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SUMMARY

Novel strategies in diabetes therapy would obviously
benefit from the use of beta (b) cell stem/progenitor
cells. However, whether or not adult b cell progeni-
tors exist is one of the most controversial issues in
today’s diabetes research. Guided by the expression
of Neurogenin 3 (Ngn3), the earliest islet cell-specific
transcription factor in embryonic development, we
show that b cell progenitors can be activated in
injured adult mouse pancreas and are located in
the ductal lining. Differentiation of the adult progeni-
tors is Ngn3 dependent and gives rise to all islet
cell types, including glucose responsive b cells that
subsequently proliferate, both in situ and when cul-
tured in embryonic pancreas explants. Multipotent
progenitor cells thus exist in the pancreas of adult
mice and can be activated cell autonomously to in-
crease the functional b cell mass by differentiation
and proliferation rather than by self-duplication of
pre-existing b cells only.
INTRODUCTION

Numerous mechanisms that control differentiation of endocrine

progenitor cells in the embryonic pancreas have been disclosed

(Jensen, 2004) but our knowledge on the existence of precursors

and generation of islet cells in the postnatal pancreas depends

merely on descriptive data and indirect proof (Bonner-Weir and

Weir, 2005; Bouwens and Rooman, 2005). Long-term culture

of heterogeneous populations of pancreas cells favors enrich-

ment of beta (b) cell-like phenotypes (Bonner-Weir et al., 2000;

Seaberg et al., 2004; Suzuki et al., 2004) that under certain con-

ditions were able to reverse hyperglycemia when transplanted in

diabetic mice (Hao et al., 2006; Ramiya et al., 2000). None of

these studies, however, was conclusive in demonstrating the
existence and origin of a bona fide b cell progenitor in postnatal

pancreas. The elusiveness of this cell type reached a summit

when genetic lineage tracing provided evidence that pre-existing

b cells, rather than stem/progenitor cells, are the major source of

new b cells in adult mice both under normal physiological condi-

tions and after 70% or 50% pancreatectomy (Dor et al., 2004;

Teta et al., 2007).

Two major problems are at the basis of this ambiguous sce-

nario: the slow turnover of adult b cells and the lack of specific

markers to trace their origin. We overcame these hurdles by (1)

forcing the generation of new b cells through partial duct ligation

(PDL) in the pancreas of adult mice and (2) using transgenic re-

porter mice that allow tracing of the promoter activity of Ngn3

as a marker of adult progenitor cell recruitment. PDL stimulates

doubling of the b cell mass in rats (Wang et al., 1995), and Ngn3 is

an essential master switch for differentiation of embryonic islet

cell progenitors (Apelqvist et al., 1999; Gradwohl et al., 2000;

Gu et al., 2002; Schwitzgebel et al., 2000) and extremely rare

in normal postnatal pancreas (Gu et al., 2002).

RESULTS

Activation of Ngn3 Gene Expression Induces b Cell
Hyperplasia in Adult Mice
Pancreatic b cells have a slow turnover under normal physiolog-

ical conditions but expand rapidly under certain experimental

conditions like PDL (Wang et al., 1995). In Balb/c mice, the

duct leading to the pancreatic tail was closed while the organ’s

head located adjacent to the stomach and duodenum remained

unaffected. Within 1 week far most of the acinar exocrine cells

underwent apoptosis (Figure S1A) and likely were scavenged

by CD45+ cells recruited to the ligated tail part of pancreas

(Figure S1C) (Scoggins et al., 2000). Moreover, duct cell-cycle

activity was strongly elevated (Figures S1B and S2E), and conse-

quently, the density of duct structures significantly increased

(Figures 1A, S1A, and S1B). The weight of the pancreatic tail de-

creased (Figure S2A), while body weight and glycemia remained

unaffected (Figures S2B and S2C). The total insulin+ cell mass in
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Figure 1. PDL Activates Ngn3 Gene Expression and

Increases b Cell Mass in Adult Pancreas

(A–C) In 8-week-old BALB/C mice, the duct that connects pancre-

atic tail and duodenum was ligated, and the ligated tail of PDL pan-

creas at day 7 (PDL D7) was compared to the tail of sham-treated

pancreas (CTR) by immunohistochemistry for cytokeratin+ (CK)

ductular complexes and insulin+ cells (A). Magnification bars are

100 mm. Several parameters were measured (see Experimental Pro-

cedures) at 3, 7, 14, and 30 days following ligation. PDL increased

the insulin+ cell mass (mg) (B) and the insulin content (mg) (C) of

the tail part of pancreas more than 2-fold (black bars) as compared

to the unligated head of the same pancreas (gray bars) and the tail of

a sham-operated pancreas (white bars).

(D) At 3, 7, 14, and 30 days after PDL and 1 hr before sacrifice, the

nucleotide analog BrdU (50 mg/kg) was injected intraperitoneum.

The number of insulin+ BrdU+ cells on pancreatic tissue sections

was 10-fold higher in the ligated tail versus control tail or head of

pancreas. A similar relative increase of BrdU+ b cells was seen

when BrdU had been applied 16 hr before sacrifice (4.60% ±

0.51% in ligated tail of pancreas at day 7 following PDL versus

0.66% ± 0.15% in unligated tail).

(E) A more than 50-fold increase of Ngn3 transcripts was observed

in ligated versus unligated part of pancreas by real time RT-PCR

using a mouse Ngn3-specific TaqMan probe. All results shown

are representative of three or more independent experiments.

