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Abstract

Path transferability of a graph is a notion that arises from the movement of a path along the graph, the behavior of the path seems
as a train on a railroad. In this paper, we introduce two graph notions, transferability and reversibility, and study their properties.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The graphs discussed here are finite, simple and connected. We follow [3] for all basic notation and terminology.
A path consists of distinct vertices v0, v1, . . . , vn and edges v0v1, v1v2, . . . , vn−1vn. When the direction of the path
P needs to be emphasized, it is denoted 〈P 〉(we distinguish between 〈v0v1 . . . vn−1vn〉 and 〈vnvn−1 . . . v1v0〉). If there
is no danger of confusion, we use the same notation P instead of 〈P 〉. We denote the reverse path of P by P−1. The
number of edges in a path P is called its length and is denoted by ‖P ‖. A path of length n is called an n-path. The
set of all directed n-paths in a graph G is denoted by Pn(G). The last (resp. first) vertex of a path P in its direction
is called the head (resp. tail ) of P and is denoted by h(P )(resp. t (P )); for P = 〈v0v1 . . . vn−1vn〉, we set h(P ) = vn

and t (P )= v0. The set of all inner vertices of P, (i.e., the vertices that are neither the head nor the tail) is denoted by
Inn(P ) (Fig. 1).

This paper focuses on the movement of a path along a graph: let P be an n-path. We assume that h(P ) has a
neighboring vertex v which does not belong to Inn(P ). Then we have a new n-path P ′ by deleting the vertex t (P )

from P and adding v to P as its new head, (it seems that P takes one step and reaches the next position P ′). We say
that P can transfer (or move) to P ′ by a step and denote it by P

v→P ′ (or briefly P → P ′, or sometimes P → v). If

there is a sequence P0
x1→P1

x2→· · · xm→Pm, we shortly denote it by P0
x1→ x2→· · · xm→Pm. If there is a sequence of paths

P → · · · → Q for two paths P and Q, then we say that P can transfer (or move) to Q, and denote it by P Q. The
following is basic and important.

Proposition 1. Let P, Q be distinct n-paths in G. If P Q, then Q−1 P−1.

In this paper, we regard a path as a “train” that moves along a graph. The main question we study is whether a path
can transfer to everywhere on the graph by several steps.
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Fig. 1.

Definition 1. A graph G is called n-path-transferable or n-transferable if Pn(G) �= ∅ and if any two n-paths in G
can transfer from one to another by finite number of steps, that is, P Q holds for any pair of directed n-paths
P, Q ∈ Pn(G).

Definition 2. An n-path P in a graph is called reversible if P can transfer to P−1, and a graph G is called n-path-
reversible or n-reversible if Pn(G) �= ∅ and if any directed n-path in G is reversible.

Remark 1. We define any graph to be 0-transferable and 0-reversible.

Remark 2. In a graph with minimum degree at least two, except cycle graphs, 1- or 2-paths can transfer from one
to another. Conversely, we need at least two cycles to reverse a 1- or 2-path. Hence, the following statements are
equivalent:

(1) A graph G is k-transferable (k = 1, 2).
(2) A graph G is k-reversible (k=1, 2).
(3) G is a graph with minimum degree �2 which has at least two cycles.

Remark 3. Let P = 〈v0v1 . . . vn〉 be an n-path with n�1. If P is reversible, then P can take at least one step, that
is, there is a vertex v and a path Q that satisfies P

v→Q. Furthermore, if P is reversible, then we have the following
sequence of n-paths:

P 〈. . . . . . . . . . . . vn〉
vn−1→〈. . . . . . . . . vnvn−1〉
vn−2→〈. . . . . . vnvn−1vn−2〉

...
v0→〈vn . . . . . . v1v0〉 = P−1.

The longer a path is, the more difficult it is to move. The next theorem gives us an assurance for this fact. The proof
will be shown later.

Theorem 2. If a graph G is n-reversible, then G is (n− 1)-reversible.

