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1. INT-R~DuCTION 

The exponential sums of type 

where m ranges over integers from an interval and f(m) is a smooth 
function, play a central role in analytic number theory. General methods of 
estimating such sums were established by H. Weyl [9], J. G. van der 
Corput [2], and I. M. Vinogradov [8]. Later, the exponential sums in 
several variables 

C...Ce(f(m,,...,m,)) 
mt m, 

(1.2) 

were introduced to enhance these methods as well as for their own 
importance. Our main interest in this paper is to estimate the exponential 
sums in which f is a monomial function, 

f(m,, . . . . mj)=xmO;f . ..my. (1.3) 

We regard such sums as a special case of bilinear forms 
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where X = (x,), Y = (y,) are finite sequences of real numbers with 

lx,1 G x lY,l G K (1.5) 

say, and cpI, I/I, are complex numbers. Our arguments are based on the 
following general inequality of [l]. 

PROPOSITION 1. We have 

IB&-, y/)1* < 20(1+ ~~~~&2-, Y).%)(Yy, w (1.6) 

with 

and 9$(Y, X) defined similarly. 

We begin by applying (1.6) directly. Next we introduce a number of 
innovations to combine with (1.6) giving deeper results. Finally, we 
illustrate how to use these results for estimating sums which occur in sieve 
problems for short intervals. 

Notation and conventions: 

[x]=max(kEZ;k<x}. 

(Jx(J=min{lx-k(;k~Z}. 

e(z) = exp(2ltiz). 

f + g means (f ( < cg with some positive constant c. 
f=O(g) meansf<<g. 

f * g means c1 f < g < c2 g with some positive, unspecified constants 
Cl, c2, 

The constants implied in the symbols 0 and 6 may depend, without 
mentioning, on those implied in the relevant relations f - g. 

JJcpIJ stands for the [,-norm of the sequence cp = (rp,), i.e., 

( > 
112 

lIdI = c l(Pr12 f 
r 

a indicates the end of a proof. 
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2. DIRECT RESULTS 

By Proposition 1 we immediately obtain 

COROLLARY 1. Suppose that the sequences X and g are A-spaced and 
B-spaced, respectively, i.e., Ix,, - x,~/ 2 A and 1 y,, -yJ21 > B for rI # r2 and 
$1 fs,, respectively. We then have 

Yet, this result is ineffective since the spacing problem is not resolved. 
We easily handle that in the following situation. 

THEOREM 1. Let f and g be smooth functions such that 

f-F, f”‘-FM- ‘, 

g- G, g’-GN-‘. 

with F, G, M, N positive, and let (P,,,, $, be complex numbers. We then have 

S,dM,N)= c c cP,Il/Af(m)dn)) 
??I..MTl-N 

< (FG)-“* (FG+ M)“’ (FG+ N)“’ jlql( li$ll. 

Proof: It follows from Corollary 1 and from the relations 

If(mI)-f(m2)l m WI--m21 M-IF, I&)-g(ndl m In, -nA N-‘G. 8 

Next we investigate the spacing of binomial points m”r@‘. 

LEMMA 1. Let @#O, A>O, M> 1 and N3 1. Let &‘(M, N;A) be the 
number of quadruples (m, 5, n, 6) such that 

with M d m, A < 2M and N < n, fi < 2N. We then have 

d(M, N; A) 4 MN log 2MN + AM2N2. 

Prooj We divide the solutions into classes each one having fixed values 
(m, Sr) = p and (n, E) = Y, say. In a given class the points (E/vz)’ are spaced 
by c(c~)u~M-~ and the points (E/n)B are spaced by c(p)?N-‘, where c(a) 
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and c(j) are positive constants. Therefore, by the Dirichlet box principle 
each class contains 

$ min{p(-2M2( 1 + dV2N2), V2N2(1 + dp-‘M2)) 

=min((~-2M2, v-*IV’} +d~u2v-2M2N2 

points. Summing over p and v we complete the proof. 1 

Proposition 1 and Lemma 1 yield an estimate for the exponential sum 
(1.2) in which f is a quadrinomial function. 

THEOREM 2. Let aj # 0, Mj > 1 for j = 1,2, 3,4, X> 0, and (P~,,,,~, 1C/m,m4 
be complex numbers with ~~~~~~~ d 1, l$m3mqJ d 1. We then have 

% ((XM,M~M~MM,)“* + M,M*(M3M4)“* 

+(M,M2)1’2M3M4+X-1’2M,M2M3M4) 

x log 2M, M, M3 M, . 

