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Abstract 

The length of a longest cycle in a threshold graph is obtained in terms of a largest matching in 
a specially structured bipartite graph. It can be computed in linear time. As a corollary, 
Hamiltonian threshold graphs are characterized. This characterization yields Golumbic’s 
characterization and sharpens Minty’s characterization. It is also shown that a threshold graph 

has cycles of length 3, . . , 1 where I is the length of a longest cycle. 

1. Introduction 

We consider finite loopless undirected graphs with no multiple edges. Terms not 
defined here can be found in [2,8]. For a given graph G, we consider the largest length 
(number of vertices or edges) of a cycle in G. If the length of a longest cycle equals the 
number of vertices, the graph is called Hamiltonian. It is well known that finding the 
length of a longest cycle and recognizing a Hamiltonian graph are NP-complete 
problems [6]. Minty, as reported in ChvLtal and Hammer [4], Golumbic [8, 
Ex. 10.61, and Harary and Peled [lo] have characterized Hamiltonian threshold 
graphs. A threshold graph is a graph having a hyperplane separating the characteristic 
vectors of the stable sets of vertices from the characteristic vectors of the other sets. 
These graphs have been extensively studied, and possess many beautiful properties 
(see [1,4,9,12,14-161) as well as many extensions. 

We show below that the length of a longest cycle of a threshold graph G is equal to 
the size of a largest matching in a specially structured bipartite graph obtained 
from G. Moreover, because of the special structure, namely nested neighborhoods, this 
matching can be obtained in linear time. A longest cycle of G can also be constructed 
from the matching in linear time. The characterization also leads to a characterization 

* Corresponding author 

0012-365X/94/.%07.00 0 1994-Elsevier Science B.V. All rights reserved 

SSDI 0012-365X(93)E0077-H 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81150788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


170 N.V.R. Mahadev. U.N. Peledj Discrete Mathematics 135 (1994) 169-176 

of Hamiltonian threshold graphs. We use this characterization to prove Golumbic’s 

characterization and sharpen Minty’s. 

Section 2 defines threshold graphs and gives their known structure. This structure is 

used to obtain the length of a longest cycle. Section 3 characterizes Hamiltonian 

threshold graphs. 

2. Longest cycles 

Definition 2.1. The LCL (largest cycle length) of a graph G is the largest length of 

a simple cycle of G. We denote the LCL by 1, and call a cycle of length 1 an l-cycle. 

Definition 2.2 ([4]). A graph G = (V, E) is called a threshold graph when there exist 

nonnegative reals w,, t’ E V and t such that 

c (W(u): u E S> < t if and only if S is a stable set S z P’. (I) 

To paraphrase this definition, G is a threshold graph whenever one can assign 

vertex weights such that a set of vertices is stable if and only if its total weight does not 

exceed a certain threshold (t). Yet another interpretation is that G is a threshold graph 

if and only if some hyperplane strictly separates the characteristic vectors of the stable 

sets of G from the characteristic vectors of the nonstable sets. In other words, the 

Boolean function that selects the stable sets of vertices is a threshold function [13]. 

The following definition and notation are used below to describe the structure of 

threshold graphs: 

Definition 2.3 ([S]). Let G = (V, E) be a graph whose distinct positive vertex- 

degrees are 6, < ..+ < 6,, and let 6, = 0 (even if no vertex of degree 0 exists). Let 

Di={~EV:deg(u)=6~}fori=O,...,m.ThesequenceD,,...,D,iscalledthedegree 

partition of G. 

For a graph G = (V, E), the open neighborhood of a vertex u E V is N(u) = {u E K 

MU E E}, and the closed neighborhood is N[v] = N(u) u {u>. For U, W s V, we define 

N,(U) = U{WnN( v : v E U} and N(U) = Nv( U). Among the many characteriza- ) 
tions of threshold graphs, we shall use the following ones, which describe their 

structure and their degree sequence. 