The maximum number n for which G is n-reversible is called the reversibility of G and is denoted by �(G). By
definition, if G is n-transferable, then G is n-reversible. However, we will show that there is no difference between
them.

Main theorem. Let n be a non-negative integer, G a finite simple connected graph. The graph G is n-transferable if
and only if G is n-reversible.

The maximum number n for which G is n-transferable is called the transferability of G. By the main theorem, we
use the same notation �(G) for transferability and reversibility. The transferability of complete graphs can be obtained
from this theorem.
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Fig. 2. A process of P P−1 in K6.

Theorem 3. Let Kn be an n-vertex complete graph. For n= 1, 2, 3, �(Kn)= 0, and for n�4, �(Kn)= n− 2.

Proof. It is easy to see that the assertion holds for n= 1, 2, 3. We assume that n�4. Let v1, v2, . . . , vn be the vertices
of Kn and P = 〈vn−1vn−2 . . . v2v1〉 an (n − 2)-path in the graph. It is sufficient to show that P P−1. We have the
following sequence:

P
vn→ vn−1→ · · · v3→〈v1vnvn−1vn−2 . . . v4v3〉
v1→ v2→〈vn−1vn−2 . . . v4v3v1v2〉
vn→ vn−1→ · · · v4→〈v1v2vnvn−1vn−2 . . . v4〉
v1→ v2→ v3→〈vn−1vn−2 . . . v4v1v2v3〉

...

vn→ vn−1→〈v1v2 . . . vn−3vnvn−1〉
v1→ v2→· · · vn−3→ vn−2→〈vn−1v1v2 . . . vn−3vn−2〉
vn−1→〈v1v2v3 . . . vn−2vn−1〉 = P−1,

so the assertion holds (Fig. 2). �

Recently, the author found that the following papers are in some sense related to the study of this paper. However,
we do not use the notions and results of these papers.

In [1], Broersma and Hoede introduce “path graph”, which is a generalization of line graph. A digraph version of
path graph is studied in [2]. By using their notation, we can redefine that G is n-transferable if and only if the digraph
D= (V,E) is non-empty, strongly connected, here V={P |P ∈ Pn(G)} and E={(P, Q)|P → Q;P, Q ∈ Pn(G)}.

On the other hand, in [4,5], Robertson et al. proposed the following for an approach to “linkless embedding conjecture”
suggested by Sachs; let G be a graph, H, H ′ subgraphs of G, each is a hexad or a pentad (here hexad implies a subdivision
of K3,3, pentad a subdivision of K5). If G is 4-connected, then there is a sequence H = H1, . . . , Hn = H ′ such that
each is a hexad or a pentad and that each differs only a “little” from the preceding one.

We study properties of n-reversible graphs in this paper, and almost all of this paper is devoted to the proof of the
main theorem.
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2. Proof of Theorem 2

Lemma 4. Let G be an n-reversible graph, and P an n-path in G. Then P can arrive at any vertex in G, that is, for any
vertex v there is an n-path Q such that P Q, h(Q)= v.

Proof. Let P = 〈v0v1 . . . vn〉 be an n-path in G. Since P is reversible, there is a sequence of n-paths

P 〈. . . . . . . . . . . . vn〉
vn−1→〈. . . . . . . . . vnvn−1〉
vn−2→〈. . . . . . vnvn−1vn−2〉

...
v0→〈vn . . . . . . v1v0〉 = P−1.

Thus P can arrive at all vertices v0, v1, . . . , vn of V (P ) itself. Let U be the set of all vertices at which P can arrive. The
set U is not empty.

We assume that U �= V (G), and let w be one of the vertices in V (G) − U . Since G is connected, there is a path
between U and w. We denote it by L=ww1 . . . wl−1wl , and choose the length of L as short as possible. By the choice
of L, only wl is the vertex of L that belongs to U, i.e., w, w1, . . . , wl−1 /∈U , wl ∈ U .

