterol to cells via SR-BI is fundamentally dis-
inct from the well-characterized endocytotic pathway mediated
y the low-density lipoprotein (LDL) receptor. SR-BI mediates the
igh-affinity binding of HDL particles and the selective uptake of
DL derived lipids into cells [2]. The murine SR-BI cDNA has been

dentified by expression cloning [3], and several SR-BI homologues

f mammalian species have been characterized. The human homo-
ogue of SR-BI was initially identified as CLA-1 and mapped to
hromosome 12 [4,5]. In rodents, selective lipid uptake represents

∗ Corresponding author. Tel.: +43 512 504 23252; fax: +43 512 504 25608.
E-mail address: andreas.ritsch@i-med.ac.at (A. Ritsch).
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the major pathway for delivering cholesteryl esters to the liver
and to steroidogenic tissues. A series of in vitro and in vivo stud-
ies clearly demonstrated SR-BI to function as a physiologically and
pathophysiologically relevant receptor for HDL metabolism [6]. In
apolipoprotein E-deficient mice, loss of SR-BI led to the early onset
of occlusive atherosclerotic coronary artery disease, spontaneous
myocardial infarction, severe cardiac dysfunction, and premature
death [7–9]. On the other hand, gene transfer and hepatic overex-
pression of SR-BI reduced atherosclerosis in the cholesterol-fed LDL
receptor-deficient mouse [10]. However, data from these studies
are not fully applicable to the situation in humans for the following
reasons: first, the lipoprotein profile of rodents is different from
that of humans, with HDL being the predominant lipoprotein par-
ticle, which is probably due to the lack of cholesteryl ester transfer

protein (CETP) in the plasma of rodents. Secondly, mice and rats
are not prone to develop atherosclerosis. The lipoprotein profile of
rabbits is more similar to humans than to rodents, as CETP mass
and activity are present in rabbit plasma. Additionally, rabbits are a
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ell-established model for atherosclerosis. Recently, we  succeeded
n cloning rabbit SR-BI cDNA and characterized its tissue expres-
ion [11]. Rabbit SR-BI cDNA shared a high overall homology with
umans - higher than any of the so far identified homologues of
ther species. The high homology not only confirmed the isola-
ion of rabbit SR-BI, but also promised a similar function when
ompared to the human homologue [11]. We  therefore decided to
xtend our research to the rabbit system. Overexpression of SR-BI in
abbits using an adenoviral vector led to decreased levels of apoA-I
nd increased levels of LDL cholesterol, a lipoprotein pattern which
s believed to enhance the development of atherosclerosis [12]. In
his work we extended these studies in the rabbit system by inves-
igating the impact of hepatic inhibition of SR-BI using the RNA
nterference technique [13–15].

. Methods

.1. Vector construction

Using computational analysis we designed 3 small hairpin
NA sequences targeting the rabbit SR-BI (GenBank AY283277)
t the positions 214–232, 717–735, and 1559–1577, respectively
Suppl. Table 1). Corresponding DNA sequences were cloned into

 pENTR plasmid (Invitrogen, Carlsbad, CA, USA) under control of
he H1 polymerase II promoter. All plasmids were prepared using
ndotoxin-free Giga-preps (Macherey-Nagel, Dueren, Germany)
nd only plasmids with a ratio of absorbance at 260 nm/280 nm
igher than 1.8 were used for transfection.

The non-viral vector was prepared using galactosylated poly-l-
ysine, as previously described [16]. Briefly, 2 mg  of poly-l-lysine
ydrobromide (Sigma–Aldrich, St. Louis, MO,  USA) were dissolved

n 1 mL  10 mM sodium-phosphate (pH 7.2), and subsequently
ixed with 85 �g of �-d-galactopyranosyl phenylisothiocyanate

Sigma St. Louis, MO,  USA) in 1 mL  acetone/dimethyl sulfoxide
Sigma St. Louis, MO,  USA). The tube was shielded from light by
luminum foil, the solution was gently mixed over night at room
emperature and dialyzed six times against 3 L of 5 mM NaCl using

 10 kDa cut off Slide-A-Lyzer dialysis cassette (Pierce, Rockford,
L, USA).

