On Néron models of moduli spaces of theta characteristics

Marco Pacini

Universidade Federal Fluminense, Rua Mário Santos Braga S/N, Niterói-Rio de Janeiro, Brazil

Article info
Article history:
Received 17 July 2008
Available online 13 November 2009
Communicated by Steven Dale Cutkosky

Keywords:
Jacobian of a curve
Spin curve
Néron model

Abstract
Let \(f : C \rightarrow B \) be a smoothing of a stable curve \(C \) and \(S_f \) be the moduli space of theta characteristics on the smooth fibers of \(f \). We describe the Néron model \(N(S_f) \), in terms of combinatorial invariants of the dual graph of \(C \). Furthermore, we provide a modular description of \(N(S_f) \) and we construct an immersion \(\psi_f : N(S_f) \rightarrow J_{E^w} \), where \(J_{E^w} \) is a suitable relative compactified Jacobian. We show that \(\psi_f \) factors through the locus of \(J_{E^w} \) parametrizing locally free rank-1 sheaves.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Étale models

Let \(C \) be a projective scheme of dimension 1 over an algebraically closed field of characteristic zero, or, for short, a curve. Let \(f : C \rightarrow B \) be a general smoothing of \(C \), i.e. a family of curves over a smooth and connected curve \(B \), where \(C \) is non-singular and where \(C = f^{-1}(0) \) for some \(0 \in B \) and \(C^* = f^{-1}(B - 0) \) is smooth over \(B - 0 \). Let \(S_f^* \) be the moduli scheme of theta characteristics on the fibers of \(f|_{C^*} \), an étale scheme over \(B - 0 \). It makes sense to ask: is it possible to give a description of the maximal étale \(B \)-model of \(S_f^* \), via combinatorial invariants of \(C \)? A goal of this paper is to give a positive answer to this question, when \(C \) is a stable curve without non-trivial automorphisms.

This distinguished \(B \)-model is necessarily the Néron model \(N(S_f^*) \) of \(S_f^* \) over \(B \). More generally, the Néron model provides a smooth and separated \(B \)-model of a scheme defined over the field of fractions of \(B \). The Néron model is canonically determined by a universal property, known as the Néron mapping property. Recall that the theory of Néron models has been introduced in [N] for abelian
varieties and it became apparent in [R] their connection with the Picard functor. They have been employed in arithmetic and geometry and recently also in the moduli theory of curves (see [C2,Ch,B]).

The posed question has been recently considered in [Ch]. There, it is shown a necessary and sufficient condition for the existence of a finite Néron model of the moduli space of r-torsion line bundles on the fibers of $f|_{C^*}$, via combinatorial invariants of the semistable reduction of C. More generally, one can consider the Néron model $N(\operatorname{Pic}^d C^*)$, where $\operatorname{Pic}^d C^*$ is the degree-d relative Jacobian of $f|_{C^*}$. Assume that C is a stable curve of genus g and d an integer such that $(d-g+1, 2g-2) = 1$. Let $\mathcal{P}_{d,g}$ be the universal Picard variety over \mathcal{M}_g constructed in [C1]. In [C2, Theorem 6.1], it is shown that $N(\operatorname{Pic}^d C^*) = B \times \mathcal{M}_g \mathcal{P}_{d,g}$, where $\mathcal{P}_{d,g}$ is the representable stack version of the open subset of $\mathcal{P}_{d,g}$ parametrizing equivalence classes of balanced line bundles on stable curves. However, a theta characteristic of a curve of genus g has degree $g - 1$, then [C2, Theorem 6.1] does not hold in this case. To find a geometric description of $\mathcal{N}(S_f^*)$, we will need to consider different compactified Jacobians.

1.2. The main result

Fix a smoothing $f : C \to B$ of a stable curve C and let $d = g - 1$. There are plenty of degree-d relative compactified Jacobian. In [A], it is shown that the ones constructed in [C1,OS,S] are all isomorphic. A different degree-d relative compactified Jacobian was constructed in [AK] for a family of integral curves and more generally in [E] for a family of reduced and connected curves. This compactified Jacobian is denoted by J_f^σ. We establish a relationship between J_f^σ and the Néron model $\mathcal{N}(S_f^*)$. A comparison result between J_f^σ and Néron models of Picard schemes is contained in [B]. However, the fact that we are considering the subfunctor of theta characteristics, allows us to find a rather explicit geometric description of $\mathcal{N}(S_f^*)$.

Since we work over an algebraically closed field of characteristic zero, we can apply the techniques and results of [CCC]. There, for a given line bundle \mathcal{G} of C, the authors constructed a scheme $\overline{\mathcal{S}}_f(\mathcal{G})$, finite over B, compactifying the moduli space of pairs (C_b, L_b). C_b a fiber of f and L_b a square root $\mathcal{G}|_{C_b}$. The objects employed in this construction are limit square roots, that is certain line bundles supported on nodal curves obtained by blowing-up the curves of the family, i.e. curves obtained by replacing nodal singularities by rational curves, called exceptional curves. There is a distinguished combinatorial invariant attached to a blow-up X of a curve, which is the graph Σ_X whose vertices are the connected components of the residual in X of the union of the exceptional components and whose edges are the exceptional components of X. We will describe $\mathcal{N}(S_f^*)$ via combinatorial properties of the graph Σ_X, as follows.

In Section 3.2 we introduce and classify the set $\mathcal{A}_f(C_0)$ of f-admissible twisters of C with respect to C_0, where C_0 is an irreducible component of C. The set $\mathcal{A}_f(C_0)$ is a subset of the set of line bundles on C that are limits of trivial bundles on the smooth fibers of f. Our main result, contained in Theorems 2.2 and 3.9, is:

Theorem 1.1. Let $f : C \to B$ be a general smoothing of a stable curve C of genus $g \geq 3$ with $\operatorname{Aut}(C) = \{\text{id}\}$. Let $\nu : \overline{\mathcal{S}}_f^\nu(\omega_f) \to \overline{\mathcal{S}}_f(\omega_f)$ be the normalization map. Then the following properties are equivalent for every $\xi \in \overline{\mathcal{S}}_f(\omega_f)$:

(i) $\overline{\mathcal{S}}_f(\omega_f) \to B$ is étale at a point of $\nu^{-1}(\xi)$;

(ii) $\overline{\mathcal{S}}_f(\omega_f) \to B$ is étale at any point of $\nu^{-1}(\xi)$;

(iii) if ξ is supported on the blow-up X of C, then Σ_X is bipartite.

Furthermore, for every irreducible component $C_0 \subset C$ we have:

$$\mathcal{N}(S_f^*) \simeq \bigcup_{T \in \mathcal{A}_f(C_0)} \mathcal{S}_f(\omega_f \otimes T)$$
where $S_f(\omega_f \otimes T)$ is the open subscheme of $\overline{S_f}(\omega_f \otimes T)$ parametrizing limit square roots supported on stable curves and where \sim denotes the gluing along the generic fiber of $S_f(\omega_f \otimes T) \to B$.

Let E be the polarization $E = \mathcal{O}_C$ and let $(J^\sigma_E)^{\text{free}}$ be the open subspace of J^σ_E parametrizing locally free sheaves. Then there exists an immersion:

$$\psi_f : N(S^*_f) \hookrightarrow (J^\sigma_E)^{\text{free}}.$$

The idea of comparing moduli spaces of roots of line bundles and compactified Jacobians already appears in [CCC] and [F]. Using Theorem 1.1, we are able to recover the combinatorial result of [Ch], which classifies the curves for which $N(S^*_f)$ is finite over B in term of their dual graph (see Proposition 2.4).