When P arrive at wl , let the n-path be Q. We can move the path Q toward wl−1 by a step; otherwise the reason that
Q cannot move to wl−1 is that wl−1 is one of the inner vertices of Q, however, P must have arrived at wl−1 before
arriving at the position of Q, and this contradicts the definition of U. Therefore, Q can move to wl−1 and then P can
arrive at wl−1, this contradicts wl−1 /∈U . Thus U = V (G) as desired. �

Lemma 5. Let G be an n-reversible graph and P an (n − 1)-path in G. If P is contained in some n-path, then P is
reversible.

Proof. Let Q= 〈v0v1 . . . vn〉 be an n-path which includes an (n− 1)-path P = 〈v1 . . . vn〉 as a subpath. The other case
t (P )= t (Q) is similar, so we omit it. Since Q is reversible, there is a sequence of n-paths;

Q
w1→· · · wk→ vn→Q0 = 〈. . . . . . . . . . . . vn〉

vn−1→ Q1 = 〈. . . . . . . . . vnvn−1〉
...

v0→Qn = 〈vn . . . . . . v1v0〉 =Q−1.

For this sequence, P can also take the same steps keeping with Q’s steps (it seems that a “train” Q conveys its “freight”
P):

P
w1→· · · wk→ vn→〈. . . . . . . . . . . . vn〉 ⊆ Q0

vn−1→ 〈. . . . . . . . . vnvn−1〉 ⊆ Q1

...
v1→〈vn . . . . . . v2v1〉 = P−1 ⊆ Q−1.

Thus P is reversible. �

Proof of Theorem 2. Let G be an n-reversible graph and P = 〈v1v2 . . . vn〉 an (n − 1)-path in G. We will show that
P is contained in some n-path, and then P is reversible by Lemma 5. By Lemma 4, there is an n-path that arrives at v1,
and we denote it by Q1 = 〈. . . . . . . . . wv1〉.

Case 1: We assume that w is not in V (P ).
In this case, the n-path P+ = 〈wv1v2 . . . vn〉 has P as its subpath.
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Case 2: We assume that w = v2.
In this case, the path Q1 has the form Q1 = 〈. . . . . . v2v1〉. Since Q1 is reversible, there is a path Q2 such that

Q1
v1→ v2→Q2 = 〈. . . . . . . . . v1v2〉.

We move the path Q2 along the path P as close to vn as possible, and let the resulting path be Qk , that is,

Q1 Q2 = 〈. . . . . . . . . . . . v1v2〉
...

vk→Qk = 〈. . . . . . v1v2 . . . vk〉.
If k = n, then P ⊂ Qk as desired. We thus assume that k < n. The reason that Qk cannot take a step to vk+1 is that
vk+1 is an inner vertex of Qk . Hence, Qk has the form

Qk = 〈. . . . . . u2u1vk+1w1 . . . wlv1v2 . . . vk〉.
Here, we consider the following n-path instead of Qk ,

Q′k = 〈. . . . . . u2u1vk+1vk . . . v2v1wl . . . w1〉.
Since Q′k is reversible, there is a sequence of n-paths

Q′k 〈. . . . . . w1 . . . wlv1〉
v2→〈. . . . . . . . . v1v2〉

...
vk→〈. . . v1v2 . . . vk〉

vk+1→ 〈. . . v1v2 . . . vkvk+1〉 =: Qk+1.

The last n-path Qk+1 contains more edges of P than Qk . Repeating the argument above, we finally find an n-path that
fully contains P.

Case 3: We assume that w is a vertex of V (P )− v2.
In this case, we can find an n-path that fully contains P in the same way as in Case 2, and P is reversible. �

3. Proof of main theorem

Let G be an n-reversible graph and P, Q two n-paths in G that satisfies P → Q. We set t (P ) = u and h(Q) = v.
As long as we treat n-reversible graphs, Q P also holds. We regard these steps as a back step of Q, and denote it by
Q

u←P (or briefly Q← P ). We notice that the notations P → Q and Q← P are not the same in meaning. In fact,
these two imply P

v→Q and Q
u←P , respectively.