*: p < 0.001 ligated versus unligated pancreas tail.
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the ligated part of pancreas increased more than 2-fold within 1

week following surgery (Figures 1B and S1D), and the absolute

amount of immunoreactive insulin had doubled 1 week later,

a lag period likely needed for b cell maturation (Figure 1C). The

individual b cell size remained similar under all conditions tested

(Figure S2D), meaning that the treatment induced an increase

in cell number rather than in cell size. During this period, the num-

ber of b cells in active cell cycle increased 10-fold as established

by incorporation of the nucleotide analog BrdU (Figures 1D and

S1E). As PDL robustly induced generation of new b cells, we in-

vestigated the importance of progenitor cell activation and b cell

proliferation in doubling of the b cell mass. A strong activation of

expression of Ngn3, a well-established marker for embryonic is-

let cell progenitors, was observed specifically in the ligated part

of adult mouse pancreas within 3 days following injury. Maximal

levels of Ngn3 transcript were reached within 1 week and subse-

quently decreased slowly (Figure 1E). Besides neo-formation of

b cells, the number of apoptotic b cells increased significantly

(Figure S1F). Apoptotic b cells were not preferentially in active

cell cycle (Figure S1G).

To investigate the causal relationship between the doubling

of b cell mass and the activation of Ngn3 gene expression, the

latter was knocked down during PDL-induced formation of

endocrine pancreas. Recombinant lentiviruses that encode 2

Ngn3-specific short hairpin (sh) interfering RNA molecules (Le-

sh1Ngn3 and Le-sh2Ngn3), or a control, scrambled sequence

(Le-scr) (Baeyens et al., 2006) were injected into the pancreatic

duct via the papilla Vateri, followed by ligation of the tail duct.

The viruses constitutively express the reporter protein eGFP

that allowed us to evaluate the efficiency and specificity of infec-

tion in the whole organ and in tissue sections. Injection of re-

porter virus in sham-treated pancreas transduced 62% of total

cells (Figure S3). When virus injection was combined with duct

ligation, 18% ± 10% of total cells expressed detectable levels

of eGFP 1 week after surgery (Figure 2A). Following infection

with lentivirus expressing shRNA, acinar cells disappeared sim-

ilarly as in control PDL pancreas, and no off-target effects on

differentiation and proliferation of duct cells were observed (Fig-

ures S4A–S4C). In Le-shNgn3-injected pancreas the Ngn3 tran-

script abundance was 70% ± 11% (sh1) and 49% ± 4% (sh2)

lower than in sham- and Le-scr-injected PDL pancreas at day

7 (Figures 2B, upper and S5). PDL-induced increase of the

b cell mass was prevented by 66% ± 17% (sh1) and 26% ±

10% (sh2) following infection with Le-shNgn3 (Figure 2B, mid-

dle). These data strongly suggest that b cell formation following

PDL depends at least partly on Ngn3 activity. The induced BrdU

labeling index of insulin+ cells decreased with 77% ± 10%

(sh1) and 32% ± 12% (sh2) by Le-shNgn3 versus Le-scr injection

(Figure 2B, lower), indicating that an important fraction of BrdU+

b cells (Figure 1D) were derived from differentiated Ngn3+ cells.

Ngn3+ Cells in Adult Pancreas Originate from Hormone�

Progenitors Near Ducts and Become Islet Cells
Given the activated Ngn3 expression in injured pancreas of adult

mouse, we attempted to track these islet progenitor cells in

transgenic Ngn3-nLacZ mice, expressing a nuclear b-galactosi-

dase (b-gal) reporter protein under control of a 6.9 kb genomic

sequence that includes the Ngn3 promoter and faithfully recapit-
ulates the spatial expression of Ngn3 in the embryonic as well as

in the adult pancreas (G.M. and G.G., unpublished data). Histo-

chemistry for b-gal activity revealed blue nuclei in adult mouse

duodenum (data not shown), known to constitutively express

Ngn3 in enteroendocrine progenitor cells (Jenny et al., 2002;

Schonhoff et al., 2004). The Ngn3 reporter was also detected

in the ligated tail of PDL pancreas but not in the unligated head

or in the pancreatic tail of sham-operated mice. The localization

of 785 b-gal+ cells was examined in six mice, 7 days following

PDL (Figure 3A). Of all b-gal+ cells 15% ± 1% were immunoreac-

tive for duct cell-specific cytokeratins (CK) (Figure 3B) and half of

the b-gal+CK+ cells were lining the duct lumen as shown by con-

focal scanning microscopy (Figure 3C). Furthermore, Ngn3 was

expressed in duct-lining cells that activated Pdx1 expression fol-

lowing PDL (Figure 3I). No marker typical for any pancreatic cell

type was expressed on 51% ± 2% b-gal+ cells (Figure 3D), one-

third of which were still in contact with CK+ duct cells (Figure 3B).

Immunohistochemical staining with a Ngn3-specific antibody

showed that the Ngn3+ cells in duct-ligated pancreas were de-

void of islet cell-specific hormones (Figures 3E–3F). On the other

hand, the long half-life of the reporter protein b-gal (Gonda et al.,

1989) allowed tracing the fate of Ngn3+ cells to their endocrine

descendants. Indeed, 34% ± 4% of b-gal+ cells contained tran-

scripts encoding islet hormones at day 7 following PDL (Figures

3G and 3H). Half the number of hormone-expressing bGal+ cells

was still in contact with duct cells but none of these were part

of the luminal lining. No b-gal+ cells costained for amylase (not

shown). While these lineage-tracing data strongly suggest that

the observed Ngn3+ cells originate from islet hormone� cells

among the lining of ducts and migrate to become hormone+ cells

within the islet structures in adult mice, they do not fully exclude

the alternative possibility that endocrine cells dedifferentiated

to Ngn3+ cells. Therefore, we traced permanently labeled b cells

from INS-Cre/R26R mice with PDL and found the label absent

from Ngn3+ cells (Figure S6B) supporting differentiation of

Ngn3+-to-islet cells.