1.3. Notation and terminology

A curve is a connected, projective, reduced scheme of dimension 1 over an algebraically closed field of characteristic zero. A stable (semistable) curve C is a nodal curve such that every smooth rational component meets the rest of the curve in at least 3 points (2 points). The genus of C is $g_C = h^1(C, \omega_C)$, where ω_C is the dualizing sheaf of C. If $Z \subset C$ is a subcurve, the residual in C of Z is $Z_C := C \setminus Z$.

A family of curves is a proper and flat morphism $f : C \to B$ whose fibers are curves. If $b \in B$, we denote by $C_b = f^{-1}(b)$. A smoothing of a curve C is a family $f : C \to B$, where B is a smooth, connected, affine curve with a distinguished point $0 \in B$ such that $C^* := f^{-1}(B - 0)$ is smooth over $B - 0$ and $C = f^{-1}(0)$. A general smoothing is a smoothing with C smooth.

A nodal curve X is obtained by blowing-up a nodal curve C at a subset Δ of nodes of C, if there is a morphism $\pi : X \to C$ such that, for every $p_i \in \Delta$, $\pi^{-1}(p_i) = E_i \cong \mathbb{P}^1$ and $\pi : X - \bigcup_i E_i \to C - \Delta$ is an isomorphism. For every $p_i \in \Delta$, we call E_i an exceptional component. A family of curves $X' \to B$ is a family of blow-ups of a family $C \to B$ if there exists a B-morphism $\pi : X' \to C$ such that $\pi|_{X_b} : X_b \to C_b$ is obtained by blowing-up C_b, for every $b \in B$.

Let I be a coherent sheaf on a curve C. We say that I is torsion-free if its associated points are generic points of C. We say that I is of rank 1 if I is invertible on a dense open subset of C. We say that I is simple if $\text{End}(I) = k$. Each line bundle on C is torsion-free of rank 1 and simple. If I is torsion-free of rank 1, we call $\deg(I) := \chi(I) - \chi(\mathcal{O}_C)$ the degree of I.

Denote by $\text{Aut}(C)$ the group of automorphism of a curve C. If Γ is a graph with an orientation, then $\delta : \mathbb{C}^0(\Gamma, \mathbb{Z}/2\mathbb{Z}) \to \mathbb{C}^1(\mathbb{Z}/2\mathbb{Z})$ denotes the coboundary operator. A graph Γ is bipartite if there is a partition of its vertices into two sets A and B such that each edge of Γ has a vertex in A and the other vertex in B. Equivalently, Γ is bipartite if each cycle of Γ has an even number of edges.

2. Néron models of moduli spaces of square roots

2.1. Review of moduli spaces of limit square roots

Let C be a nodal curve and $G \in \text{Pic}(C)$ of even degree. Consider a tern (X, L, α), where $\pi : X \to C$ is a blow-up of C, $L \in \text{Pic} X$ and α is a homomorphism $\alpha : L^\otimes 2 \to \pi^*G$. Then (X, L, α) is a limit square root of (C, G) if:

(i) the restriction of L to every exceptional component has degree 1;
(ii) the map α is an isomorphism at the points of X not belonging to an exceptional component;
(iii) for every exceptional component E such that $E \cap E^c = \{p, q\}$ the orders of vanishing of α at p and q add up to 2.

The curve X is called the support of the limit square root. If $C \to B$ is a family of stable curves and $G \in \text{Pic} C$ has even relative degree, then a limit square root of (C, G) is a tern (X, L, α), where
\(\pi : \mathcal{X} \to C \) is a family of blow-ups, \(\mathcal{L} \in \text{Pic} \mathcal{X} \) and \(\alpha \) is a homomorphism \(\alpha : \mathcal{L} \otimes 2 \to \pi^* \mathcal{G} \) such that
\((X_b, \mathcal{L}|_{X_b}, \alpha|_{X_b})\) is a limit square root of \((C_b, \mathcal{G}|_{C_b})\), for every \(b \in B \).

If \(X \) is obtained by blowing-up the curve \(C \), set \(\bar{X} := X - \bigcup_{E \in \mathcal{E}(X)} \bar{E} \), where \(\mathcal{E}(X) \) is the set of exceptional components of \(X \).

Remark 2.1. There exists a notion of isomorphism of limit square roots. By [Co, Lemma 2.1], two limit square roots \((X, L, \alpha)\) and \((X, L', \alpha')\) are isomorphic if and only if \(L|_{\bar{X}} \simeq L'|_{\bar{X}} \).

Let \(f : C \to B \) be a family of nodal curves over a quasi-projective scheme \(B \) and \(\mathcal{G} \in \text{Pic}(C) \) of even relative degree. Let \(\tilde{S}_f(\mathcal{G}) \) be the contravariant functor from the category of locally Noetherian \(B \)-schemes to sets, defined on \(T \) by:

\[
\tilde{S}_f(\mathcal{G})(T) := \{ \text{limit square roots of } q^*\mathcal{G} \}/ \sim
\]

where \(q : C \times_B T \to C \) is the first projection and \(\sim \) means isomorphism of limit square roots. There exists a quasi-projective scheme \(\tilde{S}_f(\mathcal{G}) \), finite over \(B \), which coarsely represents \(\tilde{S}_f(\mathcal{G}) \). For more details, we refer to [CCC, Theorem 2.4.1]. Abusing notation, we will often denote by \(\xi \) both the isomorphism class of a limit square root and the point of \(\tilde{S}_f(\mathcal{G}) \) parametrizing this equivalence class.

Let \(C \) be a nodal curve and \(\mathcal{G} \in \text{Pic}(C) \) of even degree. Denote by \(\overline{\text{SC}}_e(G) \) the zero-dimensional scheme \(\overline{S}_f_c(G) \), where \(f_c : C \to \text{Spec}(k) \) is the structure morphism of \(C \). In particular, \(\overline{S}_e(G) \) is in bijection with the isomorphism classes of limit square roots of \((C, G)\). If \(f : C \to B \) is a family of curves and \(\mathcal{G} \in \text{Pic}(C) \), then the fiber of \(\tilde{S}_f(\mathcal{G}) \to B \) over \(b \in B \) is \(\overline{S}_c(G|_{C_b}) \). If \(f : C \to B \) is a smoothing of a stable curve \(C \) with distinguished point \(0 \in B \) and \(\mathcal{G} \) is a line bundle on \(C \) of even relative degree, let \(C^* := f^{-1}(B - 0) \) and \(\mathcal{G}^* := \mathcal{G}|_{C^*} \) and denote \(S(C^*) := \overline{S}_f|_{C^*}(\mathcal{G}^*) \). Moreover, denote by \(S_f(\mathcal{G}) \) the open subscheme of \(\tilde{S}_f(\mathcal{G}) \) parametrizing limit square roots supported on stable curves.

Let \(X \) be obtained by blowing-up \(C \). Let \(\Sigma_X \) be the graph whose vertices (resp. edges) corresponds to the connected components of \(X \) (resp. to the exceptional component of \(X \), where an edge connects two vertices if the corresponding exceptional component intersects the corresponding connected components. By [CCC, 4.1], the multiplicity of \(\overline{S}_e(G) \) in \(\xi \) is \(2h^0(S_X) \), if \((X, L, \alpha)\) is a representative of \(\xi \). If \(C \) is a stable curve, denote by \(\Gamma_C \) the usual dual graph of \(C \), whose edges (resp. vertices) corresponds to the nodes (resp. to the irreducible components) of \(C \). Let \(\Gamma_X \) the subgraph of \(\Gamma_C \) whose edges corresponds to the nodes of \(C \) which are not blown-up to get \(X \). As observed in [CCC], the graph \(\Sigma_X \) is obtained from \(\Gamma_C \) by contracting the edges contained in \(\Gamma_X \).