Three hundred �g of plasmid were dissolved in 700 mM  NaCl,
nd vortexed at medium speed (1400 rpm). 95 �g of the galac-
osylated poly-l-lysine (in 150 �L of 700 mM NaCl) were added
rop-wise and mixed by gently vortexing. Slow addition of the
olycation resulted in the formation of a turbid solution which was
ubsequently dissolved by stepwise addition of nine 3 �L aliquots
f 5 M NaCl. The shape of the galactosylated polylysine complexes
as monitored by circular dichroism and electron microscopy

Philips EM 400, Fei Company Electron Optics, Eindhoven,
etherlands). Resulting particles had a diameter of 60–100 nm.

.2. In vitro studies

The human hepatocellular carcinoma cell line (HuH-7, ECACC,
PA, UK) was cultivated in Dulbecco’s Modified Eagle medium

Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal calf
erum, 1% glutamine and 1% penicillin/streptomycin (Biochrom AG,
erlin, Germany). To test our small hairpin RNA constructs, HuH-

 cells were stably transfected with the previously cloned pCR2.1
lasmid (Invitrogen, Carlsbad, CA, USA) coding for rabbit SR-BI by
he use of a fish-transposon [17]. For in vitro studies, cells were
ransferred into 6-well plates. At a confluence of approximately

5%, they were incubated with 0, 4, 8, and 10 �g galactosylated
oly-l-lysine–DNA complexes per 6-well diluted in 2 mL  medium,
espectively. The amount of rabbit SR-BI cDNA in transfected cells
as measured by quantitative PCR.
is 222 (2012) 360– 366 361

2.3. In vivo studies

Male New Zealand White (NZW) rabbits (Charles River
Laboratories, Kisslegg, Germany) were individually housed in
80 cm × 60 cm × 60 cm rabbit cages (Scanbur, Denmark) with ad
libitum access to water in temperature- and humidity-controlled
rooms with a 12 h light/dark cycle at the Central Laboratory Animal
Facilities in Innsbruck under protocols approved by the Austrian
Animal Care and Use Committee. At study termination, they were
sacrificed by a threefold overdose of Ketasol/Xylasol (Graeub, Bern,
Switzerland). Research was  conducted in conformity with the Pub-
lic Health Service Policy on Human Care and Use of Laboratory
Animals.

We first performed a short-term study of 14 days. Animals were
acclimated to vivarium conditions one week prior to experimen-
tation, matched for body weight, and divided into 2 groups. Three
male NZW rabbits on chow diet were intravenously injected with
30 �g/kg galactosylated poly-l-lysine pENTR214 complexes spe-
cific for rabbit SR-BI at days 1, 3, 7, and 13 of the study, while three
control animals received 30 �g/kg of scrambled control vector. The
animals were fasted for 5 h before collecting blood samples, which
were taken twice a week. After 14 days, animals were fasted for 5 h,
sacrificed, and tissue samples were snap-frozen.

In order to study the impact of our gene-therapeutical inter-
vention on the development of atherosclerosis in rabbits on a
cholesterol-rich diet, two  independent long-term experiments
were performed. After a lead-in phase of intravenous injections
at days 1, 3, and 7, ten rabbits were weekly injected with galac-
tosylated poly-l-lysine pENTR214 (30 �g/kg body weight), and
9 animals received a scrambled control once a week (30 �g/kg
body weight). One week after the first Gal-PLL treatment all 19
male NZW rabbits were fed a Western type diet (Ssniff, Soest,
Germany) supplemented with 4.9% coco-fat and 2% cholesterol.
Food consumption was restricted to 100 g/day/animal. At 8 weeks
of treatment, animals were fasted for 5 h, and killed by a three-
fold overdose of Ketasol/Xylasol (Graeub, Bern, Switzerland). Blood
samples were immediately taken by cardiac puncture, plasma was
isolated by centrifugation at 2500 rpm, and tissue samples were
snap-frozen. The aortas were explanted, fixed with 4% formalde-
hyde solution (SAV, Flintsbach, Germany), and stained with Sudan
IV (C. Roth, Karlsruhe, Germany). Lesion areas were quantified
using Image-Pro Plus Software Version 5.1.2 (MediaCybernetics,
MD)  [18,19].