Theorem 2.4 ([4,&S, 9,11,12]). Let G be a graph with &,, . . . , 6, and DO, . . . , D, as in 
Dejinition 2.3. Then the following are equivalent: 

(1) G is a threshold graph; 
(2) G does not have an induced subgraph isomorphic to a 4-cycle Cq, its complement 

2K2, or a path P4 on 4 vertices; 
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(3) for each v E Dk 

j=l 
+ 1, . . ..m. (3) 

in other words, if i + j > m, then all possible edges between Di and Dj are present; if 

i + j < m, non of these edges is presents. 

It follows from Eqs. (2) and (3) that for a threshold graph G = (V, E), the set V is 

partitioned into a stable set 

S = DOu ..-u DL,,,, (4) 

and a clique 

K = DL,,z,+l u ...LJ D,. (9 

A graph whose vertex set is partitioned into a stable set S and a clique K (not 

necessarily of the form (4) and (5) above) is called a split graph and denoted G(S, K). 

Lemma 2.5. Every split graph G(S, K) possessing cycles has an l-cycle containing 
all of K. 

Proof. Let C be an l-cycle. If C has no vertices of S, then C must contain K, because 

K is a clique and C is a longest cycle. If C has a vertex s E S, let a, b be the vertices 

adjacent to s in C. Since S is stable, a, b E K. If C excludes some vertices of K, drop 

s and add all of them between a and b, to obtain a cycle at least as large as C - hence 

another l-cycle - containing all of K. 0 

In the following we always assume that G is a threshold graph with degree partition 

DO> . . . . D, as in Definition 2.3 and S, K as in Eqs. (4) and (5). 

Definition 2.6. A matching M of G from S into K is called special if either M = 0 or the 

following holds: 

l if m is odd, M misses some vertex x E D,; 
l if m is even, M matches some vertex y E D,,, with some vertex x E D,. 

Lemma 2.7. If M is a special matching of a threshold graph G, then G has a cycle of 

length II<) + IMJ, provided IK( + IM( is at least 3. 

Proof. The result is trivial if M = 0. So let 1 M 1 = k > 1. Let si , . . . , sk be the vertices 

of S that are saturated by M, listed in nondecreasing degrees, so that 

NO,) E ... E N(Q). If m is even, we may assume that sk = y. 
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The required cycle starts from s1 along the matching edge, proceeds to s2, then 
along the matching edge, . . . , then to sk. If m is odd, it proceeds from sk along the 
matching edge into K, visits the remaining vertices of K in any order ending at x, and 
returns to si. If m is even, then sk = y is adjacent to every vertex to K, so the cycle 
proceeds from y into K, visits the remaining vertices of K in any order ending with x, 
and returns to s1 (thus it does not use the matching edge yx if) K 1 > k and k # 1). q 

Lemma 2.8. If C is any cycle containing all of K, then there is a special matching of size 
IC( - lK(1, where ICI is the length ofC. 

Proof. If 1 CJ = IKI then M = 8 is the required matching. Now assume that 
(Cl > I K I. Orient the edges of C along the cycle. Let M be the set of edges of 
C oriented from S into K. Then M is a matching of size 1 C I - 1 K (. If M is already 
special, we are done, so assume it is not. To complete the proof, we shall obtain 
a special matching M* with I M* ) = I M 1. Since M is not special, M saturates D, if m is 
odd, and M has no edges from Dm,2 to D, if m is even. We now distinguish two cases. 

Case 1: All vertices of K are saturated by M. Then C must alternate between S and 
K. Further, m must be even (for otherwise the vertices of Dcm+ 1I,2 cannot be saturated 
by M), and M saturates some vertex y E Dm,2 (because the vertices of Dcm12)+ i can only 
be matched to vertices of Dmj2). Let x be any vertex of D,. Then there is a path P in 
C between y and x, whose edges are alternatingly in M and not in M, that begins and 
ends with edges of M. This P with the edge yx of G forms an alternating cycle A. 
Swapping matching and nonmatching edges along A, we obtain the desired special 
matching M*. 