2.2. A combinatorial result on the Néron model of \(S(G^*) \)

Let \(B \) be a connected Dedekind scheme with field of fractions \(K \). Let \(X_K \) be a smooth and separated \(K \)-scheme of finite type. A Néron model of \(X_K \) is a \(B \)-scheme \(N(X_K) \), which is a smooth, separated and finite type \(B \)-model of \(X_K \) and satisfying the following universal property, well-known as Néron mapping property: for every smooth \(B \)-scheme \(Y \) and \(K \)-morphism \(\phi_K : Y_K \to X_K \), there exists a unique extension of \(\phi_K \) to a \(B \)-morphism \(\phi : Y \to N(X_K) \). If a Néron model exists, it is canonically determined, up to a unique isomorphism, by the Néron mapping property.

Theorem 2.2. Let \(f : C \to B \) be a general smoothing of a stable curve \(C \) of genus \(g \geq 3 \) with \(\text{Aut}(C) = \{ \text{id} \} \). Consider the moduli space \(\overline{S}_f(\mathcal{G}) \), where \(\mathcal{G} \in \text{Pic}(C) \) is of even relative degree, and its normalization \(\nu : \overline{S}_f(\mathcal{G}) \to \overline{S}_f(\mathcal{G}) \). Then the Néron model of \(S(G^*) \) is isomorphic to the étale locus of \(\overline{S}_f(\mathcal{G}) \to B \) and the following properties are equivalent for every \(\xi \in \overline{S}_f(\mathcal{G}) \):

(i) \(\overline{S}_f(\mathcal{G}) \to B \) is étale at a point of \(\nu^{-1}(\xi) \);
(ii) \(\overline{S}_f(\mathcal{G}) \to B \) is étale at any point of \(\nu^{-1}(\xi) \);
(iii) if \(X \) is the support of a representative of \(\xi \), then \(\Sigma_X \) is bipartite.
Proof. Let $\gamma_f : B \to \overline{M}_g$ be the moduli morphism, where \overline{M}_g is the moduli space of Deligne–Mumford stable curves. Since C is smooth and $\text{Aut}(C) = \{id\}$, the image of γ_f is smooth at $\gamma_f(0)$. Up to shrink B to an open (analytic) subset containing 0, we can assume $B \subset \text{Def}(C)$, where $\text{Def}(C)$ is the base of the universal deformation of C. Let (X, L, α) be a representative of some $\xi \in \overline{S}_C(G|C)$. Assume that X is obtained by blowing-up the nodes n_1, \ldots, n_m of C. Let t_j be the coordinate of $\text{Def}(C)$ such that \(t_j = 0 \) is the locus where the node n_j persists, for every $j = 1, \ldots, m$. Using the fact that C is smooth and the implicit function theorem, we can describe B as:

$$\{ (t_1, t_1 h_2(t_1), t_1 h_3(t_1), \ldots, t_1 h_{3g-3}(t_1)) \}$$

where h_i is an analytic function such that $h_i(0) \in \mathbb{C}^*$, for $i = 2, \ldots, m$. Consider the morphism $\rho : \text{Def}(C) \to \text{Def}(C)$ given by:

$$\rho : (t_1, \ldots, t_m, t_{m+1}, \ldots, t_{3g-3}) \mapsto (t_1^2, \ldots, t_m^2, t_{m+1}, \ldots, t_{3g-3}).$$

Pick $U_\xi = \rho^{-1}(B)$. Fix an orientation on the graph Σ_X and let e_1, \ldots, e_m be the edges of Σ_X, corresponding to the exceptional components of X. Consider the coboundary operator $\delta : C^0(\Sigma_X, \mathbb{Z}/2\mathbb{Z}) \to C^1(\Sigma_X, \mathbb{Z}/2\mathbb{Z})$. By [CCC, Lemmas 2.3.2 and 3.3.1], the moduli space $\overline{S}_f(G)$ is $U_\xi / \text{Im} (\delta)$, locally analytically at ξ. Here, an element $\theta = \sum_{i=1}^m \epsilon_i \cdot e_i \in C^1(\Sigma_X, \mathbb{Z}/2\mathbb{Z})$, where $\epsilon_i \in \mathbb{Z}/2\mathbb{Z}$ for $i = 1, \ldots, m$, acts on U_ξ via:

$$(t_1, \ldots, t_m, t_{m+1}, \ldots, t_{3g-3}) \mapsto (\epsilon_1 t_1, \ldots, \epsilon_m t_m, t_{m+1}, \ldots, t_{3g-3}).$$

Furthermore, $\rho|_{U_\xi}$ factors through a morphism $\mu : U_\xi / \text{Im}(\delta) \to B$, giving locally the finite morphism $\overline{S}_f(G) \to B$ described in Section 2.1.

The tangent cone of U_ξ at the origin is:

$$T_0(U_\xi) = \{ t_1^2 - h_2(0)t_1^2 = 0, \ldots, t_m^2 - h_m(0)t_1^2 = 0, t_{m+1} = 0, \ldots, t_{3g-3} = 0 \}.$$

Hence U_ξ has 2^{m-1} distinct branches intersecting transversally. Consider the automorphisms θ^- of $\text{Def}(C)$ defined as:

$$\theta^- : (t_1, \ldots, t_m, t_{m+1}, \ldots, t_{3g-3}) \mapsto (-t_1, \ldots, -t_m, t_{m+1}, \ldots, t_{3g-3}).$$

Notice that θ^- commutes with ρ and acts over U_ξ preserving the irreducible components of $T_0(U_\xi)$ and hence also the branches of U_ξ. We see that $\rho|_{U_\xi}$ is a cover of B of degree 2^m and, for every branch $U'_\xi \subset U_\xi$, we have that $\rho|_{U'_\xi}$ is a degree-2 cover of B with involution $\theta^-|_{U'_\xi}$.

Notice that $\theta^- \in \text{Im}(\delta)$ if and only if Σ_X is bipartite.

We show (i) \Rightarrow (iii). Assume that $\overline{S}_f(G) \to B$ is étale at a point of $\nu^{-1}(\xi)$. Consider the finite morphism $\mu : U_\xi / \text{Im}(\delta) \to B$, giving locally the morphism $\overline{S}_f(G) \to B$. Then, for at least one branch $U'_\xi \subset U_\xi$, the restriction $\mu|_{U'_\xi} / \text{Im}(\delta)$ is a bijection. Hence $\theta^-|_{U'_\xi} = \overline{\theta}|_{U'_\xi}$, for some $\overline{\theta} \in \text{Im}(\delta)$, otherwise $\mu|_{U'_\xi} / \text{Im}(\delta)$ would have degree 2. Since θ^- is the only non-trivial automorphism of $C^1(\Sigma_X, \mathbb{Z}/2\mathbb{Z})$ preserving U'_ξ, then $\theta^- = \overline{\theta} \in \text{Im}(\delta)$ and hence Σ_X is bipartite.

We show (iii) \Rightarrow (ii). If Σ_X is bipartite, then $\theta^- \in \text{Im}(\delta)$ and hence $\mu|_{U'_\xi} / \text{Im}(\delta)$ is a bijection, for every branch $U'_\xi \subset U_\xi$. In particular, $S_f(G) \to B$ is étale at every points of $\nu^{-1}(\xi)$. The implication (ii) \Rightarrow (i) is trivial.