Proof We apply (1.6) for the two sequences X= (xmy1m”;ZM;“1M;“2) 
and CiY = (mz3m44M;“3M;“4) getting 

S,&((l +x)s,sJ1)1’2, 

where 

and S, is defined similarly. Hence S, is bounded by the number of 
solutions to 

so, by Lemma 1 we have 

S,<<M1M210g2M1M2+x-‘M;M;. 

Similarly 

These estimates and (1.6) yield the assertion of Theorem 2 provided x 2 1. 
If x < 1 the assertion is trivial. 1 
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Remarks. Theorem 2 is useful in the range 1 << x << M, Mz M, M,. The 
sharpest bound is attained for M, M,M, M, = x2. The reason that 
Theorem 2 is trivial for x -+ 1 is that the exponential factor does not 
oscillate and the reason that it is also trivial for x $ M, M, M, M, is that 
the exponential factor oscillates too rapidly. In the latter case the method 
fails because the number of terms is too small to control the oscillations. 
In order to overcome this problem, in the next section, we appeal to Weyl’s 
method which creates additional points of summation and at the same time 
it reduces the oscillatory behaviour of the exponential factor. There is a 
double price for this operation. First is that Weyl’s method shifts the argu- 
ment of the exponential function destroying its monomial character and 
consequently it causes serious problems about the spacing of the resulting 
points. Second is the use of Cauchy’s inequality which halves the final 
saving. 

3. Two COMBINATIONS WITH THE WEYL SHIFT 

Weyl’s method depends on the following inequality: 

LEMMA 2. Let L > K, Q > 0, and zk be complex numbers. We then have 

Proof It is similar to that of Lemma 5.10 in [6]. 1 

Our aim is to prove the following: 

THEOREM 3. Let a, a,, clz be real constants such that CX# 1 and 
au, a2 # 0. Let M, M, , M2, x > 1, and (P,,, , (c/,,,,,,,? be complex numbers with 
Jp,,,] < 1 and 1+,,,,,2/ < 1. We then have 

S,,(M WY M2)= 1 1 c vd+hm2e x ~~~?,~~~) 
m-Mm,-M, q-M2 ( 1 2. 

e {.IA/~M~/*(M, M*)~I~ + M7/10M, M, 

+ M(M, M,)3/4 + x-‘j4M ““‘M, M,}(log 2MMI M2)*. 

Proof. By Lemma 2 we get that 

L&l2 e Q-‘MM,Mz(MM,M, f IS( log 2Q) 
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for any Q < $A4 and some Q, < Q, where 

and 

t(m,q)=(m+q)a-(m-q)u-Q,M”-‘. 

By (1.6) we obtain 

S(Qo) e (~~‘xQ,,M-‘)“~. 

Here d is the number of quadruples (m,, m2, fi,, ki2) such that 

(3.1) 