Case 2: Some vertex of K is not saturated by M. Let k > m/2 be the largest index 
such that Dk contains an unsaturated vertex u. If m is odd then k > (m + 1)/2, since 
when the cycle leaves D,,. 1J,2 it enters Dj for some j > (m + 1)/2, causing a vertex of 
Dj to be unsaturated. We assert that for each j > k, M has an edge oriented from the 
set 

Ej = D m+z-jV .‘* 
uDLm,2J> 

into the set 

Fj= DjU...UD,. 

Observe that for any v E Dj_ 1, N(v) n S = Ej. To prove the assertion, consider the 
cut (Pj,Qj), where Pj = Dm+Z_jU *.. vDj_1andQj= V-Pj.SinceuEPjnKand 
C visits every vertex of K, C visits Pj. Therefore, C has an edge a6 oriented from some 
vertex a E Pj to some vertex b E Qj. Clearly b$ Qj - Fj since G has no edges between 
Pj and Qj - Fj, and hence ab must be an edge of M and a E Ej. This proves the 
assertion. 

We shall now show that there exists an even alternating path P from u to some 
vertex x E D,. Indeed, by the assertion, M has an edge aI bI with al E Ek+ 1, bI E Fk+ 1. 

If bI ED,, the desired path is ualbl. If not, let 6i E Dj, with k <j, < m. By the 
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assertion again, M has an edge a2 b2 with a, E Ej, + I and b2 E Fj, +, . If b2 E D,, the 
desired path is ua, b,a2 bZ. Otherwise we continue in the same way until the path 
P ends in D,. 

Now swap matching and nonmatching edges along P to obtain a matching M’ such 
that 1 M’I = 1 M 1 and M’ misses some vertex x E D,. If m is even, pick any vertex 
y E D,,, , add the edge yx to M’ and drop either the matching edge at y, if y is saturated 
by M’, or any other edge of M’ if it is not. The resulting matching is the required 
special matching M*. q 

Theorem 2.9. For a threshold graph G having cycles and with degree partition 
D ,,,...,D,,,, the LCL equals (KI+JMI, where K=DLm,21+1u~~~uDm and M is 

a largest special matching of G. 

Proof. Follows from Lemmas 2.5, 2.7,2.8. 0 

To find a largest special matching in a threshold graph, drop any one vertex x E D,, 

and for even m drop any one vertex y E Dm,2. Then find a largest matching in the 
remaining graph using only edges between S and K. If m is even, add to the matching 
the edge yx. Such a matching can be easily obtained by the following greedy 
algorithm: Arrange the vertices of S as sl, . . . , s, with nondecreasing degrees; for 
i running from 1 to r, if si has any unmatched neighbor fi, add the edge Siti to the 
matching and increase i. Given the (unsorted) degree sequence of G, this can be 
implemented in time 0( 1 VI). 

3. Hamiltonicity 

Theorem 3.1. A threshold graph with degree partition DO, . . . , D, is Hamiltonian if and 

only if it has a special matching of size ISI, where S = DO u ... u DL,,,,. 

Proof. This follows directly from Theorem 2.9. 0 

We shall now derive Golumbic’s necessary and sufficient conditions for a threshold 
graph to be Hamiltonian. 

Theorem 3.2 ([8]). A threshold graph G with degree partition DO, . . . , D, is Hamil- 

tonian if and only if 

(1) DO = 8; 

(2) Cg=llDjl < C!=1IDrn-j+ll k= l,...,L(m-l)/2J; 
(3) if m is euen, then CyL21 1 Dj ( < ~‘J’~21 1 D, -j + 1 I. 

Proof. By Theorem 3.1 and Hall’s theorem, G is Hamiltonian if and only if 
l for m odd, VU z S, INK_,(U)\ > IUJ, where x is any vertex of D,; 
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vertex of D,,,. 