Ngn3+ Progenitor Cells Can Be Purified from Adult
Mouse Pancreas
Based on the number of b-gal+ cells in 30 tissue sections from

the PDL pancreas of three mice, approximately 5000 b-gal+ cells

were present in the ligated tail, a sufficiently high number to

endeavor their isolation. By flow cytometry, Ngn3+ cells were

isolated from the PDL pancreas of reporter mice that express

eGFP under control of the same 6.9 kb Ngn3 promoter fragment

as used in the Ngn3-nlacZ mice. As for b-gal, the half-life of eGFP

(Corish and Tyler-Smith, 1999) exceeds that of Ngn3 (Lee et al.,

2001), and consequently the reporter protein was still present

in a fraction of the hormone-positive descendants of the preen-

docrine cells (data not shown). These GFP+ cells with hormone-

containing vesicles were excluded, and only nongranulated

GFP+ cells were considered as endocrine progenitors. Seven

days following partial duct ligation, PI�/GFP+/TSQ�/LowSSC

cells (termed GFP/LSSC cells from hereon) that were viable,

green fluorescent, and contained only few granules could be

isolated from PDL pancreas of Ngn3-eGFP mice (Figure 4A).

The transcript encoding Ngn3 was 200-fold enriched, and those

encoding insulin and glucagon were very rare in the progenitor
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Figure 2. Knockdown of Ngn3 Impairs PDL-Induced b Cell

Generation

(A) The pancreatic duct of adult BALB/C mice was injected with recombi-

nant lentiviruses encoding reporter eGFP and two different shRNAs for

specific interference with Ngn3 transcript (Baeyens et al., 2006) (Le-

sh1Ngn3-eGFP and Le-sh2Ngn3-eGFP) or control sequence (Le-scr-

eGFP), immediately followed by PDL. The efficiency of infection was de-

termined 7 days following sham- or virus injection and PDL by direct fluo-

rescence of whole pancreas tail (upper row) and by immunostaining for

the reporter on pancreas sections (middle row). The specificity was de-

fined by the fraction of GFP+ cells that immunostained positive for duct

cell-specific cytokeratins (47% ± 9%) or the islet cell marker synaptophy-

sin (5% ± 2%). As most acinar cells had disappeared at day 7 following

PDL, no GFP+ cells were amylase+ (lower rows).

(B) As a result of the Ngn3-specific knockdown by Le-shNgn3-eGFP in

day 7 PDL pancreas (black bar), the fold activation of Ngn3 was de-

creased by 70% ± 11% (sh1) and 49% ± 4% (sh2) as compared to the

effect of Le-scr-eGFP infection (gray bar, upper). The b cell mass more

than doubled in the tail of Le-scr-infected PDL pancreas compared to

sham-operated control (hatched bar), but this effect was inhibited by

66% (sh1) and 26% (sh2) following infection with Le-shNgn3 (middle).

Ngn3 knockdown also reduced the increase in the number of insulin+

cells that incorporated BrdU following Le-shNgn3 injection (lower).

Abundance of transcripts was quantified by real-time RT-PCR using Taq-

Man probes. b cell mass and the fraction of BrdU+ insulin+ cells were de-

termined as in Figure 1, except that BrdU was supplied 16 and 2 hr before

sacrifice. All results shown are representative of three independent ex-

periments. *: p < 0.05 Le-shNgn3-eGFP versus Le-scr-eGFP infected

PDL pancreas. Magnification bars are 100 mm.
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population as compared to nonsorted PDL pancreas cells

(Figure 4B). A similar cell population was isolated from the pan-

creas of Ngn3eYFP/+ knock add-on mice (Mellitzer et al., 2004),

corroborating faithful recapitulation of Ngn3 expression in the

Ngn3-eGFP mice (Figure 4D) (data not shown). The GFP/LSSC

cell population represented 0.04% of the total number of sorted

pancreatic cells. Of this sorted population, 93% ± 4% immuno-

stained GFP+, 90.1% ± 5% Ngn3+, and none were insulin+

(Figure 4E). As expected, the fraction of insulin+ cells was high

in the GFP+/TSQ+/HSSC (termed GFP/HSSC from hereon) cell

population (85% ± 10%) and in total pancreas (3.0% ± 0.8%).

GFP/LSSC cells, sorted from GCG-Cre/R26R/Ngn3-eGFP

mice pancreas (Figure S6C) 7 days following PDL, lacked b-gal

(800 cells counted), while the reporter was expressed in

5% of islet cells (Figure S6D). In addition to the differentiation of

Ngn3+-to-b cells (Figure S6B) and the similar amount of

Ngn3 transcripts in islets isolated from the tail of ligated and

sham-treated pancreas (lower than in total PDL pancreas)

(Figure 4C), these data provide strong evidence against islet-

to-Ngn3+ cell dedifferentiation.