Let R= 〈xv1 . . . vn〉, S = 〈yv1 . . . vn〉 be two n-paths in G. In Proposition 6, we will show that R S. Such a move

will be called a tail flip of R, and will be denoted R
y

� S (or briefly R�S). Head flip is similarly introduced and is
denoted by �.

Proposition 6. Let G be an n-reversible graph and P =〈xv1 . . . vn〉, Q=〈yv1 . . . vn〉 two n-paths in G. Then P Q.

Proof. Let P and Q be as above. Since P is reversible, there is a vertex z /∈ {v1, v2, . . . , vn} (it may be x or y) to which

P can transfer by a step. Then P
z→ y←Q, and therefore P Q. �

Let P = 〈v0v1v2 . . . vn−2vn−1vn〉 and Q= 〈vnv1v2 . . . vn−2vn−1v0〉 be two n-paths in a graph G. To prove the main
theorem, we will show that P Q if G is n-reversible. We call this the cross flip of P and denote it by P ∝ Q. To
prove this, we will prepare several lemmas and propositions.
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Fig. 3.
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Fig. 4.

Lemma 7. Let G be an n-reversible graph and P=〈v0v1v2 . . . vn−2vn−1vn〉, Q=〈vnv1v2 . . . vn−2vn−1v0〉 two n-paths
in G. We assume that there is a path L such that t (L) = vi , V (L) ∩ V (P ) = vi for some i, 1� i�n − 1. We further
assume that there is another path J such that t (J )= v0, h(J )= vn, V (J )∩ (V (P )∪ Inn(L))= {v0, vn}. If ‖L‖� i or
‖L‖�n− i, then P Q (Fig. 3).

Proof. Let k = ‖L‖. We assume that k� i (the other case k�n − i is similar). Let L = viu1 . . . ui . . . uk and J =
v0w1 . . . wlvn. Then we have the following sequence of n-paths:

P
wl→wl−1→ · · · w1→ v0→ v1→· · · vi−l−1→ 〈vivi+1 . . . vn−1vnwl . . . w1v0v1 . . . vi−l−1〉
u1←· · · ui←〈ui . . . u1vivi+1 . . . vn−1vn〉
v0
�〈ui . . . u1vivi+1 . . . vn−1v0〉
w1→· · · wl→ vn→ v1→ v2→· · · vn−1→ v0→Q,

and therefore P Q. �

Lemma 8. Let G be an n-reversible graph and P, Q as in Lemma 7. We assume that there is a path L such that t (L)=vi ,
h(L) = vj , V (L) ∩ V (P ) = {vi, vj } for some i, j , 0� i < j �n. We further assume that there is another path J such
that t (J )= v0, h(J )= vn, V (J ) ∩ (V (P ) ∪ Inn(L))= {v0, vn}. If ‖L‖> j − i, then P Q (Fig. 4).

Proof. Let k = ‖L‖. We assume that k > j − i. Let L= viu1 . . . uk−1vj , and J = v0w1 . . . wlvn. Then

P
wl→· · · w1→ v0→ v1→· · · vi→ u1→· · · uk−1→ vj→ vj+1→ · · · vn−1→ v0→
w1→· · · wl→ vn→ v1→· · · vi→ vi+1→ · · · vj→· · · vn−1→ v0→Q,

and therefore P Q. �

Theorem 9. Let G be an n-reversible graph and P, Q as in Lemma 7. If v0vn ∈ E(G), then P Q.

Proof. We set V = V (P ), W = V (G)− V (P ). Then we have W �= ∅; otherwise P has only one orbit P
v0→ v1→· · · vn→

P
v0→ v1→· · ·, and therefore, cannot be reversible.
We first show that any vertex in W is connected to v0 by a path whose vertices except v0 are in W : let u be a vertex

in W . Since G is connected, there is a path between u and V . Extending this path as long as possible in W , we set the
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path L= viu1u2 . . . uk . If k� i, then the assertion holds by Lemma 7, so we assume that k < i. We consider an n-path

R1 = 〈vi−k . . . v2v1vnvn−1 . . . viu1u2 . . . uk〉.
Since R1 is reversible and L cannot be extended in W , the head vertex uk is adjacent to one of the vertices vi−k, vi−k+1,

. . . , vi−1, v0 . If uk is adjacent to one of vi−k+1, . . . , vi−2, vi−1, then the assertion holds by Lemma 8, so we assume
that uk is adjacent to v0. Since u is an arbitrary vertex in W and it lies on L, we conclude that any vertex in W is
connected to v0 by a path.