Conditions 1,2,3 of the theorem are special cases of Hall’s conditions with 

U = Do u ... u Dkr k = 0,. . . , L(m - 1)/2 J, and in addition for m even with 

U = D, u ... v D,,,,* - y. On the other hand, these special cases imply the full Hall’s 

conditions by the nesting of neighborhoods (Eq. (2)). 0 

Chvital [3] has given a sufficient condition for a general graph to be Hamiltonian: 

Let di < ... 6 d, be the degrees of a graph G. Then G is Hamiltonian if 

dj~ j<F*d,_j>n-j. 
2 

(6) 

The necessity of (6) in the case of threshold graphs has been proved by Minty as 

reported in Chvatal and Hammer [4]. We sharpen this result as follows: 

Theorem 3.3. Let dl < ... d d, be the degrees of a threshold graph G. Then G is 
Hamiltonian if and only if there is no j with dj < j < n/2. 

Proof. Label the vertices as 1, . . . , n so that vertex j has degree dj* 
‘Only if’: Assume if possible that dj < j < n/2 and there exists a special matching of 

size ( SI. 

Case 1: j E S. If m is even and j = y, then N&) = K, hence 

(*) 
dj= IKl 2 ISI >j, 

where (*) follows from the existence of the special matching. Hence by the assumption 

dj < j, we have dj = j = ( K I = ) S 1 = n/2, contradicting j < n/2. Therefore m is odd, or 

m is even and j # y. Then we have 

djglNK({l , . . ..j})l = 1 + IN,-,({l, . . . . j>)l z 1 + j, 

where (*) follows from the nesting property (Eq. (2)), and (0) follows from the existence 

of the special matching. This contradicts the assumption dj < j. 
Case2: jEK.Thendjal{j+ l,..., n> 1 = n - j > n/2, contradicting the assump- 

tion dj < j < n/2. 
‘If’: This part follows from Chvatal’s general sufficiency condition (6), but the proof 

below does not use his result. Since no special matching of size I 5’) exists, Hall’s 

conditions are violated. Therefore, there exists a subset U s S (y .$ U in case m is even) 

such that 1 NKex(U)J < 1 U 1. Let j be the largest element of U. We may extend U to 

( 1, . . . , j > because this does not change NK _ .J U). Thus there exists an element j E S 

such that 

lNK-Aj)l = INK-,(~L . . ..j>)l < j (7) 
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and therefore dj d j. Choose the smallest j satisfying (7). We now have 

dj- 1 =lNK_xCj)l zINK-~(~- l)l(:j- 1 >dj- 1, 

where (*) follows from the minimality of j. Therefore dj = j. It remains to show that 
j < n/2. Ifj > n/2, then dj > n/2, and since ISI 3 j, JK( 2 dj, and ISI + JKI = n, we 
have j = dj = n/2 = 1 S 1 = 1 K I. Therefore NK(j) = K and j is adjacent to x. By the 
minimality of j, there exists a matching of { 1, . . . , j - l} into K - x, which can be 
augmented by the edge jx to form a special matching, a contradiction. Therefore 
j<n/2. 0 

Remark. The ‘only if’ part of the above theorem can just as easily be proved using the 
existence of a Hamiltonian cycle and not the special matching. 

We conclude with the following result. 

Theorem 3.4. Let G be a graph with LCL 1 and with no induced P4 or C4. Then G has 
cycles of length 3, . . . , 1. 

Proof. If C is any cycle of length k + 1 > 4, consider four consecutive vertices a, b, c, d 
along C. Then either ac or bd is an edge of G, or otherwise G has a P, or C,+. Therefore 
by removing b or c from C, we obtain a cycle of length k. 0 

In particular, Theorem 3.4 applies to threshold graphs by condition 2 of 
Theorem 2.4. Thus a Hamiltonian threshold graph G = (V, E) is also pancyclic (i.e., 
has cycles of all lengths 3, . . . , 1 VI). We note that the graphs without induced P4 or CA 
are studied by Golumbic [7] under the name ‘trivially prefect graphs’. 
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