Due to the controversial aspect of progenitor cells in adult pan-

creas, we compared these GFP/LSSC cells with Ngn3+ cells iso-

lated from E13.5 embryonic pancreas and from adult duodenal

crypt region, as these Ngn3+ cell types are generally accepted

to be genuine endocrine progenitors (Gu et al., 2002; Jenny

et al., 2002; Schonhoff et al., 2004). While 99.8% of the sorted

cells from embryonic pancreas and adult duodenum were

GFP-positive, none immunostained positive for insulin. The

abundance of Ngn3 transcripts in these cells was more than

100-fold higher than in the nonsorted cell populations (data not

shown). Electron micrographs of GFP/LSSC cells isolated from

embryonic and adult PDL pancreas showed rounded cells that

were 3-fold smaller than adult mouse b cells (985 ± 112 mm3

versus 3052 ± 178 mm3) and had relatively large nuclei (695 ±

98 mm3 versus 565 ± 76 mm3) with a remarkable amount of het-

erochromatin in the periphery of the nuclei (Figure 4F). The ultra-

structural features of Ngn3+ cells isolated from adult duodenum

were similar to those of the pancreatic GFP/LSSC cells (data not

shown). In contrast to the many dark secretory granules contain-

ing mature insulin that are present in all differentiated b cells,

tected by histochemical staining of Ngn3-reporter activity (B–D, G, and H). The

identity of the b-gal-expressing cells was determined by combined immuno-

histochemical detection of ductal cytokeratins and/or islet hormones (B–D,

G, and H). An overview of the distribution of coexpressing cells was based

on the examination of 785 b-gal+ cells in the ligated pancreas of 6 mice (A).

15% ± 1% of all b-gal+ cells expressed duct cell-specific cytokeratins (CK)

but no insulin (INS) (B, arrow) or other islet cell hormones (not shown). Half

of the b-gal+ CK+ hormone� cells were in direct contact with the duct lumen

(C). Half of the b-gal+ cells did not express CK or islets markers (here INS)

(D), one-third of which were in contact with CK+ cells (B, arrowhead). While

immunostaining for endogenous Ngn3 showed no coexpression with islet hor-

mones, insulin (E, E0), glucagon (GCG), somatostatin (SST), or pancreatic poly-

peptide (PP) (F), one-third of all b-gal+ cells were hormone+ indicating that

Ngn3+ cells are the source of endocrine islet cells (G and H). DAPI (blue) (E

and F) and PI (red) (C) stain the nuclei. All sampling was done 1 week following

PDL. No Ngn3 or b-gal signal was detected in tail of unligated or head of ligated

pancreas. Sham-treated and PDL D7 pancreas were stained simultaneously

for Pdx1 and Ngn3 showing coexpression in cells lining the duct of PDL

pancreas (I). Magnification bars are 10 mm.
Figure 3. New Islet Cells Derive from Hormone� Progenitors among

the Lining of Ducts in PDL Pancreas

(A–I) Duct ligation induced Ngn3 promoter activation in the pancreatic tail of

the outbred CD1 x C57BL/6 strain of Ngn3-nlacZ reporter mice (data not

shown), similar as in Balb/c mice. Expression of lacZ, coding for the long-living

reporter b-gal under the control of Ngn3 promoter sequences, allowed track-

ing of the Ngn3-expressing cells and their descendants. Ngn3+ cells were de-
Cell 132, 197–207, January 25, 2008 ª2008 Elsevier Inc. 201



Figure 4. Ngn3+ Cells Isolated from Adult

Pancreas Have an Embryonic Islet Cell

Progenitor Phenotype

(A) GFP+ cells were isolated by flow cytometry

from adult PDL pancreas (day 7) of Ngn3 reporter

mice, based on GFP expression and low degree

of granulation. First, viable Ngn3+ cells were iso-

lated based on their GFP fluorescence and capacity

to exclude propidium iodide. Then, they were sepa-

rated from the hormone+ cells according to their low

degree of cellular granulation that was evaluated in

two ways, namely by binding of the Zn2+-chelator

6-methoxy-8-p-toluene sulfonamide quinoline (TSQ)

to hormone peptides in secretory vesicles and cel-

lular sideward scattering (SSC) properties. The re-

sulting cell population is PI�/GFP+/low SSC/TSQ�,

in brief GFP/LSSC (red window), while granulated

GFP+ cells are PI�/GFP+/high SSC/TSQ+ or GFP/

HSSC (green window). GFP/LSSC cells were not

detected in wild-type littermates.

(B–D) Quantification of transcript levels by RT-

QPCR (see Table S1 and Experimental Procedures).

RNA was extracted from the total population of non-

sorted pancreas cells (white bars), GFP/LSSC cells

(gray bars), GFP/HSSC cells (black bars), and islets

from sham-treated (vertical lines) or PDL (horizontal

lines) pancreas from transgenic mice with random

Ngn3-eGFP insertion (B and C) or eYFP added on

the Ngn3 locus (D). All RT-PCR results shown are

representative of three independent experiments.

(E) Immunodetection of insulin+ and Ngn3+ cells on

cytospins of nonsorted and sorted cells from PDL

D7 pancreas. Enrichment of GFP+ and Ngn3+ cells

and depletion of insulin+ cells in the GFP/LSSC frac-

tion (0 insulin+ on 3000 GFP/LSSC cells, a fraction of

the GFP/LSSC cells from 48 PDL mice) was con-

firmed by immunocytochemistry.