2.4. RNA isolation, reverse transcription and quantitative
real-time PCR

Total RNA from SR-BI expressing HuH-7 cells and liver
specimens was  prepared using High Pure Isolation Kit (Roche,
Mannheim, Germany) and reversely transcribed with Omniscript-
RT Kit (Qiagen, Hilden, Germany). Primers and TaqMan probes
for SR-BI, ATP-binding cassette A1, low-density lipoprotein recep-
tor, and cholesterol 7�-hydroxylase were designed using Primer
Express software (Applied Biosystems, Foster City, CA, USA). Mod-
ulation of the gene expression was investigated by quantitative
real-time Taqman or SybrGreen PCR (Eurogentec, San Diego, CA,
USA) using the CFX96 PCR System (BioRad, Hercules, CA, USA)
according to the user’s manual. Average cycle (Ct) was calculated
by CFX96 Manager. House keeping gene �-tubulin 1b was used as
reference gene (Suppl. Table 1).

2.5. Western blotting
Western blotting was  performed as previously described [12].
Briefly, 10 �g of membrane protein extracts were analyzed using
8% sodium dodecyl sulfate polyacrylamide gel electrophoresis, and
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lotted on nitrocellulose transfer membrane (Whatman, Dassel,
ermany). For detection of SR-BI, we used a rabbit anti-rabbit
ntibody developed in our laboratory at a final concentration of
.8 �g/mL [11]. The secondary antibody, a polyclonal horse radish
eroxidase conjugated goat anti-rabbit antibody (Dako, Glostrup,
enmark), was diluted to a final concentration of 0.1 �g/mL. The
hemoluminescent reaction was performed using Super Signal

est Dura Reagent (Pierce, Rockford, IL, USA), and blots were visu-
lized by Fluor-S-Imager using Quantity One V4.1 software (BioRad,
ercules, CA, USA).

.6. Lipid parameters

Total cholesterol and triglycerides were measured in whole
lasma of each animal employing Roche commercial kits (Roche,
annheim, Germany). Free cholesterol was determined using

holesterol/Cholesteryl Ester Quantitation Kit II according to the
sers manual (BioVision, CA). Additionally, pooled plasma of each
roup was subjected to a fast protein liquid chromatography
FPLC) fractionation analysis with two tandem Superose 6 columns
GE Healthcare, Uppsala, Sweden) as described previously [12].
o enable FPLC analysis of hyperlipidemic samples chylomicrons
ad to be removed by centrifugation (90 min, 3000 × g, 4 ◦C) and
n aliquot adjusted to the initial plasma volume was  applied to
he Superose 6 columns. Additionally, lipoprotein fractions from
yperlipidemic plasma samples were isolated by stepwise ultra-
entrifugation. Accordingly, two 3.5 ml  aliquots of each plasma
ample were filled to polycarbonate thick-wall ultracentrifuga-
ion tubes (Beckman) and submitted to ultracentrifugation (30 min,
0.000 rpm, 15 ◦C, Rotor Beckman 50.4 Ti). 0.5 ml  of the supernatant
ere collected and combined to yield 1 ml  chylomicron/VLDL solu-

ion. The density of the remaining plasma solution was adjusted
ith NaBr to 1.063 g/ml. Two aliquots of 3.5 ml  of this solution
ere again submitted to ultracentrifugation (16 h, 50.000 rpm,