thus by Lemma 1 we have 

~~~M,M210g2M,M2+(xQ,)-1MM:M:. (3.2) 

It remains to estimate W which stands for the number of quadruples 
(m, F%, q, 4) such that 

It(m, q) - t(& lj)[ < x-‘w. 

We shall consider this problem in the next section. From Proposition 2 we 
obtain 

W + Q&4( 1 + x-‘M*)(log 2M)4 

provided 3Q,<M 3’5 Combining (3.1), (3.2), and (3.3) we infer . 

S(Q,) 4 Qo(xM,M2)‘,‘2(1 + x-‘Q,‘MM,M,)“* 

x(1 +X-iM2)1’* (log2MM,M,)5’~. 

(3.3) 

Note that the worst value for Q. is QO = Q. Setting Q = fM315 we conclude 
the proof. 1 

Next we estimate the bilinear forms of type 

by alternated application of the Weyl shift. 
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THEOREM 4. Let CI,, a2 be real constants different from 0 and 1. Let 
MI, M2, x3 1, and e,,,, $m2 b e complex numbers with /q,,,,l< 1 and 
ltjm21 6 1. We then have 

S,,(M,, M,) e fX’18(M, M*)3’4 + Mf’5M2 + M, My/z0 

+x-“~(M,M,)*“20)(log2M,M1)~. 

Proof: By Lemma 2 we get that 

for any Q, d +M, and some Q: < Ql. Another application of Lemma 2 
gives 

where 

w-M2 a-Qf 

for any Q2 < fM2 and some Q’: < Q2. By Proposition 1 we obtain 

where g’I is the number of solutions to the inequality 

It(m~,q~)--t(~t,,(T,)I~(~Qz*)-~M~~Mz 

in integers m,, 61~ NM, and q,, @I N QT and g2 is defined similarly. 
Assuming that 3QI ,< M:j’ and 3Qz ,( Mi/’ we are entitled to use Proposi- 
tion 2 giving 

S%eQ:M, 1+ ( S) (log2MJ. 
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A similar inequality holds for Z&. From both results we get 

S4x"'Q:Q: (I+!!g)"2(l+~)1'2(log2MlM2y. 

Now observe that the worst values for Q:, Qf are Q: = Qi and Q: = Q2. 
Setting Q, = iMf/’ and Qz = fM iIs the resulting inequalities finally yield 

s,, < M, M,(-M, 3’10 + MY3’20) log 2M, M, 

+ x1’8(MIM2)3’4 (1 + x-‘M:M;‘5)1’8 

x (1 +X-‘MyMy (log 2M,M,)2 

4 (M, My20 + M;/SM, + X’/8M;/4M;/4 + x-‘/8Mf’/20M;‘/20) 

x (log 2M1 M2)2. B 

4. THE SPACING PROBLEM 

In this section we investigate the distribution of real numbers of type 

th 4) = (m + 4Y - (m - 4Y 

with a # 0,l where m, q range over integers with M < m < 2M, Q < q < 2Q, 
and 3Q CM. Note that 

It(m, q)) N Ma- ‘Q = T, 

say. Let g(M, Q, A) be the number of quadruples (m, rE, q, (I) such that 

It(m, q) - t(fi, 4)1 <AT. (4.1) 

Our aim is to prove the following: 

PROPOSITION 2. If Q < M213 we have 

g(M, Q, A) 6 (MQ + AM2Q2 + M-2Q”)(log 2M)*, (4.2) 

the constant implied in -@ depends on a only. 

The proof depends on three lemmas, 

LEMMA 3. Let %‘(A, B, M, A) be the number of integers m with 
M G m < 2M such that 

((Am-Bm-‘11 <A. 
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ifO<B<AM* wehave 

V(A,B,M,A)$AM c (l+lIsAJlM)-’ 
oc.r<.r 

where the constant implied in G is absolute. 

Proof. We assume that A d $ because otherwise the assertion of 
Lemma 3 is trivial. For S > 0 we have the identiy 

Hence the sum is positive for all real ,Y and it is > :S if J/x)/ < (4s)) ‘. From 
this observation it follows that 

%(A, 8, MA) 4 S-l 1 c e(Asm - Bsm-‘) 
O~s<S M<rn<ZM 

with S= (44)-l. The constant term (s = 0) contributes O(AM). For 
1 <sd S the innermost sum is equal to (see Lemma 4.8 in [6]) 

e(k IlAsll 5-Bsr-‘)dl+O(l). 

By Lemma 4.4 of [6 J we have 

.@ (sB) - 1/?M3/2 

and by Lemma 4.2 of [6] we have 

unless ((sA(( < 2sBMW2. Finally we have the trivial bound 