(F) Ultrathin sections of GFP/LSSC (upper panels)

and GFP/HSSC cells (lower left panel) from adult

PDL (day 7) and of GFP/LSSC cells from E13.5 pan-

creas (lower right panel) were analyzed on transmis-

sion electron micrographs. All cells were isolated

from Ngn3-eGFP transgenic mice. Magnification

bars are 100 mm in (E) and 10 mm in (F).

(G) Compared to nonsorted pancreas cells (Total

cells) or GFP/HSSC cells, the expression of progen-

itor marker Ngn3 and of developmental transcrip-

tion factors Ptf1a, Sox9, HNF6, and Nkx6.1, located

upstream of Ngn3 during embryogenesis, was high

in GFP/LSSC cells while that of its direct targets and

differentiation markers was low or absent. The pres-

ence of transcripts was determined by conventional

RT-PCR amplification with specific primers (Exper-

imental Procedures). cDNA from adult mouse islet

cells and from GFP+ cells isolated from E13.5 pan-

creas of Ngn3-GFP reporter mice served as control

(CTR). The negative control (-) contained no cDNA.
202 Cell 132, 197–207, January 25, 2008 ª2008 Elsevier Inc.



most GFP/LSSC cells from embryonic or adult pancreas were

nongranulated and few granules were found in only 5% ± 1%

of them. The latter had inclusions of low electron density, without

a halo (Figure 4F), typical for cells with unprocessed hormone

(Orci et al., 1985) and another indication of the immature cell

state. Ngn3 cells isolated from adult regenerating pancreas

thus strongly resemble progenitors of endocrine cells in embry-

onic pancreas and adult duodenum.

More extensive gene-expression profiling revealed that tran-

scription factors expressed upstream of Ngn3 in early pancreas

epithelium (Ptf1a, Sox9, HNF6, and Nkx6.1) were also enriched

in GFP/LSSC cells, while the ones that continue to be expressed

in mature islet cells (Hlxb9 and Pdx1) were higher in GFP/HSSC

than LSSC cells. Transcription factors acting downstream of

Ngn3 (IA1, Pax4, Arx, Nkx2.2, NeuroD1, Pax6) were overall low

in GFP/LSSC cells, also illustrating their early endocrine differen-

tiation status (Figure 4G).

Ngn3+ Cells from Adult Pancreas Differentiate to
Functional Islet Cells In Vitro
When cultured in 1% or 10% serum, either in suspension, as

monolayer, or in 3D collagen gel, over 90% of the GFP/LSSC

cells died after 1 day (data not shown). All factors required for en-

dogenous Ngn3+ cells to survive and differentiate into islet

cells should, however, be present in the embryonic pancreas in

situ but also in embryonic organ culture (Miralles et al., 1998)

(Figures S7A–S7C). We therefore considered the ex vivo cultured

embryonic mouse pancreas as an appropriate microenviron-

ment to investigate the capacity of the Ngn3+ cells isolated

from adult mouse pancreas to differentiate into mature islet

cells (Figure 5A). In wild-type (WT) E12.5 pancreatic explants,

the differentiating endocrine cells derived from endogenous

Ngn3-expressing cells, since no islet hormone+ cells appeared

in explants from Ngn3 homozygous null mutant embryos

(Figure 5B). To exclude interference with these endogenous

embryonic Ngn3+ cells, the isolated GFP/LSSC cells from normal

embryonic and ligated adult pancreas of Ngn3-eGFP mice were

microinjected in embryonic Ngn3�/� pancreas. No insulin or glu-

cagon peptide or transcript could be detected in the engrafted

Ngn3�/� explants following 1 day of culture (Figure 5B,C). After

7 days of culture, WT explants as well as engrafted—but not

sham-injected—Ngn3�/� explants contained transcripts encod-

ing the four islet hormones as well as their corresponding pep-

tides (Figures 5B and 5C). No cell expressed more than one hor-

mone simultaneously (data not shown). We further examined

whether the observed endocrine differentiation was cell autono-

mous or whether fusion or signaling between injected adult

Ngn3+ cells and explanted embryonic pancreas was involved.

First, when GFP/LSSC cells were preincubated with CellTracker

Orange (CMTMR) and injected in explanted pancreas of Ngn3�/�

embryonic mice, the injected GFP/LSSC cells differentiated

since some of them expressed insulin already at day 4 of culture

(Figure S8A). Second, when mouse GFP/LSSC cells were cul-

tured in explants of rat embryonic pancreas and differentiating

b cells were immunostained by species-specific antibodies

directed against insulin C peptide (Blume et al., 1990), both

mouse and rat cells independently differentiated to C peptide+

cells (Figure S8B). Finally, when GFP/LSSC cells isolated from
Ngn3-eGFP mice that constitutively express b-gal were cultured

in pancreas explants from embryonic Ngn3�/�mice, all differen-

tiated, hormone+ cells were b-gal+ (Figure S8C). Consequently,

the endocrine cells originate directly from the injected GFP/

LSSC cells without cell fusion.

When explants were labeled with BrdU during the last 16 hr of

culture, the injected GFP/LSSC cells did not enter the cell cycle

after 1 day, while 22% ± 6.2% of the newly differentiated insulin+

cells were active in S phase at day 7 (Figure 5D).