Let L= v0w1w2 . . . wl and W0={w1, . . . , wl} ⊆ W . We choose the length of L as long as possible. It is easy to see
that P Q if l�n− 1, so we assume that 1� l < n− 1.

Case 1: l�2. We consider an n-path

R2 = 〈vlvl+1 . . . vn−1v0w1 . . . wl〉.
If wl is adjacent to one of v1, v2, . . . , vl−1, vl , then the assertion holds by Lemma 7, so we assume that wl is adjacent
to none of v1, v2, . . . , vl . Since R2 is reversible and L is a longest path, wl is adjacent to vn. We set

R3 = 〈vl+1vl+2 . . . vn−1vnv0w1 . . . wl〉.
The vertex wl is adjacent to vl+1 since wl is adjacent to none of v1, v2, . . . , vl . We further consider the next step of the
following n-path:

R4 = 〈vn−1vn−2 . . . vl+1wlvnv0w1 . . . wl−1〉.
If wl−1 is adjacent to one of v1, v2, . . . , vl−1, vn−1, then the assertion holds by Lemma 7. And if wl−1 is adjacent to vl ,
then the assertion holds by Lemma 8. We thus assume that wl−1 is adjacent to some vertex in W −W0, say w. We set

R5 = 〈vn−2 . . . vl+1wlvnv0w1 . . . wl−1w〉.
If w is adjacent to one of v1, v2, . . . , vl, vn−2, vn−1, then the assertion holds by Lemma 7. Otherwise, w is adjacent to
some vertex in W −W0 since R5 is reversible, however, this contradicts the maximality of the length of L.

Case 2: l = 1. All vertices in W are adjacent to v0 because any vertex in W is connected to v0 by a path without
crossing V . Let W ={w1, . . . , wm}. We notice that the vertices in W are pairwise non-adjacent. We will define n-paths
S1, S2, . . . inductively.

S1 = 〈v2v3 . . . vnv0w1〉,
Si = 〈v2iv2i+1 . . . vnv0v1 . . . v2i−2w1〉.

If w1 is adjacent to v2i−1, then the assertion holds by Lemma 7 or 8. We thus assume that w1 is not adjacent to v2i−1
and that w1 is adjacent to v2i . And then we set the next path

Si+1 = 〈v2i+2v2i+3 . . . vnv0v1 . . . v2iw1〉.
While we set the paths S1, S2, . . ., we also obtain that w1v2, w1v4, . . . ∈ E(G). The sequence must end by w1vn;
otherwise, if it ends by w1vn−1, then the assertion holds by Lemma 7. Particularly n is even. We deduce a similar fact
for the other vertices of W :

wjv0, wjv2, . . . , wjvn−2, wjvn ∈ E(G),

wjv1, wjv3, . . . , wjvn−3, wjvn−1 /∈E(G),

for each j, 1�j �m. Let U1 = {v0, v2, . . . , vn−2, vn}, U2 = {v1, v3, . . . , vn−3, vn−1}. Each vertex in U1 is adjacent to
each vertex in W , and there are no edges between U2 and W . To decide the relation between U1 and U2, we set

P2t−1 := 〈v0v1 . . . v2t−2w1v2t . . . vn−1vn〉,
Q2t−1 := 〈vnv1 . . . v2t−2w1v2t . . . vn−1v0〉,

and

V2t−1 := {v0, v1, . . . , v2t−2} ∪ {w1} ∪ {v2t , . . . , vn−1, vn},
W2t−1 := {v2t−1} ∪ {w2, . . . , wm},
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Fig. 5.