5 ◦C, Rotor Beckman 50.4 Ti). 0.5 ml  of the supernatant were
ollected and combined to yield 1 ml  LDL solution. To prepare
DL the density of the lower fractions (total volume of 3 ml)  was
djusted to 1.21 using NaBr. This solution was equally distributed
o two thick-walled tubes and submitted to ultracentrifugation
same conditions as above). 0.5 ml  of the supernatant were col-
ected and combined to yield 1 ml  HDL solution. Lipoprotein
ractions were dialyzed three times against 1 l of PBS using Mini
ialysis Kit 8 kDa (GE Healthcare) and stored at 4 ◦C. For deter-
ination of particle size aliquots of the HDL solution adjusted

o the initial plasma volume were analyzed by FPLC. Apolipopro-
ein measurements were performed by an immunonephelometric
ssay [20,21].  Plasma activity of cholesterol ester transfer protein
as measured with a commercial CETP Activity Assay Kit (Bio-
ision, San Francisco, CA, USA) according to the manufacturer’s
anual and quantified using a fluorescent reader (Tecan Infinite
200, Maennedorf, Switzerland). Cholesteryl ester transfer was

erformed as described [12,22]. Serum alanine-aminotransferase,
erum aspartate-aminotransferase, �-glutamyl transferase, alka-
ine phosphatase and C-reactive protein were measured in a
oche MODULAR Hitachi P800/Elecsys E170 apparatus (Roche,
annheim, Germany).

.7. Statistics

Values are presented as mean ± SD. Results were analyzed with
npaired Student’s t-tests whenever the data were normally dis-

ributed. Shapiro–Wilk W testing was performed to check the
ormality of the data. In the event that a group failed to pass the nor-
ality test, the Wilcoxon–Mann–Whitney-U  test was performed.

 difference was considered statistically significant when P was
sis 222 (2012) 360– 366

<0.05. Statistical analyses were performed using SPSS version 15.0
(Chicago, IL, USA).

3. Results

In vitro and in vivo inhibition of SR-BI was  accomplished
by RNA interference. As vectors for our experiments we  chose
non-viral galactosylated poly-l-lysine DNA complexes, as they
constitute particles of discrete size and shape suitable for receptor-
mediated endocytosis. These particles are selectively targeted to
hepatocytes via the asialoglycoprotein receptor, thus allowing an
organ-selective, receptor-mediated gene transfer. The complexes
were constructed as previously described by Perales et al. [16], and
their structure was  analyzed by circular dichroism and by electron
microscopy (Suppl. Fig. 1).

3.1. In vitro studies

We tested 3 galactosylated poly-l-lysine DNA complexes in vitro
in the human hepatocyte cell line HuH-7 stably transfected with
rabbit SR-BI (HuH-7/rSR-BI). At a confluence of 75%, HuH-7/rSR-
BI cells were exposed to increasing amounts of pENTR214-,
pENTR717-, and pENTR1559-complexes, respectively. While small
hairpin RNA against the SR-BI nucleotides 717–735 and 1559–1577
did not show any significant effect on gene expression, respectively,
hepatocytes transfected with plasmid pENTR214 showed a sub-
stantial decrease of the rabbit SR-BI protein expression after an
incubation period of two  days (Suppl. Fig. 2). Therefore, all fur-
ther experiments were performed using the pENTR214 plasmid
targeting SR-BI nucleotide positions 214–232.

3.2. In vivo studies

After these preliminary in vitro studies, we investigated the
short-term effects of this gene-therapeutical intervention in vivo.
As animal model we  chose rabbits, as they display a human-like
lipoprotein profile, express CETP, and develop atherosclerosis upon
a cholesterol-rich diet. After 14 days of treatment, we  found a
marked downregulation of hepatic SR-BI mRNA by 78.0 ± 0.9%
(p = 0.005) (Fig. 1A), and a corresponding decrease of hepatic SR-
BI protein content (Fig. 2). In other organs including spleen, lung
and adrenals SR-BI expression was  not inhibited upon siRNA treat-
ment, with an even increased SR-BI expression in spleen (Suppl.
Fig. 3A). The modulation of hepatic SR-BI expression was associated
with a shift in the lipoprotein profile. Rabbits treated with SR-BI-
specific small hairpin RNA had significantly lower HDL-cholesterol,
and significantly higher VLDL-cholesterol levels when compared to
scrambled siRNA treated controls (Fig. 1B). There was no signifi-
cant change in the activity of CETP per se or in the total plasma
triglyceride levels after two weeks of treatment (Table 1). Hepatic
expression of the LDL receptor, ATP-binding cassette transporter
A1, and cholesterol 7�-hydroxylase was not altered in the two
trial arms (data not shown). However, in siRNA treated animals we
found a tendency for increased initial CE transfer and a significant
37% increase in total cholesteryl ester transfer (Fig. 1C).