WT explants contained 137 ± 37 ng of insulin following 7 days

of culture (versus 1.2 ± 0.8 ng at day 1) and Ngn3�/� explants

supplemented with adult GFP/LSSC cells had 35 ± 7 ng insulin

(versus 0.2 ± 0.2 at day 1). To evaluate the degree of differentia-

tion of the GFP/LSSC cells, we measured glucose responsive-

ness of the insulin release. Glucose induced a 1.5-fold increase

of insulin secretion from explanted E12.5 pancreas of WT mice at

day 7 of culture (Figure 5E). Embryonic pancreas from Ngn3�/�

mice acquired glucose responsiveness when injected with

GFP/LSSC cells from adult Ngn3-eGFP mice (PDL D7), since

their insulin release increased 2.6-fold when stimulated with 20

mmol/L glucose (Figure 5E).
DISCUSSION

Our study demonstrates convincingly that the adult mouse pan-

creas contains islet cell progenitors and that expansion of the

b cell mass following injury induced by ligation of the pancreatic

duct depends at least partly on the activation of Ngn3 gene

expression and the ensuing differentiation of endogenous pro-

genitor cells in a cell-autonomous, fusion-independent manner.

Partial duct ligation induces a strong inflammatory response

and a loss of acinar cells. Both processes may be important in

signaling for increase of the b cell mass under these conditions

of injury, but it is unclear at this moment whether they play

a role in the normal physiology of a healthy pancreas where

the importance of self-duplication rather than stem cell differen-

tiation is well documented (Dor et al., 2004; Teta et al., 2007). Ac-

tivation of Ngn3 and doubling of the b cell mass could be

prevented up to 66% by Ngn3-specific RNA interference, sug-

gesting a considerable contribution of progenitor cells to the ob-

served b cell hyperplasia. In nonligated pancreas 67% of the

cells were transduced compared to only 18% in ligated pan-

creas. This difference is due to the disappearance of acinar cells,

the most abundant cell type of the infected pancreas and to

a massive recruitment of uninfected immune response cells to

the pancreas affected by inflammation following PDL. The effi-

cient Ngn3 knockdown can be explained by (1) the infection of

67% of pancreas cells before PDL is carried out, (2) the specific

location of an important fraction of Ngn3-expressing cells, tar-

gets of the interfering RNA, among or in contact with duct cells

that line the site of injection and therefore are exposed directly

to the virus, and (3) a near 100% knockdown of Ngn3 expression

by Le-sh1Ngn3 (Baeyens et al., 2006). The remaining increase in

b cell mass in spite of Ngn3 knockdown likely is due to cycling of

(1) pre-existing b cells and/or (2) progenitor cells that were unin-

fected or that had differentiated beyond the Ngn3+ stage before

being infected.
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Figure 5. Ngn3+ Cells from Adult Pancreas Differentiate In Vitro into Functional b Cells

(A) The following is a schematic overview of the experiment: GFP/LSSC cells were isolated by flow cytometry from adult (PDL D7) or embryonic (E13.5) pancreas.

Embryonic pancreas was explanted from homozygous Ngn3 null mutant mice or their WT littermates at E12.5 (D-1). One day later (D0), 500 GFP/LSSC cells were

microinjected into the embryonic pancreas and kept in culture for 1 or 7 days.

(B) Following 1 day in culture, WT embryonic explants immunostained positive for insulin and glucagon but Ngn3�/� embryonic explants did not, even when in-

jected with GFP/LSSC cells from adult PDL. After 1 week of culture, WT explants expressed insulin and glucagon, somatostatin, and pancreatic polypeptide but

Ngn3�/� explants did not. However, when engrafted with GFP/LSSC cells from E13.5 or adult PDL pancreas, the four islet hormones were detected in Ngn3�/�

explants. Magnification bar is 100 mm.

(C) RNA was extracted from the explants described in (B), cultured for 1 (white bar) or 7 (gray bar) days and transcript levels encoding Ngn3, insulin 1 and 2, and

glucagon were determined by quantitative RT-PCR (see Experimental Procedures). The negative control contained no cDNA.

(D) While cell-cycle activity was high in the explant cultured for 1 day, the engrafted GFP/LSSC cells from adult PDL pancreas were out of cycle. After their

differentiation to insulin+ cells, however, the injected cells reinitiated cell cycle. Explants were labeled with BrdU during the last 16 hr of culture.

(E) The glucose-responsive insulin release by embryonic pancreas from Ngn3�/� mice engrafted with GFP/LSSC cells was determined at day 1 and day 7 of

culture, following incubation in 6 mmol/L (white bars) or 20 mmol/L (gray bars) glucose for 24 hr. Explants from embryonic pancreas of WT mice and of nonen-

grafted Ngn3�/� mice were taken as positive and negative control, respectively. All results shown are representative of three independent experiments.

*: p < 0.001 insulin release at 6 mmol/L versus 20 mmol/L glucose.
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While under normal physiological conditions the slow course

of b cell proliferation is sufficient to compensate for their low

turnover and expansion (Dor et al., 2004; Teta et al., 2007), our

data in injured tissue demonstrate a rapid course of hyperplasia

that depends on progenitor cell recruitment. This pathway may

not be active after 50%–70% partial pancreatectomy (PPx)

(Dor et al., 2004; Teta et al., 2007), a less robust injury model in

which Ngn3-expressing cells remain absent (Lee et al., 2006)

and the b cell mass indeed increases much slower than following

duct ligation (Bouwens and Rooman, 2005).