Gathering together the above estimates we complete the proof of 
Lemma 3. 1 
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LEMMA 4. Let A(q/kj) = (q/ij)y with y #O und B(q, 4) w  lq - 41 Q for 
Q < q, 4 < 2Q. Let 9(M, Q, A) be the number of triplets (m, q, 4) of integers 
m,q,q in M<m<2M, Q<q,lj<2Q such that 

Il4qltW - B(q, 4W’ll <A. 

If Q -c M213 we have 

9(M, Q, if) + (MQ + AMQ’ + Q8’3)(log 2M)4. 

Proof: Without loss of generality we can assume that Q-’ <A c 1. 
First we count the triplets (m, q, 4) with IB(q, 9)1 <AM by a crude argu- 
ment. We have 

which implies 

IO I 4 Y  - 

4 
-; <AM-‘. 

Therefore, by Lemma 1 we conclude that the number of such triplets is 

O(MQ log 2M + AMQ*). 

For counting the remaining triplets, i.e., those (m, q, 4) with 
(B(q, q)la AM, we appeal to Lemma 3, giving 

WMQ* + WM Q, A) + %W, Q, A)), 

where !J& and & are defined by 

S(M,Q,A)=AM 1 cc Cl+ Ib4dm W-l 
O<s<d-’ Q<q,G<ZQ 

and 

~22~2(ikf, Q, A) = AM312Q+* c* c*c* (s 14-w”*~ 
O<s<d-’ Q<q,cj<SQ 

where * means that the summation is restricted by two inequalities 

AM@ lq-4”l Q, 
and 

Ib4dBN 4 s 14 - 41 QM-*. 
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First, we estimate 9,. We split the range of summation into subsets defined 
by 

s<s<2s and Il~~(mll < 6, 

where 1 < S-cd -’ and M-’ -=z 6 < 1. The complete splitting can be 
arranged with at most O((log 2M)2) subsets, so 

9,(M, Q, A) << AS-‘d(Q, S, 6S -‘)(log 2M)* 

for some relevant S and 6. Since Q GM we conclude by Lemma 1 that 

9, (M, Q. A ) 6 MQ(log 2M)3. 

Now we estimate & in a similar way, so we split the range of summation 
into subsets defined by 

s,<s<2s and R< Iq-@l<2R. 

where 1 <S< A-’ and AMQ-’ $ R + Q. We obtain 

iB2(M, Q, A) = AM3’2(QRS)--‘2d(Q, S, M-2QR)(log 2M)’ 

for some relevant S and R. By Lemma 1 we conclude that 

CB2(M, Q, A).+ (MQ+ (AM)-m”2Q3)(log 2M)4. 

Hence 

B(M, Q, A) e AMQ2 + (MQ + (AM)-“‘Q3)(log 2M)4. 

Finally, since 9(M, Q, A) is non-decreasing in A we can replace A on the 
right-hand side by A + M-‘Q213, completing the proof of Lemma 4. u 

Now we are ready to prove Proposition 2. Clearly (4.1) implies 

(s(m,q)-s(~,~)(~AT”‘*-“=AMQ”‘“-I’, 

where 
t(m, q) 

s(m, q)= -g- ( > “(@ - ” = 
4 l/(x- llmf 4 

0 m 

with 

f(4=( 
(l+u)?x-(l-u)m "(-=l+a-2 2 

2cru > 
6U + O(u4). 
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Hence 

(Y l/b-um~p-l)~)+ (2a- l)/(a- ljm-l +-l)/(l-I)~-l) 

<<AMQ’/(a-l)+M-3Q4+1/(a-1). 

This gives the first approximation to fi in terms of m, q, g, namely, 

4 
0 

l/C@- 1) 
gi= ; m + O(AM+ M-IQ’), 

4 

which inserted into the last term yields the second (stronger) approxima- 
tion 

where 

A(q&) = (q/ij)li(a- ‘) 

and 

B(q, 4) = y (q*AW) - 4’*44/q))- 

The second approximation implies 

IlA(q/~)m+~(ql~)m~‘lI <<dM+M-3Q4 (4.3) 

and that for given m, q, 4 the number of G’s is bounded by 0( 1 + AM). 
Now by Lemma 4 we obtain 

W(M, Q, A) 6 (1 + dM)(MQ + AM2Q2 + M-2Q6 + Q8’3)(log 2M)4. 

Since Qsj3 = WQ)2’3 (M- Q 1 * 6 ‘I3 < MQ + M-2Q6 the last term can be 
omitted. If AM < 1 we obtain (4.2), otherwise the trivial bound yields 

L%(M, Q, A) < (1 + AM)MQ’ e AM2Q2. 

This completes the proof of Proposition 2. 1 
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5. A COMBINATION OF WEYL'S SHIFT WITH POISSON'S SUMMATION 