In order to study the effect of hepatic SR-BI inhibition on the
development of atherosclerosis, we put the rabbits on a West-
ern type diet supplemented with 2% cholesterol for 8 weeks. Two
independent long-term experiments were performed. The animals
were injected either with galactosylated poly-l-lysine-pENTR214
complexes (30 �g/kg body weight; n = 10), or its scrambled control
construct (n = 9). To check for potential toxic effects of repeated

treatment with poly-l complexes, we measured serum lev-
els of aspartate-aminotransferase (AST), alanine-aminotransferase
(ALT), �-glutamyl transferase, alkaline phosphatase and C-reactive
protein. The observed moderately increased serum levels of AST
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Table 1
Biochemical characteristics of rabbits after 2 weeks of RNA interference treatment.

Controls (n = 3) siRNA (n = 3) p-value

Plasma cholesterol (mg/dL) 80.0 ± 10.0 58.9 ± 12.7 0.087
Plasma triglycerides (mg/dL) 132.0 ± 112.6 130.6 ± 64 0.99
ApoA-I (mg/dL) 102.0 ± 10.4 93.0 ± 5.5 0.23
ApoB  (mg/dL) 76.0 ± 5.5 93.0 ± 39.1 0.49
CETP-activity (pmol/�L/h) 17.5 ± 4.5 17.7 ± 0.9 0.86
Lipoprotein lipase (nmol/ml/mmin) 90 ± 5 111 ± 14 0.073

Data presented in % are normalized to the respective controls. siRNA = small interfering RNA.

Fig. 1. Down-regulation of hepatic SR-BI expression on RNA level (A) was  associated
with a shift in the lipoprotein profile (B) and increased total CE-transfer (C) after
two  weeks of treatment with SR-BI specific galactosylated poly-l-lysine pENTR214
complexes (grey circles), when compared to the scrambled controls (black circles).
P
i

a
h
W
v
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i
i

Fig. 2. Down-regulation of hepatic SR-BI expression on protein level after two  weeks
of  treatment with SR-BI specific galactosylated poly-l-lysine pENTR214 complexes

ment (Fig. 3A). As observed in the short term experiment, there

T
B

s

lasma was  pooled from three animals for chromatography analysis. siRNA = small
nterfering RNA.

nd ALT in both groups are in line with previous studies by us, where
igh cholesterol/high fat diet had the same effect in New Zealand
hite Rabbits [18]. However, all other parameters were not ele-

ated upon treatment suggesting that that rabbits treated with

LL-Gal complexes did not develop severe cholestasis or systemic
nflammation (Table 2). Additionally, we observed a steady increase
n body weight in both groups of animals (Suppl. Fig. 4A). We

able 2
iochemical characteristics of rabbits after 8 weeks of RNA interference treatment.

Controls (n = 5) 

Plasma cholesterol (mg/dL) 4800 ± 2074 

Plasma triglycerides (mg/dL) 560 ± 625 

Free  cholesterol (mg/dL) 2638 ± 1115 

Alanine-aminotransferase (U/L) 68.8 ± 42.0 

Aspartate-aminotransferase (U/L) 57.2 ± 14.8 

�-glutamyl transferase (U/L) 8.4 ± 2.0
Alkaline phosphatase (U/L) 21.2 ± 15.0 

C-reactive protein (mg/dL) N.D. 