The Ngn3+ islet cell progenitors coexpress cytokeratins when

located among the cells that line the pancreatic ducts and were

activated by PDL as shown by expression of Pdx1. In PDL pan-

creas, the Ngn3+ cells near and within islets did not express any

of the islet cell hormones, nor did permanently labeled islet cells

express Ngn3. Finally, islets isolated from PDL pancreas con-

tained less Ngn3 mRNA than total PDL pancreas, excluding

dedifferentiation of pre-existing islet cells as the basis of the phe-

nomena we describe. The detection of b-gal in the progeny of

Ngn3+ cells that already expressed the hormones, some of

which were in islets, suggests a migration from duct to islet by

the progenitor cells. The ultrastructure of Ngn3+ cells from adult

pancreas revealed an immature phenotype, but when injected in

an embryonic microenvironment that supports islet progenitor

differentiation, the GFP/LSSC cells became functional endocrine

islet cells among which were b cells with glucose responsive in-

sulin release. We confirmed that the 6 kb promoter recapitulates

the endogenous Ngn3 expression by performing PDL on the

pancreas of Ngn3eYFP/+ knock-add-on mice (Mellitzer et al.,

2004) and showing that YFP/LSSC cells are similar to the GFP/

LSSC cells found in PDL pancreas from Ngn3-GFP mice. The en-

dogenous progenitor cell type we isolated from adult mouse

pancreas is different from the atypical ones isolated from neona-

tal (Suzuki et al., 2004) or adult (Seaberg et al., 2004) mouse pan-

creas that expressed Ngn3 but had a high proliferation capacity

and gave rise to pancreatic (Seaberg et al., 2004; Suzuki et al.,

2004) and neuronal (Seaberg et al., 2004) cell types in vitro.

None of these expanded colonies formed islet cells with signifi-

cant glucose responsive insulin release. Recently, the nonendo-

crine fraction of the human pancreas, containing undifferentiated

epithelial cells that expressed markers of pancreatic duct cells,

was used to generate new insulin-producing cells when grafted

together with cells of fetal pancreas under the kidney capsule of

mice (Hao et al., 2006). An important similarity with our study is

the requirement of an embryonic microenvironment able to pro-

duce essential growth and differentiation factors. Cytokeratin 19,

the marker used by Hao et al. (2006) is ambiguous, though, since

it is expressed in islet cells undergoing dedifferentiation (Gao

et al., 2005). Ngn3, however, is the only unambiguous marker

known for islet progenitors in the embryonic (Gu et al., 2002)

and in the adult pancreas (present study). Our data provide the

first direct evidence for the existence of endogenous endocrine

islet cell progenitors in adult mouse pancreas. This cell popula-

tion is similar to the one that gives rise to the islets during embry-

onic development and represents an obvious target for thera-

peutic regeneration of b cells in diabetes. Indeed, our findings

reveal the significance of investigating the feasibility of (1) isolat-

ing facultative b cell progenitors and newly formed b cells from
human pancreas in order to expand and differentiate them

in vitro and transplant them in diabetic patients and (2) compos-

ing a mix of factors able to activate b cell progenitors to expand

and differentiate in situ in patients with an absolute or relative

deficiency in insulin.

EXPERIMENTAL PROCEDURES

Mouse Manipulations

All mice experiments were performed in accordance with our institutional ‘‘Eth-

ical Committee for Animal Experiments’’ and national guidelines and regula-

tions. The pancreatic duct of 8 weeks old mice (Balb/C, C57BL/6 x CD1

Ngn3-nLacZ, Ngn3-eGFP, Ngn3eYFP/+ [Mellitzer et al., 2004], Ngn3-eGFP/

ROSA26-lacZ, Ngn3-eGFP/GCG-Cre/R26R, INS-Cre/R26R) was ligated as

described in rats (Wang et al., 1995) with some minor modifications. GCG-

Cre and INS-Cre were kindly provided by Pedro Herrera (University of Geneva),

and ROSA26-lacZ and R26R were from Philippe Soriano (Fred Hutchinson

Cancer Research Center). Following clamping of the distal bile duct, 60 ml

containing 2 3 107 TU of recombinant lentiviruses that express short hairpin

RNA molecules directed against Ngn3 (Le-sh1Ngn3 50-GTGCTCAGTTC-

CAATTCCA-30 and Le-sh2Ngn3 50-GACCCTGCGCTTCGCCCAC-30) or a ran-

dom control shRNA (Le-scr 50-GAGCATGCGAGCCATGCAC-30 ) (Baeyens

et al., 2006) were slowly injected in the pancreatic duct (Taniguchi et al.,

2003) or in explant of embryonic pancreas. We minimized possible off-target

effects by careful selection of the RNAi sequences using the siDESIGN Center

(http://www.dharmacon.com) (Reynolds et al., 2004). Candidate target shRNA

sequences were blasted against mouse transcript and genomic databases.

Their sequence similarity with genes other than Ngn3 (100% identity) was

‘‘not significant.’’ The highest similarity (74%–79% identity) was between

synuclein alpha and Sh1 and between Ngn2 or gastric inhibitory polypeptide

receptor and Sh2. From E12.5 or E13.5 embryos of WT or Ngn3�/� mice,

the dorsal lobes of pancreas were isolated as described (Duvillie et al.,

2003; Miralles et al., 1998), cultured in RPMI1640 + 10% fetal calf serum

(Hyclone), and microinjected (Eppendorf TransferMan NK) with 500 GFP/

LSSC cells that were collected in a micropipette with 20 mm diameter.