for each t, 1� t �n/2. Only (2t − 1)th vertices of P2t−1 and Q2t−1 differ from the vertices of P and Q, respectively.
For these paths, we can find that

P
v0→ v1→· · · v2t−2→ w1→ v2t→· · · vn−1→ vn→P2t−1,

Q2t−1
vn→ v1→· · · v2t→ v2t+1→ v2t+2→ · · · vn−1→ vn→Q,

thus P2t−1 Q2t−1 implies P Q. We apply the same method to the vertex v2t−1, and deduce that v2t−1 is adjacent
to the vertices in V2t−1 alternatively, that is,

v2t−1v0, v2t−1v2, . . . , v2t−1vn−2, v2t−1vn ∈ E(G),

v2t−1v1, v2t−1v3, . . . , v2t−1vn−3, v2t−1vn−1 /∈E(G).

The index t varies for 1� t �n/2. We therefore deduce that the vertices in U1 and the vertices in U2 are mutually
adjacent and that the vertices in U2 are pairwise non-adjacent.

We assume that there is an edge in U1 other than v0vn. Then we can find an n-path whose head and tail are in W

and which passes through all vertices of U1. However, this path cannot take even one step, and this fact contradicts
the reversibility of G. We therefore deduce that U1 has only one edge v0vn, and then G is a complete bipartite graph
Kn/2+1,n/2+m with an additional edge v0vn, whose partition sets are U1 and U2 ∪W (see Fig. 5). If n�4, this graph
cannot be reversible: in fact, no matter how P takes any steps, the order of v0, v2, v4 cannot be changed, so P is not
reversible. If n= 2, it is easy to see that the graph is 2-transferable. As a consequence, we complete the proof. �

Let P = 〈v0v1v2 . . . vn〉, Q = 〈v1v0v2 . . . vn〉 be two n-paths in an n-reversible graph. In Proposition 10, we will
show that P Q. Such a move will be called the �-tail flip of P, and will be denoted P�Q. �-head flip is similarly
introduced and is denoted by �.

Proposition 10. Let G be an n-reversible graph and P, Q as above. Then P Q.

Proof. If vn is adjacent to some vertex z /∈V (P ), then P
z→ v0

�
v1←Q. We thus assume that vn is adjacent to none of

the vertices out of V (P ). Since P and Q are reversible, vn is adjacent to v0 and v1. We can find that

P
v0→〈v1v2 . . . vnv0〉
〈v0v2 . . . vnv1〉 (by Theorem 9)

v1←〈v1v0v2 . . . vn〉 = Q,

and therefore P Q. �

Lemma 11. Let G be an n-reversible graph and P, Q and L as in Lemma 7. If v0vn−2, vnvn−2 ∈ E(G) and ‖L‖� i,
or if v0v2, vnv2 ∈ E(G) and ‖L‖�n− i, then P Q (Fig. 6).
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Fig. 6.

Proof. Let k = ‖L‖. We assume that v0vn−2, vnvn−2 ∈ E(G) and k� i (the other case is similar). We set L =
viu1 . . . ui . . . uk . Then we have the following sequence of n-paths:

P�〈v0v1 . . . vn−3vn−2vnvn−1〉
v0→ v1→· · · vi−1→〈vivi+1 . . . vn−3vn−2vnvn−1v0v1 . . . vi−2vi−1〉
u1← u2←· · · ui←〈ui . . . u2u1vivi+1 . . . vn−3vn−2vnvn−1〉
�

v0
� �〈ui . . . u2u1vivi+1 . . . vn−3vn−2v0vn−1〉

vn→ v1→ v2→· · · vi−1→ vi→· · · vn−2→ v0→ vn−1→〈vnv1v2 . . . vn−3vn−2v0vn−1〉
�Q,

and therefore P Q. �

We can also deduce the following as in Lemma 8. The proof is similar.

Lemma 12. Let G be an n-reversible graph and P, Q and L as in Lemma 8. If ‖L‖�j−i, and if v0vn−2, vnvn−2 ∈ E(G)

or v0v2, vnv2 ∈ E(G), then P Q.