To prove the first statement, by [BLR, Proposition 1.2.4] we can assume without loss of generality that $B = \text{Spec} R$, where R is a discrete valuation ring. By [BLR, Corollary 6.5.4], the Néron model
N(S(\mathcal{G}^+)) of S(\mathcal{G}^+) exists. Let \overline{\mathcal{S}_f} (\mathcal{G}^\text{et}) be the étale locus of \overline{\mathcal{S}_f} (\mathcal{G}) \to B. Now, N(S(\mathcal{G}^+)) is étale over B and it is a birational model of \overline{\mathcal{S}_f} (\mathcal{G}). Then we have an immersion N(S(\mathcal{G}^+)) \hookrightarrow \overline{\mathcal{S}_f} (\mathcal{G}^\text{et}) and, by the Néron mapping property, a reverse immersion holds as well. □

Lemma 2.3. Let C be a stable curve and \Gamma_C its dual graph. Let X be a blow-up of C and \Gamma_X the subgraph of \Gamma_C associated to \Gamma_X as explained in Section 2.1. Then X is the support of a representative of some \xi \in \overline{\mathcal{S}_C}(\omega_C) if and only if \Gamma_X can be written as a possibly empty union of cycles of \Gamma_C whose mutual intersections contains no edge of \Gamma_C.

Proof. See [CC, Section 1.3, p. 6]. □

Proposition 2.4. Let f : C \to B be a general smoothing of a stable curve C of genus g \geq 3 with Aut(C) = \{id\}. Then N(S(\omega^+_f)) is finite over B if and only if for every pair (\Gamma_1, \Gamma_2) of cycles of \Gamma_C the intersection \Gamma_1 \cap \Gamma_2 contains an even number of edges of \Gamma_C.

Proof. Assume that the condition of the statement holds. If \Gamma is a cycle of \Gamma_C, then, applying the condition of the statement to the pair (\Gamma, \Gamma), we see that \Gamma has an even number of edges. In particular \Gamma_C is bipartite. Pick \xi \in \overline{\mathcal{S}_C}(\omega_C) and let X be the support of any representative of \xi. If X is obtained by blowing-up X at the whole set of its nodes, then \Sigma_X = \Gamma_C and \Sigma_X is bipartite. Otherwise, \Sigma_X is obtained by contracting \Gamma_X. Combining Lemma 2.3 and the condition of the statement, we have that the cycles of \Sigma_X X admit a finite number of edges, and then \Sigma_X is bipartite. Then \Sigma_X is bipartite in any case. By Theorem 2.2 we have that N(S(\omega^+_f)) \cong \overline{\mathcal{S}_f} (\omega_f), then N(S(\omega^+_f)) is finite over B.

Conversely, assume that the condition of the statement does not hold. By Theorem 2.2, it suffices to show that \overline{\mathcal{S}_f} is not étale over B. We have two cases. In the first case, there exists a cycle of \Gamma_C with an odd number of edges, i.e. \Gamma_C is not bipartite. By Lemma 2.3, there exists a \xi \in \overline{\mathcal{S}_C}(\omega_C) with a representative supported on the curve X obtained by blowing-up C at the whole set of its nodes and \Sigma_X = \Gamma_C. By Theorem 2.2, \overline{\mathcal{S}_f} is not étale at \xi. In the second case, \Gamma_C is bipartite and there are two different cycles \Gamma_1 and \Gamma_2 such that \Gamma_1 \cap \Gamma_2 is an odd number of edges of \Gamma_C. Consider the graph \Sigma obtained by contracting \Gamma_C at the edges of \Gamma_1. In \Sigma, the cycle obtained by contracting \Gamma_2 at the edges of \Gamma_1 has an odd number of edges, then \Sigma is not bipartite. Let X_{\Gamma_1} be obtained by blowing-up C at the nodes whose corresponding edges are not contained in \Gamma_1. By Lemma 2.3 there is a \xi \in \overline{\mathcal{S}_C}(\omega_C) with a representative supported on X_{\Gamma_1} and \Sigma_{\Gamma_1} = \Sigma. Hence \Sigma_{\Gamma_1} is not bipartite and \overline{\mathcal{S}_f} is not étale at \xi. □

3. Néron models of S(\omega^+_f) within J_\mathcal{E}

3.1. The compactified Jacobian J_\mathcal{E}^\text{d}

Let f : C \to B be a family of curves. Then f admits enough sections through the B-smooth locus of C if there are sections \sigma_1, \ldots, \sigma_n : B \to C of f such that:

(i) \sigma_i factors through the B-smooth locus of C for i = 1, \ldots, n;
(ii) for every b \in B, every irreducible component of C_b contains \sigma_i(b) for some i = 1, \ldots, n.

Let f : C \to B be a family of curves, where B is a locally Noetherian scheme. Assume that f admits enough sections through the B-smooth locus of C. Let J_\mathcal{E} be the contravariant functor from the category of locally Noetherian B-schemes to sets, associating to T the set of equivalence classes of B-flat, coherent sheaves \mathcal{I} on C \times_B T/T whose fibers over B are degree d, simple, rank-1, torsion-free sheaves. Here, \mathcal{I}_1 and \mathcal{I}_2 are equivalent if there is an invertible sheaf M on T such that \mathcal{I}_1 \cong \mathcal{I}_2 \otimes p^* M, for p : C \times_B T \to T the projection. In [E], it is shown that J_\mathcal{E} is finely represented by a scheme J_d. Furthermore, one can consider distinguished subschemes of J_d as follows. Fix an integer d.
A polarization on \(C \) is a vector bundle \(\mathcal{E} \) on \(C \) of rank \(r > 0 \) and relative degree \(r(g - 1 - d) \). We will denote by \(\mathcal{E} \) the canonical polarization on \(C \):

\[
\mathcal{E} = \begin{cases}
\omega_f^{\otimes (g-1-d)} \oplus \mathcal{O}_C^{\otimes (2g-3)}, & d \neq g - 1, \\
\mathcal{O}_C, & d = g - 1,
\end{cases} \tag{3.1}
\]

where \(\omega_f \) is the relative dualizing sheaf of the family \(f \).

Let \(I \) be a simple, torsion free, rank-1 sheaf of degree \(d \) on a curve \(C \). Then \(I \) is semistable with respect to a polarization \(\mathcal{E} \) of rank \(r \), if for every non-empty, proper subcurve \(Z \subseteq C \),

\[
\chi(I_Z) \geq \frac{-\deg E|_Z}{r}, \tag{3.2}
\]

where \(I_Z \) is the maximum torsion-free quotient of \(I|_Z \). Furthermore, \(I \) is stable if (3.2) is strict for every \(Z \). Let \(W \) (resp. \(p \)) be a component of \(C \) (resp. a non-singular point of \(C \)). Then \(I \) is \(W \)-quasistable (resp. \(p \)-quasistable) with respect to a polarization \(\mathcal{E} \) if \(I \) is semistable with respect to \(\mathcal{E} \) and (3.2) is strict for every \(Z \) such that \(W \subseteq Z \) (resp. for every \(Z \) such that \(p \in Z \)).