In this section we anticipate the use of Lemma 2 by an application of 
Poisson’s summation and the stationary phase method to the sum 

We appeal to a special case of the van der Corput lemma 

LEMMA 5. Let X>O, M>O, p> 1, and cc#O, 1. We then have 

c film ‘/2e(~-‘m*Mp*J’)=y c n -'/2e( -ap'n"Nm/'X) 
M<rn<&M N<n<,,N 

+O(M-“*log(2+M)+N-““log(2+N)) 

with /? = a/(a - 1 ), v = ,uLI - ‘, MN = X, and some y depending on a alone. The 
constant implied in the symbol 0 depends at most on a and p. Ifv < 1 (a < 1) 
the range of summation in n is understood to be vN < n < N. 

Proof: This result is a special case of Theorem 4.9 of [6], except that 
we claim a better error term, for which see [7]. 1 

In our applications of Lemma 5 the parameter X will depend multi- 
plicatively on several variables; so will N. In order to separate the 
dependence from the range of summation we appeal to the following 
formula 

LEMMA 6. Let 0 < L < N-C vN < AL and let a, be complex numbers with 
la,/ < 1. We then have 

N”(v’‘-l)tt’dt+O(log(2+L)), 

where the constant implied in 0 depends on A only. 1 

Combining Lemmas 5 and 6 we obtain 

LEMMA 7. Let X>O, M>O, ,u> 1, and a#O, 1. We then have 

c m -“*e(a-‘maM~OLX) 
M<m<pM 

Y 
=2?r -L 

1’ (~~,~~,<iLI-‘-2(d)i’e(-P-‘(~)dX))’i’a~:)i-1dt 

+ O(M-“’ log(2 + M) + L-l”’ log(2 + L)), 
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where /?=a/(a-1), I=2(#‘-1+p1-01), and L is any number with 
$ < LMX- t < 2, the constant implied in the symbol 0 depends at most on a 
and p. 

Now by Lemma 7 with a replaced by -a we obtain 

+ O(M1M2M3(1 + x-t’2M,)(log xM,), 

where 4Llm2 and k, are some complex numbers with 1+5,,,,1 < 1, 
l$,,,J <log 2x, [, is a complex number with I[,1 < 1, and p, =a,/(~ + l), 
82 =a,/(a+ l), /I=a/(a+ l), %=(a+ l)c@, L=M;‘x. Since the 
exponents in m3 and 1 are equal it permits us to treat lm3 as one variable, 
m = Im, say, with the multiplicity bounded by the divisor function 
r(m) << m”. Theorem 3 is applicable with M = LM3 = xM, M; ’ giving 

THEOREM 5. Let ~1, a,, a2 be real constants such that u # 1 and aa, a2 # 0. 
Let MI, M2, M3, M,, x 2 1, and rp,,,,, $m, be complex numbers with 
Icp,,,,I < 1 and [$,J < 1. We then have 

S,,(M, M2M3Mg) < (x”~(M, M2)3’4 M3 + x”~‘M, M2M:1”oM~ “to 

+ x”~(M~ M2)3’4 (M3M4)1’2 + x”‘M, M2M;“‘M;“’ 

+x-“~M~M~M~M~)(xM~M~M~M~)’ 

for any E > 0, the constant implied in 6 depends on a, aI, a2 and E only. 

6. A SPECIAL SUM 

In this section we estimate sums of type 

S,,,W, My N) = c 1 1 x(h)vPmllr 
h--H m--M n-N 

where x(h) is an additive character, i.e., x(h) = e{(h), say. Such sums occur 
in applications of modem sieve methods. The nature of the monomial hn-’ 
will be exploited effectively by a relined version of the argument established 
in [5]. We prove 
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THEOREM 6. Let a # 0, 1 and H, M, N, x B 1. Let X(h) be an additive 
character and (P,,,, $I, be complex numbers with Iq,,,l< 1 and IJ/,,j d 1. We 
then have 

S,,,(H, M, N) -4 (HMN)‘12[(H+ N)“2(~“8H~“6M1”2N”6 

+ Xl/8~- 1/8~3/8 + ,rqj/z + ~1/4~1/8)~1/8 

+ Ml/2 + y I!4M1/2N] 94, 

where the constant implied in 4 depends on CI only and we set 
2’ = log 2HMNx. 

The proof is rather long. We begin by applying Cauchy’s inequality 

say, where y=xH-‘NM-’ and w,,,,(k) is defined by 

~n,dk) = 1 c 0, )X(b). 