Let P = 〈v0v1v2 . . . vn〉 be a path in a graph and P̂ = 〈wl . . . w1v0v1v2 . . . vn〉 a longest path with h(P ) = h(P̂ ),
P ⊆ P̂ . Then the subpath wl . . . w1v0 is called a rut of P, and the length l is denoted by r(P ).

Theorem 13. Let G be an n-reversible graph and P, Q as in Lemma 7. If r(P )�2 or r(Q)�2, then P Q.

Proof. Let V , W be as in the proof of Theorem 9. The case v0vn ∈ E(G) is already treated in Theorem 9, so we
assume that v0vn /∈E(G). Without loss of generality, we may assume that r(P )�r(Q), r(P )�2. We set l= r(P ) and
denote one of the ruts of P by L=wl . . . w1v0. Let W0={w1, w2, . . . , wl} ⊆ W . By the choice of L, wl is not adjacent
to any vertices in W −W0. If l�n − 1, then it is easy to see that P Q, we thus assume that l < n − 1. We further
assume that the cross flip of a path is allowed if a rut of the path has length > l.

Here, we consider the two cases whether wlvn ∈ E(G) or not.
Case 1: wlvn ∈ E(G). In this case, we further consider several cases for the neighbors of v2 and vn−2.
Case 1.1: We assume that v2 has a neighbor, say w, in W −W0. We set

R1 = 〈v1vnvn−1vn−2 . . . v3v2w〉,
R′1 = 〈v1v0vn−1vn−2 . . . v3v2w〉.

If w has a neighbor in W , or if w is adjacent to v1, then the assertion holds by Lemma 7. Hence we assume that w has
no neighbors in W , and then w must be adjacent to v0 and vn since R1 and R′1 are reversible. We set

R2 = 〈vl+2 . . . vn−1vnwv0w1 . . . wl〉.
If wl is adjacent to one of v1, v2, . . . , vl−1, vl , then the assertion holds by Lemma 7, so we assume that wl is adjacent
to none of v1, v2, . . . , vl . Since R2 is reversible and L is a longest path, wl is adjacent to vl+1 or vl+2. We first assume
that wlvl+1 ∈ E(G). Then we can consider the following n-path:

R3 = 〈vn−2vn−3 . . . vl+1wlvnwv0w1 . . . wl−1〉.
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If wl−1 is adjacent to one of v1, v2, . . . , vl , vn−2, vn−1, then the assertion holds by Lemmas 7 or 8, we thus assume
that wl−1 is adjacent to some vertex in W −W0, say w′. We set

R4 = 〈vn−3 . . . vl+1wlvnwv0w1 . . . wl−1w
′〉.

If w′ is adjacent to one of v1, v2, . . . , vl, vn−3, vn−2, vn−1, then the assertion holds by Lemma 7 or 8. Otherwise, w′
is adjacent to another vertex in W −W0 since R4 is reversible, however, this contradicts the maximality of the length
of L.

The assertion also holds for the other case wlvl+2 ∈ E(G) in a similar way.
As a consequence, we deduce that v2 has no neighbors in W −W0. We similarly deduce that vn−2 has no neighbors

in W −W0.
Case 1.2: We assume that l�3 and v2 is adjacent to one of the vertices in W0 − {w1, wl}. Let wi , 1 < i < l, be such

a vertex. Then

P
wl→ wi

�
wi+1← 〈wi+1wiv2 . . . vn−2vn−1vn〉

v0
�

w1→〈wiv2 . . . vn−2vn−1v0w1〉
v1
�

vn←Q.

Therefore v2, as well as vn−2, is adjacent to none of the vertices in W0 − {w1, wl}.
Case 1.3: We assume that v2 is adjacent both to w1 and to wl . Then

P
wl→ w1

�
w2←〈w2w1v2 . . . vn−2vn−1vn〉

v0
�

v1→〈w1v2 . . . vn−2vn−1v0v1〉
wl

�
w1
�

v1
�

vn←Q.