Fix a section \(\sigma : B \to C \) through the \(B \)-smooth locus of \(f \). A simple, torsion free, rank-1 sheaf \(\mathcal{I} \) on \(C \times_B T/T \) is semistable (resp. stable, resp. \(\sigma \)-quasistable) with respect to a polarization \(\mathcal{E} \), if \(\mathcal{I}|_{C_b} \) is semistable (resp. stable, resp. \(\sigma(b) \)-quasistable) with respect to \(\mathcal{E}|_{C_b} \), for every \(b \in B \). Consider the subspace \(J^p_f \) of \(J_d \) parametrizing sheaves \(\sigma \)-semistable with respect to the canonical polarization \(\mathcal{E} \) defined in (3.1). By [E, Theorem A], \(J^p_f \) is proper over \(B \). Notice that \(J^p_f \) finely represents the subfunctor \(J^p_f \) of \(J_d \) of the sheaves which are \(\sigma \)-quasistable with respect to \(\mathcal{E} \).

Lemma 3.1. Let \(C \) be a stable curve of genus \(g \geq 3 \) and let \(M \) be a line bundle on \(C \) of degree \(d \). Then:

(i) \(M \) is semistable (resp. stable) with respect to the canonical polarization if and only if for every non-empty, proper subcurve \(Z \subseteq C \):

\[
\left| \deg M|_Z - \frac{d}{2g - 2} \deg \omega_C|_Z \right| \leq \frac{\#(Z \cap Z^C)}{2} \tag{3.3}
\]

(resp. the strict inequality holds in (3.3)).

(ii) \(M \) is \(W \)-quasistable with respect to the canonical polarization \(\mathcal{E} \) if and only if (3.3) is satisfied and:

\[
\deg M|_Z - \frac{d}{2g - 2} \deg \omega_C|_Z > -\frac{\#(Z \cap Z^C)}{2},
\]

for every non-empty, proper subcurve \(Z \subseteq C \) such that \(W \subseteq Z \).

Proof. Since \(M \in \text{Pic}(C) \), \(M \) is semistable (resp. stable) with respect to the canonical polarization if and only if for each non-empty, proper subcurve \(Z \subseteq C \):

\[
\chi(M|_Z) \geq \frac{(-\deg E|_Z)}{\text{rank}(E)} \tag{3.4}
\]

(resp. (3.4) is strict for each \(Z \)). We have \(\chi(M|_Z) = \deg(M|_Z) + 1 - g_Z \) and \(\deg E|_Z = (g - 1 - d) \deg \omega_C|_Z \). Thus \(M \) is semistable (resp. stable) if and only if for each non-empty, proper subcurve \(Z \subseteq C \):
we have deg
\[\deg(M|_Z) \geq g_Z - 1 - \frac{(g - 1 - d) \deg \omega_C|_Z}{2g - 2}\]
\[= \frac{d(\deg \omega_C|_Z)}{2g - 2} + g_Z - 1 - \frac{\deg \omega_C|_Z}{2} = \frac{d(\deg \omega_C|_Z)}{2g - 2} - \frac{(Z \cap Z^c)}{2}\] (3.5)
(resp. if and only if (3.5) is strict for each \(Z\)). If \(M\) is semistable (resp. stable), we can apply the inequality (3.5) to \(Z^c\), and we get:
\[\deg(M|_Z) \leq \frac{d(\deg \omega_C|_Z)}{2g - 2} + \frac{(Z \cap Z^c)}{2}\] (3.6)
(resp. we get that (3.6) is strict). Then \(M\) is semistable (resp. stable) if and only (3.5) holds (resp. the strict inequality holds in (3.3)), for each non-empty, proper subcurve \(Z \subseteq C\). The item (ii) is similar.

3.2. Admissible twisters

Let \(f : C \to B\) be a smoothing of a semistable curves \(C\). Recall that an \(f\)-twister of \(C\), or simply a twister of \(C\), is a line bundle \(T\) on \(C\) such that \(T \cong \mathcal{O}_C(D)|_C\), where \(D\) is a Cartier divisor of \(C\) with support contained in \(C\).

Definition 3.2. Let \(C\) be a stable curve and \(T\) a twister of \(C\). We say that a line bundle \(M \in \text{Pic}\, C\) is a \(T\)-spin curve if \(M^\otimes 2 \cong \omega_C \otimes T\). If \(C_0\) is an irreducible component of \(C\), a twister \(T\) of \(C\) is admissible with respect to \(C_0\) if the set of \(T\)-spin curves is non-empty and every \(T\)-spin curve is \(C_0\)-quasistable with respect to the canonical polarization \(\mathcal{O}_C\).

Recall that \(T\)-spin curves have been used in [P] to study degenerations of theta characteristics to non-stable curves.

Lemma 3.3. Let \(f : C \to B\) be a general smoothing of a stable curve \(C\), where \(B\) is the spectrum of a discrete valuation ring, and let \(T\) be an \(f\)-twister of \(C\). Then the following properties are equivalent:

(i) \(T\) is admissible with respect to \(C_0\).

(ii) The set of \(T\)-spin curves is non-empty and there is an integer \(r_T \geq 0\) and a unique partition of \(C\) into non-empty subcurves \(Z_0, \ldots, Z_{r_T}\) such that:
 (a) for every connected component \(Z_h\) of \(Z\) we have \(Z_{h} \cap Z_{h-1} \neq \emptyset\), for every \(h = 1, \ldots, r_T\);
 (b) \(C_0 \subset Z_0\) and \(Z_0\) is connected;
 (c) \(T \cong \mathcal{O}_C(D)|_C\), where \(D = \sum_{i=1}^{r_T} i \cdot Z_i\) and:

\[T \otimes \mathcal{O}_{Z_h} \cong \begin{cases}
\mathcal{O}_{Z_h}(\sum_{p \in Z_h \cap Z_{h+1}} p) & \text{if } h = 0, \\
\mathcal{O}_{Z_h}(\sum_{p \in Z_h \cap Z_{h+1}} (p - q)) & \text{if } h = 1, \ldots, r_T - 1, \\
\mathcal{O}_{Z_h}(\sum_{p \in Z_h \cap Z_{h+1}} p) & \text{if } h = r_T.
\end{cases}\] (3.7)

Proof. Assume that (ii) holds and let \(L\) be a \(T\)-spin curve. For every non-empty subcurve \(Z \subseteq C\) we have \(\deg_g T = \sum_{p \in Z \cap Z^c} m_p\), for some \(m_p \in \{-1, 0, 1\}\) and hence \(\deg_g T \leq \#(Z \cap Z^c)\). Thus \(L\) is semistable by Lemma 3.1. Let \(Z\) be a non-empty, proper subcurve \(Z \subseteq C\). Set \(T|_Z \cong \mathcal{O}_Z(\sum_{p \in Z \cap Z^c} m_p p)_p\), for \(m_p \in \mathbb{Z}\). Then \(\deg T|_Z \geq -\#(Z \cap Z^c)\). We need to prove that, if \(C_0 \subseteq Z\), then \(\deg T|_Z \geq -\#(Z \cap Z^c)\). Assume by contradiction that \(\deg T|_Z = -\#(Z \cap Z^c)\). Since \(C_0 \subseteq Z_0\), we have \(Z \cap Z_0 \neq \emptyset\). We claim that \(Z_0 \subseteq Z\). In fact, assume that \(Z_0 \not\subseteq Z\). Since \(Z_0\) is connected, there is an irreducible component \(Y_0\) such that \(Y_0 \subseteq Z_0 - Z\) and \(Y_0 \cap Z \neq \emptyset\). Consider a point \(p_0 \in Y_0 \cap Z\).
We have \(p_0 \in Z \cap Z^c \) and \(m_{p_0} = 0 \), then \(\deg T|_Z > -\#(Z \cap Z^c) \), which is a contradiction. Hence \(Z_0 \subseteq Z \). If \(Z_0 \not\subseteq Z_1 \), then either we have an irreducible component \(Y_1 \) such that \(Y_1 \subseteq Z_1 - Z \) and \(Y_1 \cap Z \neq \emptyset \), or there exists a connected component \(W_1 \) of \(Z_1 \) such that \(Z \subseteq W_1 \). In the first case, arguing as before for \(Y_0 \), we get a contradiction. In the second case, the condition (a) implies that \(\emptyset \neq W_1 \cap Z_0 \subseteq W_1 \cap Z \). Consider \(p_1 \in W_1 \cap Z \). Then by construction \(p_1 \in Z \cap Z^c \) and \(m_{p_1} = 1 \), and hence \(\deg T|_Z > -\#(Z \cap Z^c) \), which is a contradiction. Then \(Z_1 \subseteq Z \). Iterating, we get an integer \(h \in \{0, \ldots, r_T - 1\} \) such that \(\bigcup_{h=0}^{h} Z_h \) is a connected component of \(Z \). But \(m_p = 1 \) for each \(p \in Z_h \cap Z^c \), thus \(\deg T|_{Z_h} = (\#(Z_h \cap Z^c)) \) and hence \(\deg T|_Z > -\#(Z \cap Z^c) \), which is a contradiction.