The terms with k = 0 contribute trivially U(HM’Ndip). The remaining k fall 
into dyadic intervals Jkl - K with 1 $ KG HN. For a technical convenience 
we wish to work with n,, nz coprime. To make that restriction we observe 
that w&k) = ~+,&k*), where k*=k/d, n:=n,/d, n:=n,/d with 
d= (n,, n,), and we get 

+ HM2NY3 

for some K with 1 $ K4 HN and for some D with 1 <D < min(K, N}, 
where R = D - ‘K and N, = N2 = D-IN. Hence by Lemma 7 we obtain 

ISxrprl12 < dip3M2 (ST”’ c cc c 1 c ri’w,,JrMwr mpRD)i 
d-D (n,,nz)=l I-L r-R 

+ Y’HMN(M + N2 + x “‘MN’). (6.1) 
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where L= Jai xK(HMN)-‘, t is a real number, p= (c(- 1)-l, and 

Now, our nearest aim is to build a single variable c = dn, n,, say, out of the 
three variables d, n,, n2. We begin by the Fourier analysis of the arithmetic 
function w,&I) to separate the variable Y from the parameters n,, n2. 

LEMMA 8. Let H, 2 H’, >, 1, H, > Hi > 1, 11, c2 be real numbers and 
n,, n2 be positive integers with (nl, n2) = 1. We have 

w(r) = cc e(t,h, + t2hd 

= 
I 

’ Q(%)e(%r) d% (6.2) 
0 

with 

s 
’ I&(%)1 d%< 1+ H1H2 

0 
<( G)“’ Uog2H,Hd2 (6.3) 

and the constant implied in $ is absolute. 

Proof We have (6.2) with 

tit%) = 

Since 

Hi<hl<Hl )( 
C 

H;<hz<Hz 

with 

it gives 

f al(hl)e((5, -%n,)h,) 
h,=-m >( 

h2$p 
m  

aAhd4(52 + %n,)hd) 

with 

aj(hj) e (1 + hf H,T2)-’ log 2Hj. 
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Hence 

327 

and this yields (6.3). 1 

By Lemma 8 and by the Cauchy-Schwarz inequality we deduce that 

c r*~On,&)e(Wr-~R~) 2 r-R 
<(j; Iti( de> j; I&(O), I&r”e(8r+wrpDRB)i2d0. 

Next, by Lemma 2 we obtain 

c r”e(&+ wr-BRp) ’ 
r-R 

with any Q < $R. Note that the bound does not depend on 6 and that 

Combining the above results with (6.1) we conclude that 

d-D n,- N, nz-N~ I-L 
r- q-R 

I) 

112 
xe(wRB[(r+q)-B-(r-q)p”]) 
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Note that the variables d, n,, rz2 occur only in w  as a product c = dn, n,. 
Given c N DN, N2 = D- ‘N2 = C, say, the number of representations of c in 
the form c = dn,n, is bounded by the divisor function r3(c). By Cauchy’s 
inequality we obtain 

+ c!Z6(HMN)* (M+ N* + x-“*MN*)*, 

where 

s,= 1 c / 1 
c-c I--L r+q--R 

(~)i’r(wRB[(l+y)-P_(~-9)-~l)l 

r--q--R 

with w  = (1 - u)(xK/HN)(I/L)“@(c/C)~ and p = (c1- 1)-l. It remains to 
estimate S, for each q individually. We appeal to Proposition 1. The 
arguments are similar to those used in the proof of Theorem 2 if we treat 

as a monomial in r of degree -c$ More to the point we have 

IS(r) - &(?)I -q (r-@-- F”@[, 

so the spacing problems for the points 6(r) and for the points rap are 
equivalent. From these remarks it is clear that Proposition 1 produces 
a bound for S,, the same as that in Theorem 2 with the following 
parameters; M1 = L, M2 = C, M, = R, M4 = 1, and with x replaced by 
z = qxDH-‘N-l. We obtain 

Hence 
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where W,=(XN/HM)(K/D)~, W,=(XN~K~/D'HM~)"~, W,=(xN/HM) 
(K/D)5/2 + (xN/HM)'12 (K/D)'/*, W4=~K2/HM1i2D3/2. We choose 

giving 

W,Q-'+W2Q-'f2+W3+ W.,Q'/' 

Here the tirst term is majorized by the third term and the sixth term is 
equal to the geometric mean of the third and the fourth terms. Thus we 
obtain 

+cY6(HMN)' (M+N'+x- *"MN2)'. 