Initial  cholesteryl ester transfer (%) 77.2 ± 9.6 

Total  cholesteryl ester transfer (%) 72.5 ± 25.1 

CETP-activity (pmol/�L/h) 76.0 ± 18.5 

iRNA = small interfering RNA; N.D. = non detectable.
(siRNA), when compared to the scrambled controls (Control). A representative blot
(A) and quantification (B) of 3 independent experiments are shown. Positions of
molecular weight marker bands are indicated.

monitored total cholesterol levels over time during the experi-
was  again a shift in the lipoprotein profile from HDL-cholesterol to
VLDL-cholesterol after two weeks of treatment (data not shown).
Lower HDL-cholesterol levels were associated with decreased

siRNA (n = 5) p-value

4689 ± 1687 0.93
212 ± 109 0.35
2287 ± 685 0.28
92.2 ± 70.8 0.54
66.4 ± 26.1 0.56
11.4 ± 3.0 0.10
16.2 ± 11.0 0.58
N.D.
80.2 ± 5.1 0.56
77.8 ± 18.7 0.72
63.7 ± 6.4 0.20
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Fig. 3. Rabbits on cholesterol-rich diet were treated with SR-BI specific small hairpin
RNA (grey circles) and respective scrambled controls (black circles) for 8 weeks.
Total cholesterol levels were analyzed weekly (A). The insert shows the same curves
in  linear scale. Cholesterol measurements of lipoproteins fractions isolated from
hyperlipidemic plasma samples by stepwise ultracentrifugation are shown in (B).
Down-regulation of hepatic SR-BI expression on RNA level was  shown by real-time
PCR (C). Two representative aortas with Sudan IV stained lipid depositions in the
intima (D), and the relative areas of atherosclerotic plaques in whole thoracic aortas
a
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that in liver-selective SR-BI KO mice, CETP expression reduces
plasma 3H-cholesterol levels after injection of 3H-cholesterol-
nd  in corresponding aortic arches are presented (E). siRNA = small interfering RNA.

poA-I levels (83% of control; p = 0.057) in the treatment group.
owever, HDL particle size was not altered upon siRNA treatment

or two weeks (Suppl. Fig. 4B).  These changes resulted in reduced
otal cholesterol levels. Animals treated with SR-BI-specific small
airpin RNA had total cholesterol levels of 38.4 ± 4.7 mg/dL, while
ontrols displayed cholesterol levels of 51.2 ± 6.6 mg/dL (p = 0.014).
his difference disappeared at the end of the experiment, when
he total cholesterol levels rose to a plateau of nearly 5000 mg/dL
n both trial arms (Fig. 3A; Table 2). No differences in levels of
ipoprotein fractions isolated by stepwise ultracentrifugation were
etected at this stage of the experiment (Fig. 3B). This was  con-
rmed by FPLC analysis of chylomicron depleted plasma samples

Suppl Fig. 4C). The same was true for levels of free cholesterol
s well as for initial and total CE transfer (Table 2). Biochemical
sis 222 (2012) 360– 366

characteristics of the animals at the end of the experiment are given
in Table 2.

SiRNA mediated inhibition of hepatic SR-BI on RNA level was
still effective at that time of treatment (Fig. 3C). Most impor-
tantly, animals treated with SR-BI specific small hairpin RNA
displayed a significant reduction in the relative atherosclerotic
lesion area within both thoracic aortas and corresponding aortic
arches, respectively (Fig. 3D and E). Individual results from two
consecutive experiments are shown in Suppl. Fig. 5

4. Discussion

Hepatic inhibition of SR-BI expression did not increase HDL-
cholesterol levels in our animal model of hypercholesterolemic
rabbits, but reduced atherosclerosis. The association of low HDL-
cholesterol levels with attenuated atherosclerosis is paradoxical in
light of human epidemiological data.