Assume that (i) holds. There is a semistable \(T \)-spin curve and by Lemma 3.1, for each non-empty subcurve \(Z \subseteq C \), we have \(|\text{deg}_Z T| \leq \#(Z \cap Z^c) \). Let \(C_1 \cdots C_y \) be the irreducible components of \(C \). Let \(T \cong O_C(D)|_C \) for a divisor \(D = \sum_{1 \leq i \leq y} a_i C_i, a_i \in \mathbb{Z} \). Since \(O_C(nC)|_C \cong O_C \) for every \(n \in \mathbb{Z} \), we can assume without loss of generality that \(\min_{1 \leq i \leq y} a_i = 0 \). Set:

\[
Z_h := \bigcup_{a_i = h} C_i \quad \text{for every } h = 0, \ldots, r_T,
\]

where \(r_T := \max_{1 \leq i \leq y} a_i \). We prove that \(r_T \) and \(Z_0, \ldots, Z_{r_T} \) satisfy (ii). If \(Z_0 = C \) we are done. Otherwise:

\[
T \otimes O_{Z_0} \simeq O_{Z_0} \left(\sum_{p \in Z_0 \cap Z^c_0} m_p p \right).
\]

for some \(0 < m_p \in \mathbb{Z} \). Now, \(|\text{deg}_{Z_0} T| \leq \#(Z_0 \cap Z^c_0) \), hence:

\[
\#(Z_0 \cap Z^c_0) \geq |\text{deg}_{Z_0} T| = \sum_{p \in Z_0 \cap Z^c_0} m_p \geq \#(Z_0 \cap Z^c_0).
\]

Thus \(m_p = 1 \), for every \(p \in Z_0 \cap Z^c_0 \). In particular, we have:

\[
T \otimes O_{Z_0^c} \simeq O_{Z_0^c} \left(- \sum_{p \in Z_0 \cap Z^c_0} p \right)
\]

and hence \(Z_1 \supseteq \{ C_i \cap (Z_0 \cap Z_0^c) \neq \emptyset, C_i \subseteq Z_0^c \} \). Notice that \(Z_1 \neq \emptyset \) and \(Z_0 \cap Z_h \) if and only if \(h = 1 \).

Assume that \(C \neq Z_0 \cup Z_1 \). For every \(p \in (Z_1 \cap Z_1^c) - Z_0 \), there exists \(0 < m_p \in \mathbb{Z} \) such that:

\[
T \otimes O_{Z_1} \simeq O_{Z_1} \left(\sum_{p \in (Z_1 \cap Z_1^c) - Z_0} m_p p - \sum_{q \in Z_0 \cap Z_1} q \right).
\]

Arguing as before for the subcurve \(Z_0 \cup Z_1 \), we get \(m_p = 1 \), for \(p \in (Z_1 \cap Z_1^c) - Z_0 \). Hence:

\[
Z_2 \supseteq \{ C_i \cap Z_1 \neq \emptyset, C_i \subseteq (Z_0 \cup Z_1)^c \}.
\]

Then \(Z_2 \neq \emptyset \) and \(Z_1 \cap Z_h \neq \emptyset \) if and only if \(|h - 1| \leq 1 \). Iterating, we get that \(Z_h \neq \emptyset \) for \(h = 0, \ldots, r_T \) and \(Z_{h_1} \cap Z_{h_2} \neq \emptyset \) if and only if \(|h_1 - h_2| \leq 1 \). Notice that (c) and (3.7) follow by construction.

We show (b). If \(T \) is trivial, we have nothing to prove. By (3.7) we have \(\deg T|_{Z_0} = -\#(Z_0^c \cap Z_0) \).

If \(C_0 \subseteq Z_0 \), we get a contradiction, being \(C_0 \subseteq Z_0^c \) and \(T \) admissible. Then \(C_0 \subseteq Z_0 \). Assume that \(Z_0 \) is not connected and let \(Z_0^c \) be a connected component of \(Z_0 \) such that \(C_0 \not\subseteq Z_0^c \). Then \(C_0 \subseteq (Z_0^c)^c \) and \(\deg T|_{Z_0^c} = -\#((Z_0^c)^c \cap Z_0^c) \), again a contradiction.
We show (a). Assume that there exists a connected component Z_h^E of Z_h such that $Z_h^E \cap Z_{h-1} = \emptyset$, for some $h = 1, \ldots, r_T$. Then $C_0 \subseteq (Z_h^E)^c$ and $\deg T|_{(Z_h^E)^c} = -\#((Z_h^E)^c \cap Z_h^E)$, a contradiction.

Notice that the partition Z_0, \ldots, Z_h of C is the unique satisfying (ii). \hfill \Box

Definition 3.4. Keep the notations of Lemma 3.3. We call the partition Z_0, \ldots, Z_{r_T} of C the partition of C induced by T. We denote by $\text{Ad}_f(C_0)$ the set of the admissible f-twisters T of C with respect to C_0. We say that a node p of C is T-twisted if $p \in Z_{i-1} \cap Z_i$, for some $i = 1, \ldots, r_T$.

Remark 3.5. Let T and \bar{T} be two admissible f-twisters of C with respect to C_0 and let Z_0, \ldots, Z_{r_T} and $\bar{Z}_0, \ldots, \bar{Z}_{r_T}$ be the partitions of C induced respectively by T and \bar{T}. Let S (resp. \bar{S}) be the set of T-twisted nodes (resp. \bar{T}-twisted nodes). If $S = \bar{S}$ and $Z_0 = \bar{Z}_0$, then $T = \bar{T}$. Indeed, the connected components of the two partitions are the same, because they are obtained by taking the desingularization of C at the nodes of S. Since $Z_0 = \bar{Z}_0$, we have $T = \bar{T}$ by condition (a) of Lemma 3.3.

Definition 3.6. Let $f : C \to B$ be a general smoothing of a nodal curve C. Let X be obtained by blowing-up C at a set Δ of nodes of C. Let $\pi : X \to C$ be the blow-up morphism. Consider the smoothing $f' : \tilde{X} \to B'$ of X, where B' is the degree-2 covering of B, totally ramified over $0 \in B$, and \tilde{X} is the blow-up of $C \times_B B$ at Δ. Fix $M \in \text{Pic} C$ and $L \in \text{Pic} X$. We say that L and M are f-related if there exists an f'-twister T of X such that $L \simeq \pi^* M \otimes T$.