Now observe that the worst case is D - 1 and K - HN giving 

JSxrpti14 6 Y'3M2(H+N)2 {x'/~H~N~+xH~'~N'/~ 
+ x'/2H2,$f'/2j,,T3 + XH4/3M'/3N8/3) 

+Y6(HMN)2(M+ N2+.u-"2MN2)'. 

Here the last but one term is majorized by the first term, so it can be 
omitted. This completes the proof of Theorem 6. 1 

7. EXPONENTIAL SUMS RELATED TO SHORT INTERVALS 

A considerable attention in analytic number theory is given to the 
distribution of special sequences in short intervals 

d= {n;x-y<n<.uf 
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with 1~ y < ix. A powerful approach to many such problems is offered by 
the sieve method which depends on estimates for the remainder terms 

The modern version of the linear sieve [4] requires estimates for bilinear 
form 

R(K NJ= c c ambnrmn 
lGm<M l<n-zN 

(7.1) 

with real coefficients a,, b, subject to Ja,J < 1, Ib,J < 1. One needs the 
upper bound 

R( M, N) 4 yx -’ (7.2) 

Clearly (7.2) holds true if MN < yx-” because lrdl G 1. However, one can 
do better by taking into account a cancellation of terms in (7.1) due to the 
variation in sign of rd. The following lemma transforms the problem to 
estimating exponential sums of type 

S,(H,M, N)= c c c +e($). 
I</zGH l<m<M ISm<N 

LEMMA 9. Let M, N> 1 and (a,,,1 d 1, lb,,1 < 1. We have 

VW, WI G 2 J;;:, IS,(K M, WI dx + WY-“1 

with H= A~NY-~x~‘, the constant implied in 0 depending on E alone. 

Proof. Let f(z) be a smooth function supported in the interval 
[X--y-yX-*E, x+yx-*yl such that f(z) = 1 in [x - y, x] and 

f(j)(z:) + (yx-2y-j 

for any j 2 0, the constant implied in 6 depending on j only. We then have 

ccc a,b,=CCCa,b,f(lmn)+O(yx~“) 
x-y<lmn.sx I m  n 
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by Poisson’s summation, where f(t) is the Fourier transform off(z). The 
constant term (h = 0) contributes 

For Ihl > H= MN~-~x~~ we havef(h/mn) +h-“, so the terms with Ihj > H 
contribute O(yx”). Combining these results we complete the proof, fl 

By Theorem 6 and Lemma 9 we infer 

THEOREM 7. Let 2 <y < x”‘and lamI ,< 1, @,I d 1. We rhen have 

C C a,b,r,,,~yx~” (7.3) 
M<rn<2M N<n<2N 

provided 

M<yx-“’ (7.4) 
N6 < &fy7x - 3 -I:‘, 

(7.5) 

M2N4 < yx’ ~ “, (7.6) 

where E’ = 4&, the constant implied in 4 depending on E alone. 

Proof: We have to show that 

forany Hwith l<H<MNy-‘x3”andx-2y<zL:x+y. Since H<Nwe 
obtain by Theorem 6 that the sum is 

e (HMN) I,2 [ N’,2 (( %)I” Hi- ,,6j,,,f1,,2N1,6 

l/8 
H- 1/8N3/8 + NJ/2 + N1/4M1/8 

>( > 
s 

MN + Ml” + ($)I4 M”‘N] (log x)“. 

Now observe that the worst value of H is H = MNye1x3’ giving 

< y ~ 1/2MNCx1/4( yM) - 1/12N’/2 + x’/4( yM) - 1/8N3/4 

+ xl/8y-1/8~+ X1/8y-l/8N3/4M1/t3 

+M’/2+X-1/4y1/4M1/2N]X2&~MNX-2E 
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provided (7.4), (7.5), (7.6) hold as well as 

N6 < MY’x-~-“, (7.7) 

N8<~S~-1-E’. (7.8) 

MN6<ysx-1-e’. (7.9) 

But (7.7~(7.9) follow from (7.4)-(7.6) under the hypothesis y<xx’“. 1 

The bilinear form (7.1) was investigated in various papers. It was proved 
in [3,5] that (7.2) holds true subject to (7.4) and 

M2N4 < y5x - 1~ E’. (7.10) 

Combining (7.5) and (7.10) we conclude 

COROLLARY. Let x7/” -c y <x11/23 and lamI G 1, Ib,J < 1. We then have 
(7.2) provided 

M< yx-“’ (7.4) 

and 

N<y19/16x-l/~6-&‘~ (7.11) 
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