After 14 days of treatment with SR-Bi specific hairpin RNA,
we found a marked downregulation of hepatic SR-BI mRNA and
a corresponding decrease of hepatic SR-BI protein content. SR-BI
expression was not inhibited in lung and adrenals reflecting that the
major part of PLL-Gal complexes indeed was taken up in the liver.
Surprisingly, we  found an increased SR-BI expression in spleen
extracts, which may  be due to increased SR-BI expression in resid-
ing macrophages. Macrophage SR-BI has been shown to bind HDL
and other lipoproteins, such as native LDL, acetylated LDL, and oxi-
dized LDL [23], enabling bi-directional flux of cholesterol. In murine
RAW macrophages and in differentiated human macrophages, SR-
BI was shown to be downregulated by incubation with oxidized LDL
particles [24]. Since our shRNA vectors were designed to selectively
target liver cells, and since in the spleen SR-BI is mainly expressed
in monocytes/macrophages, we  speculate that the observed upreg-
ulation of SR-BI in spleen might be due to decreased loading of
macrophages with apoB-containing lipoproteins. Increased SR-BI
in macrophages might have enhanced HDL-mediated cholesterol
efflux, thereby inhibiting excessive cholesterol accumulation in the
vasculature. In line with this hypothesis, Van Eck et al. have shown
that the presence of SR-BI in bone marrow-derived cells in LDLr
KO mice decreased lesion development after 9 and 12 weeks of
Western-type diet feeding [25].

Our results are in contrast to the findings in the SR-BI KO mice
that develop a markedly accelerated atherosclerosis [7–9]. This dif-
ference in species is probably due to the lack of CETP in mice.
Several studies in transgenic mice were focused on the influence
of CETP and SR-BI expression on reverse cholesterol transport and
the development of atherosclerosis. Previously, Tanigawa et al.
showed that CETP expression in SR-BI KO mice restores proper RCT
mechanism [26]. In addition, Harder et al. observed a decrease in
atherosclerotic lesion development in CETP transgenic SR-BI KO
mice, suggesting a direct link between RCT and atherogenesis in
these mice [27]. In contrast, Hildebrand et al. found no protec-
tive effect of CETP in SR-BI KO mice, despite normalization of the
lipoprotein profile and enhanced flux of cholesterol from HDL to
VLDL particles. The authors concluded that in contrast to the work
by Harder et al. where mice expressed CETP in the liver only, ubiqui-
tous expression of CETP including organs such as liver, spleen, small
intestine, kidney, adipose tissue, and macrophages may  have dif-
ferentially affected atherosclerosis development [28]. In studies of
Bouhassani et al, cross-breeding of hypomorphic and whole-body
SR-BI knockout mice with CETP transgenic animals led to a reduc-
tion in atherosclerosis development. The same authors showed
labeled macrophages, indicating enhanced plasma clearance via
CETP [29]. However, in contrast to the studies by Rader’s
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aboratory, macrophage-to-feces RCT was not improved. Different
issue distribution as well as level of transgene expression may  at
east partially be responsible for these differences.

Rabbits do express CETP, and thus might be able to bypass the
nability of the liver to take up HDL-cholesterol via SR-BI, when
his HDL receptor is knocked down. As in normolipidemic healthy
umans [30], the CETP pathway seems to be critical for hepatic
learance of HDL-derived cholesteryl esters. Indeed, in our rab-
its treated with SR-BI-specific small hairpin RNA we found an

ncreased total transfer of cholesteryl esters. As total transfer of CE
s mainly determined by the presence of triglyceride-rich acceptor
ipoproteins, this is in good agreement with the found increased
LDL-cholesterol level and unchanged CETP-activity – the latter
eflecting CETP concentration in plasma. One explanation might be
hat in our specific experimental design this alternative transport
oute of HDL-derived cholesterol via apoB-containing lipoproteins
o the liver could be more efficient than the classic route via SR-BI
esulting in a decrease of total plasma cholesterol levels and ulti-
ately to the inhibition of atherosclerosis development. Further

xperiments including HDL-turnover studies and measurement of
holesterol output would be required to prove this hypothesis.