Isolation and Labeling of Ngn3-eGFP Cells

GFP/LSSC cells were obtained from embryonic (E13.5) and adult (PDL D7)

pancreas of Ngn3-eGFP mice following dissociation to single cells (collage-

nase, 0.3 mg/ml and trypsin, 10 mg/ml, Sigma), filtration (30 mm), incubation

with PI (2mg/ml, Sigma), and TSQ (2 mg/ml, Molecular Probes) for 15 min and

sorting on a FACSAria (Becton Dickinson). GFP/LSSC cells were labeled by

incubation for 10 min in presence of 5 mM CellTracker Orange CMTMR (Invitro-

gen, Molecular Probes).

RNA and Protein Analysis

Total RNA was isolated from tissue (RNeasy, QIAGEN) or cells (Picopure,

Arcturus). Only RNA with RNA Integrity Number R 7 (2100 BioAnalyzer,

Agilent) was further analyzed. cDNA synthesis and RT-PCR were done as

described (Mellitzer et al., 2006) using specific primers (Table S1). Quantitative

PCR was performed using mouse-specific primers and probes recognizing

insulin 1 (Mm01259683), insulin 2 (Mm00731595), glucagon (Mm00801712),

CD45 (Mm00448463_m1), F4/80 (Mm00802530_m1), and cyclophilin A

(Mm02342429) with TaqMan Universal PCR master mix on an ABI Prism

7700 Sequence Detector, and data were analyzed using the Sequence

Detection Systems Software, Version 1.9.1 (all Applied Biosystems). The

following sequences were used for analysis of Ngn3: 50-GTCGGGAGAACTAG

GATGGC-30 go (forward primer)p, 50-GGAGCAGTCCCTAGGTATG-30 (reverse

primer), and 50-CCGGAGCCTCGGACCACGAA-30 go(probe). The abundance of

Ngn3, insulin 1, insulin 2, glucagon, CD45, and F4/80 transcripts was normal-

ized versus the abundance of the transcript encoding the housekeeping pro-

tein cyclophilin A.

Samples for immunohistochemistry (IHC) were fixed in 4% formaldehyde

(FA) for 4 hr respectively at RT following embedding in paraffin or at 4�C fol-

lowed by overnight in 20% sucrose and freezing. Samples for immunocyto-

chemistry (ICC) were fixed in 4% FA for 10 min. Paraffin sections (4–5 mm)
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were incubated with antisera specific for insulin (1/5000, guinea pig), glucagon

(1/3000, rabbit) and somatostatin (1/5000, rabbit) (generated at the Diabetes

Research Center, Brussels), pancreatic polypeptide (1/5000, rabbit, gift from

Lilly), synaptophysin (1/50, rabbit, Zymed), pan-keratin (1/1000, rabbit, Dako

Cytomation), amylase (1/500, rabbit, Sigma), PHH3 (1/400, rabbit, Upstate

Biotechnology), BrdU (1/10, mouse, Cappel), GFP (1/100, rabbit or goat,

Abcam), activated caspase 3 (1/200, rabbit, Cell Signaling), CD45 (1/50, rat,

BD-PharMingen), F4/80 (1/10, rat, Serotec), Ngn3 (1/2000, mouse, Ole

Madsen, Hagedorn Research Institute, Gentofte) (Zahn et al., 2004), and

Pdx1 (1/1000, rabbit), mouse-specific C peptide (1/6000, rabbit), and rat-

specific C peptide (1/6000, rabbit) (Beta Cell Biology Consortium, Antibody

Core). The primary rat-specific anti-C peptide was labeled using a fluoro-

phore-labeled Fab fragment directed against its Fc portion (Zenon, Molecular

Probes). Antigen retrieval was required for recognition of synaptophysin,

PHH3 and Ngn3 (microwave), BrdU, and pankeratin (proteinase K). Secondary

antibodies for detection of guinea pig, rabbit, goat, or mouse antibodies were

labeled by fluorescence (Cy3, Cy2, Cy5, or AMCA) (Jackson ImmunoResearch

Labs) or by ABC/DAB (DakoCytomation/Becton Dickinson). Signals of Ngn3

were amplified using the TSA-Cy3 System (Perkin Elmer Life). Nuclei were

labeled by Hoechst 33342 (4 mg/ml, Sigma) or Sytox green (5 mM, Invitrogen).

Images were viewed using normal (Zeiss Axioplan 2) or confocal scanning

(Leica DMIRE) microscopy and morphometrically analyzed using NIH ImageJ

(versus1.3.1). For electron microscopy samples were prepared as in Here-

mans et al. (2002).

Quantitative analysis of the b cell mass (calculated on the basis of at least 9

sections, 150 mm apart from each other, per pancreas tail or head) and the

number of BrdU+ insulin+ cells was done as described by Bogdani et al.

(2003) (Figure S9).

Insulin content of adult and embryonic pancreas and medium insulin were de-

terminedby radioimmunoassayusing mouse insulin RIA kit (LincoResearch Inc.).

Glucose response of adult and embryonic GFP/LSSC cells, cultured in

Ngn3�/� explants for 1 or 7 day(s), was assayed for insulin release in the

medium following incubation with 6 or 20 mmol/L glucose during the last 24

hr. Positive and negative controls were sham-injected embryonic pancreas

explants from WT and Ngn3�/� mice, respectively.

Data Analysis

All values are depicted as mean ± standard error of the mean (SEM) from at

least three independent experiments and considered significant if p < 0.05.

All data were statistically analyzed by multivariate comparison (two-way

ANOVA) with Bonferroni correction or one-way ANOVA with Newman-Keuls

correction.

Supplemental Data

Supplemental Data include seven figures and one table and can be found with

this article online at http://www.cell.com/cgi/content/full/132/2/197/DC1/.
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