Lemma 3.7. Let $f : C \to B$ be a general smoothing of a stable curve C of genus $g \geq 3$, where B is the spectrum of a discrete valuation ring. Let T be an admissible f-twister of C. Let Z_0, \ldots, Z_{r_T} be the partition of C induced by T. Assume that M is a T-spin curve and that a representative (X, L, α) of some $\xi \in \Sigma_C(\omega_C)$ fullfills the following properties:

(i) X is obtained by blowing-up C at the T-twisted nodes;
(ii) for every $h = 0, \ldots, r_T$, the restriction of L to Z_h is:

$$L \otimes \mathcal{O}_{Z_h} \simeq \begin{cases}
M \otimes \mathcal{O}_{Z_h}(-\sum_{p \in Z_h \cap Z_{h+1}} p) & \text{if } h = 0, \ldots, r_T - 1, \\
M \otimes \mathcal{O}_{Z_h} & \text{if } h = r_T.
\end{cases}$$

Then there exists a representative (X, L_M, α_M) of ξ such that M and L_M are f-related.

Proof. Let $B' \to B$ be the degree 2 cover of B, totally ramified over $0 \in B$. Let \tilde{X} be obtained by blowing-up $C \times_B B'$ at the set of the T-twisted nodes of C. Then the projection $f' : \tilde{X} \to B'$ is a smoothing of the fiber $X = (f')^{-1}(0)$ and X is obtained by blowing-up C at the set of T-twisted nodes. Let $\pi : X \to C$ be the induced blow-up morphism. Notice that \tilde{X}, the residual in X of the union of the exceptional component of X, is the disjoint union of Z_0, \ldots, Z_{r_T}. Furthermore, \tilde{X} is smooth at every node lying on an exceptional component of X and has a singularity of type A_1 at the remaining nodes. Let E_h be the set of exceptional components of X intersecting Z_{h-1} and Z_h, for each $h = 1, \ldots, r_T$. Consider the Cartier divisor of \tilde{X}:

$$D_M = -\sum_{h=1}^{r_T} \left(h \cdot Z_h + h \cdot \sum_{E \in E_h} E \right).$$

Pick the f'-twister $T_M = \mathcal{O}_{\tilde{X}}(D_M) \otimes \mathcal{O}_X$ of X. Set $L_M := \pi^* M \otimes T_M \in \text{Pic} X$. By construction, L_M and M are f-related. We are done if we show that we can construct a representative (X, L_M, α_M) of ξ.

First of all, we define α_M as follows. By construction, $L_M|_E \simeq \mathcal{O}_E(1)$ for every exceptional component E and by condition (ii) we get $L_M|_{Z_h} = L|_{Z_h}$ for every $h = 0, \ldots, r_T$. By definition, $M^\otimes 2 \simeq \omega_C \otimes T$
and, by formula (3.7) of Lemma 3.3:

\[(\omega_C \otimes T)|_{Z_h} \simeq \begin{cases}
\omega_{Z_h}(\sum_{p \in Z_h \cap Z_{h+1}} 2p) & \text{if } h = 0, \ldots, r_T - 1, \\
\omega_{Z_h} & \text{if } h = r_T.
\end{cases} \]

Thus, \((L_M|_{Z_h})^\otimes \simeq \omega_{Z_h}\), for every \(h = 0, \ldots, r_T\). Let \(\alpha_M : (L_M)^\otimes \to \pi^*(\omega_X)\) be the homomorphism which agrees on each \(Z_h\) with:

\[\alpha_h : (L_M|_{Z_h})^\otimes \simeq \omega_{Z_h} \simeq \pi^*(\omega_C) \otimes \mathcal{O}_{Z_h} \left(- \sum_{p \in Z_h \cap Z_h'} p \right) \to \pi^*(\omega_C) \otimes \mathcal{O}_{Z_h}\]

and which is zero on the exceptional components of \(X\). Now, \(\bar{X} = \bigcup_{i=0}^{r_T} Z_i\), then \(L_M|_{\bar{X}} \simeq L|_{\bar{X}}\) and \((X, L_M, \alpha_M)\) is a representative of \(\xi\) by Remark 2.1. \(\square\)

Let \(f : C \to B\) be a general smoothing of a stable curve \(C\). For any \(f\)-twister \(T\) of \(C\) consider the moduli space:

\[\overline{S}_f(\omega_f \otimes T) \to B\]

whose fiber over \(b \in B\) parametrizes limit square roots of \(\omega_f \otimes T \otimes \mathcal{O}_{C_b}\). These moduli spaces are isomorphic away from the special fiber. Hence they have the same normalization, which, in the notations of Theorem 2.2, we write as:

\[\nu_T : \overline{S}_f^T(\omega_f) \to \overline{S}_f(\omega_f \otimes T).\]

Let \(S_f(\omega_f \otimes T)\) be the open subscheme of \(\overline{S}_f(\omega_f \otimes T)\) parametrizing limit square root supported on stable curves. Notice that \(S_f(\omega_f \otimes T)\) is étale over \(B\), by [CCC, 4.1]. In particular, there is an immersion \(S_f(\omega_f \otimes T) \hookrightarrow \overline{S}_f^T(\omega_f)\).

Remark 3.8. Let \(f : C \to B\) be a smoothing of a nodal curve \(C\) and let \(\mathcal{G} \in \text{Pic}(C)\). Let \(L \in \text{Pic}(C)\) be endowed with an isomorphism \(t_0 : L^\otimes \to \mathcal{G}|_C\). By [CCC, Remark 3.0.6.], up to shrinking \(B\) to a complex neighborhood of 0, there exists a line bundle \(\mathcal{L} \in \text{Pic}(C)\) extending \(L\) and an isomorphism \(\iota : \mathcal{L}^\otimes \to \mathcal{G}\) extending \(t_0\). Moreover, if \((\mathcal{L}', \iota')\) is another extension of \((L, t_0)\), then there is an isomorphism \(\chi : \mathcal{L} \to \mathcal{L}'\), restricting to the identity, and with \(\iota = \iota' \circ \chi^2\).

Theorem 3.9. Let \(f : C \to B\) be a general smoothing of a stable curve \(C\) of genus \(g \geq 3\) with \(\text{Aut}(C) = \{id\}\). Let \(C_0\) be an irreducible component of \(C\). Then:

\[N(S(\omega_f^*)) \simeq \bigcup_{T \in \text{Ad}_f(C_0)} S_f(\omega_f \otimes T) \sim,\]

where \(\sim\) denotes the gluing along the generic fiber of \(S_f(\omega_f^* \otimes T) \to B\).

Assume that \(f\) admits enough sections through the \(B\)-smooth locus of \(f\) and let \(\sigma\) be a section of \(f\) through the \(B\)-smooth locus of \(C\) such that \(\sigma(0) \in C_0\). Fix the canonical polarization \(\mathcal{E} = \mathcal{O}_C\) on \(C\). If \(J_E^\sigma\) is the open subscheme of \(J_E^\sigma\) parametrizing locally free sheaves, then there exists an immersion:

\[\psi_f : N(S(\omega_f^*)) \hookrightarrow (J_E^\sigma)^{\text{free}}.\]
Proof. We can assume without loss of generality that B is the spectrum of a discrete valuation ring. Recall that $S_f(\omega_f \otimes T) \hookrightarrow \overline{S_f}^T(\omega_f)$, for every twister T. By Theorem 2.2, it suffices to show the equivalence of the following properties, for every $\xi \in \overline{S_f}^T(\omega_f)$:

(i) $\overline{S_f}^T(\omega_f) \to B$ is étale at $\xi' \in v^{-1}(\xi)$;

(ii) there exists a unique $T \in \text{Ad}_f(C_0)$ such that $\overline{S_f}^T(\omega_f)$ and $S_f(\omega_f \otimes T)$ are isomorphic, locally at $\xi' \in v^{-1}(\xi)$.