However, our results are in line with the findings by Schwartz
t al. who demonstrated that in humans the vast majority of HDL-
holesteryl esters that are secreted into bile are transported to the
iver by apoB-containing lipoproteins [30]. Additionally, patients
arrying a heterozygous loss of function SR-BI mutation showed
ncreased HDL plasma levels and reduced capacity for efflux of
holesterol from macrophages [31]. These patients had no signifi-
ant increase in atherosclerosis. This is not in line with data from
xperiments in SR-BI knock-out mice, where increased levels of
DL were accompanied by increased development of atheroscle-

osis, which itself can be explained by the absence of CETP in murine
lasma. Accordingly, as mentioned above, cross-breeding of SR-BI
nockout mice with CETP transgenic animals led to a reduction in
therosclerosis development. Another explanation might be a low
tatistical power of the human study given the small number of car-
iers and their relatively young age [27]. Additionally, the possible
enefit of increased HDL levels in P297S carriers may  be reversed
y the concomitant decrease in cholesterol efflux capacity, as well
s by decreased platelet and adrenal function in these patients. This
ight also represent an explanation for the different results found

n our study in NZW rabbits, as we used a liver selective system
f SR-BI inhibition, which most likely did not affect parameters of
latelet and adrenal function. The liver-specific type of SR-BI inhi-
ition may  also be responsible for the fact that HDL-cholesterol

evels were not increased in our long-term experiments.
After 2 weeks of treatment hepatic SR-BI mRNA levels were

educed by 80% accompanied by reduced SR-BI protein, lower HDL-
holesterol, and higher VLDL-cholesterol levels. Considering the
ime-course of total cholesterol levels in our long-term experi-

ents, this situation seems to change in the presence of excessive
lasma cholesterol levels. Indeed, between week 5 and 8 on
holesterol-rich diet, the rabbits reached a hypercholesterolemic
lateau without any significant difference in total cholesterol or
DL-cholesterol levels despite the ongoing intravenous injection
f the galactosylated poly-l-lysine pENTR214 complexes. Thus, our
ene-therapeutical intervention cannot overcome overt hyperc-
olesterolemia.

Our study does have some limitations, and thus caution is
dvised when trying to directly extrapolate the presented results
o human biology. Firstly, due to the method used, SR-BI inhibi-
ion by siRNA was only partial and organ-specific in our animal
odel. Secondly, New Zealand White rabbits naturally express
ETP, but develop atherosclerosis only when fed a Western type
iet. Feeding rabbits with a cholesterol-rich diet is associated
ith hypercholesterolemia, and unnaturally elevated levels of
is 222 (2012) 360– 366 365

VLDL and chylomicron-like lipoproteins [32]. In contrast, humans
at high cardiovascular risk present with pathologically elevated
LDL-cholesterol levels. As a consequence, Western type diet fed rab-
bits represent an atherosclerosis model of lipid-deposition. They
develop lipid-rich, collagen- and fibrinogen-poor atherosclerotic
plaques in the aortic arch and thoracic aorta, rather than het-
erogeneous plaques as do humans [32,33].  Thirdly, atherogenesis
in humans is driven by chronic oxidative, hemodynamic, or bio-
chemical stimuli (from smoking, hypertension, dyslipidemia) and
inflammatory factors, leading to the formation of a fibrous cap over
the developing atheromatous plaque, triggering atherothrombosis
of the coronary artery and eventually myocardial infarction upon
rupture of the cap [34]. It may  readily be envisioned that the corre-
sponding scenario in NZW rabbits is displaying several differences
to the one observed in humans.

In summary, the present studies show that the in vivo injection
of galactosylated poly-l-lysine-pENTR214 complexes is safe and
effective to inhibit the hepatic expression of SR-BI. Furthermore,
treatment of cholesterol fed rabbits with inhibitory complexes was
associated with less atherosclerotic plaques in the aortas. In addi-
tion to our data on SR-BI expression in rabbits using an adenoviral
vector [12], this work is again supporting the view that the role
of SR-BI in lipoprotein metabolism and atherogenesis in rabbits is
different from the one seen in rodents.
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