We show (i) \Rightarrow (ii). Let (X, L, α) be any representative of ξ. We show that there exists a T satisfying (ii). If $X = C$, then it suffices to set $T = \mathcal{O}_C \in \text{Ad}_f(C_0)$. Assume that $X \neq C$ and let $\pi : X \to C$ be the blow-up map and $\tilde{x}_0, \ldots, \tilde{x}_c$ be the connected components of \tilde{x}, corresponding to the vertices of Σ_X. Let v_i be the vertex of Σ_X corresponding to \tilde{x}_i. By Theorem 2.2, the graph Σ_X is bipartite. Assume that $C_0 \subset \tilde{x}_0$ and set $A_0 := \{v_0\}$. For every $i \geq 1$, define inductively the set A_i as the set of vertices v of Σ_X such that there exists an edge containing v and a vertex of A_{i-1}. Let A_0, \ldots, A_r be the non-empty sets defined in this way. Abusing notation, we can see \tilde{x}_i as a subcurve of C. Consider the divisor $D = \sum_{i=0}^r \sum_{v_j \in A_i} i \cdot \tilde{x}_j$ of C. Set $T := \mathcal{O}_C(D)|_C$. Notice that $Z_0 = \tilde{x}_0$ and T satisfies the conditions of Lemma 3.6 (ii), then $T \in \text{Ad}_f(C_0)$. Let Z_0, \ldots, Z_{r_T} be the partition of C induced by T. Being Σ_X bipartite, each edge of Σ_X has a vertex in A_{i-1} and the other vertex in A_i, for some $i = 1, \ldots, r$. In particular, X is obtained by blowing-up C at the T-twisted nodes. Consider the subset \mathcal{M} of $S_f(\omega_f \otimes T)$ defined as the set of T-spin curve $M \in \text{Pic}C$ satisfying for every $h = 0, \ldots, r_T$:

$$M \otimes O_{Z_h} \simeq \begin{cases} L \otimes O_{Z_h}(\sum_{p \in Z_h \cap Z_{h+1}} p) & \text{if } h = 0, \ldots, r_T - 1, \\ L \otimes O_{Z_h} & \text{if } h = r_T. \end{cases}$$

Notice that $S_f(\omega_f \otimes T) \to B$ is étale at each $M \in \mathcal{M}$. Then $S_f(\omega_f \otimes T)$ and $\overline{S_f}^T(\omega_f)$ are isomorphic, locally at each $M \in \mathcal{M}$. Our goal is to show that $\overline{S_f}^T(\omega_f)$ and $S_f(\omega_f \otimes T)$ are isomorphic, locally at every $\xi' \in v^{-1}(\xi)$. It is enough to show that $\mathcal{M} = v^{-1}(\xi)$. By Lemma 3.7, for every $M \in \mathcal{M}$, there is a representative (X, L, M, α_M) of ξ such that L_M and M are f-related. Keep the notations of Definition 3.6. Since L_M and M are f-related, it follows from Remark 3.8 that L_M and π^*M are limits of the same family of theta characteristics on the family $f': X \to X$. Thus, $M \in v^{-1}(\xi)$ and hence $\mathcal{M} \subset v^{-1}(\xi)$. Now, the ramification index of $\psi : S_f(\omega_f) \to B$ at ξ is $2^b_1(\Sigma_X)$, then $|v^{-1}(\xi)| \leq 2^b_1(\Sigma_X)$ and, by construction, $|\mathcal{M}| = 2^{b_1(\Sigma_X)}$. This implies $\mathcal{M} = v^{-1}(\xi)$.

We claim that T is uniquely determined within $\text{Ad}_f(C_0)$, i.e. if $\overline{S_f}^T(\omega_f)$ and $S_f(\omega_f \otimes \tilde{T})$ are isomorphic, locally at $\xi' \in v^{-1}(\xi)$ for some $T \in \text{Ad}_f(C_0)$, then $\tilde{T} = T$. Indeed, in this case, there exists a \tilde{T}-spin curve \tilde{M} such that $\tilde{M} \in v^{-1}(\xi)$. We claim that X is obtained by blowing-up C at the \tilde{T}-twisted nodes. Otherwise, let \tilde{X} be obtained by blowing-up C at the \tilde{T}-twisted nodes, with $\tilde{X} \neq X$. By Lemma 3.7, there exists $\tilde{\xi} \in \tilde{S}_C(\omega_C)$, with a representative $(\tilde{X}, \tilde{L}, \tilde{a})$, where \tilde{L} is f-related to M. Arguing as before, we get $\tilde{M} \in v^{-1}(\tilde{\xi})$ and hence $\xi = \tilde{\xi}$, contradicting Remark 2.1. Now, let $\tilde{Z}_0, \ldots, \tilde{Z}_{r_T}$ be the partition of C induced by \tilde{T}. Since X is obtained by blowing-up C at the \tilde{T}-twisted nodes, the set of \tilde{T}-twisted nodes coincides with the set of \tilde{T}-twisted nodes. Then $\tilde{Z}_0 \cap Z_0$ are \tilde{T}-twisted nodes. Being $\emptyset \neq C_0 \subset \tilde{Z}_0 \cap Z_0$ and Z_0 connected, we have $Z_0 \subset Z_0$. Arguing similarly we get $Z_0 \subset Z_0$ and hence $\tilde{Z}_0 = Z_0$. Then $\tilde{T} = T$, by Remark 3.5. The implication (ii) \Rightarrow (i) is trivial.

Now we prove the second part. First of all, we show the existence of a morphism $S_f(\omega_f \otimes T) \to J^\omega_f$, for every $T \in \text{Ad}_f(C_0)$. In fact, let $S_f(\omega_f \otimes T)$ be the subfunctor of the functor $\overline{S_f}^T(\omega_f \otimes T)$ defined in (2.1), associating to a locally Noetherian B-scheme T the set of isomorphism classes of limit square roots of ω_f supported on $C \times T$, for $f : C \times T \to T$ the first projection. By definition of admissible twister, we have a transformation of functors:

$$S_f(\omega_f \otimes T) \to J^\omega_f \xrightarrow{\sim} \text{Hom}(-, J^\omega_f).$$
Now, $S_f(\omega_f \otimes T)$ coarsely represents $S_f(\omega_f \otimes T)$. Therefore, we get a morphism $S_f(\omega_f \otimes T) \to J^\sigma_E$. By the first part of the theorem, we have:

$$N(S(\omega^*_f)) \cong \bigcup_{T \in \text{Ad}_f(C_0)} S_f(\omega_f \otimes T)$$

hence we get a morphism $\psi_f : N(S(\omega^*_f)) \to J^\sigma_E$, which is injective because the line bundles parametrized by the points of $N(S(\omega^*_f))$ over $0 \in B$ are non-isomorphic T-spin curves. Now, $\psi_f : N(S(\omega^*_f)) \to \text{Im} \psi_f$ is an injective B-morphism and $N(S(\omega^*_f))$ is B-smooth. Then $\text{Im} \psi_f$ is B-smooth and ψ_f is an immersion. By construction $\text{Im} \psi_f \subset (J^\sigma_E)^{\text{free}}$.

Acknowledgments

I wish to thank L. Caporaso for fundamental suggestions. I thank S. Busonero, E. Esteves and F. Noseda for useful discussions.

References