We thus conclude that v2, as well as vn−2, is not adjacent both to w1 and to wl .
Case 1.4: We assume that v2 is adjacent neither to w1 nor to wl . We first consider the following n-paths:

S1 = 〈v0v1vnvn−1vn−2 . . . v3v2〉,
S′1 = 〈vnv1v0vn−1vn−2 . . . v3v2〉.

Since v2 has no neighbors in W , v2 is adjacent to v0 and vn. If vn−2 is adjacent to w1 or wl , then the assertion holds by
Lemma 11, so we assume that vn−2 is adjacent to none of the vertices in W . We next consider the following n-paths:

S2 = 〈vnvn−1v0v1v2v3 . . . vn−3vn−2〉,
S′2 = 〈v0vn−1vnv1v2v3 . . . vn−3vn−2〉.

Since vn−2 has no neighbors in W , vn−2 is adjacent to vn and v0. Here, we set

S3 = 〈vl+1vl+2 . . . vn−2vnvn−1v0w1 . . . wl〉.
If wl is adjacent to one of v1, v2, . . . , vl−1, vl , then the assertion holds by Lemma 11, so we assume that wl is adjacent
to none of v1, v2, . . . , vl . Since S3 is reversible and L is a longest path, wl is adjacent to vl+1. We further consider the
following n-path:

S4 = 〈vn−2 . . . vl+1wlvnvn−1v0w1 . . . wl−1〉.
If wl−1 is adjacent to one of v1, v2, . . . , vl−1, vn−2, then the assertion holds by Lemma 11, and if wl−1 is adjacent to
vl , then the assertion holds by Lemma 12. We thus assume that wl−1 is adjacent to some vertex, say w, in W −W0.
We set

S5 = 〈vn−3 . . . vl+1wlvnvn−1v0w1 . . . wl−1w〉.
If w is adjacent to one of v1, v2, . . . , vl, vn−3, vn−2, then the assertion holds by Lemma 11. Otherwise, w is adjacent
to some vertex in W −W0 since S5 is reversible, however, this contradicts the maximality of the length of L. Therefore
v2, as well as vn−2, is adjacent either to w1 or to wl .
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Case 1.5: Finally, from what has been discussed above, we conclude that

(A1) v2 is adjacent to precisely one vertex in W , which is either w1 or wl .
(B1) v1 is not adjacent to any vertex in W , particularly v1w1, v1wl /∈E(G).

The vertex vn−2 is also adjacent either to w1 or to wl . By symmetry, it is sufficient to consider the following two
cases:

Case 1.5.1: We assume that v2wl ∈ E(G), vn−2wl ∈ E(G). In this case, we first show that P Q if v3wl−1 ∈ E(G);
if l�5 and v3wl−1 ∈ E(G), then

P
w1←〈w1v0v1v2v3 . . . vn−3vn−2vn−1〉
wl
�

vn→ vn−1→ v0→〈v2v3 . . . vn−3vn−2wlvnvn−1v0〉
wl−1
�

wl−2← wl−3← wl−4← 〈wl−4wl−3wl−2wl−1v3 . . . vn−3vn−2wl〉
vn−1
�

v0→ w1→ w2→〈wl−1v3 . . . vn−3vn−2vn−1v0w1w2〉
v2
�

v1← vn←Q.

For the other cases, l = 4, 3, 2, we can find that

P
w1←w4

�
vn→ vn−1→ v0→ w3

�
w2← w1← v0← vn−1

�
v0→ w1→ w2→ v2

�
v1← vn←Q,

P
w1←w3

�
vn→ vn−1→ v0→ w2

�
w1← v0← v1← vn−1

�
vn→ v1→ w3

�
v2← v0

�
v1→ vn→ v2

�
w3←w1

�

v1
�

vn←Q,

P
w1←w2

�
vn→ vn−1→ v0→ w1

�
v0← v1← v2← vn−1

�
vn→ v1→ w2

�
v2← v0

�
v1→ vn→ v2

�
w2←w1

�

v1
�

vn←Q,

respectively. Therefore, if v3wl−1 ∈ E(G), then P Q. We thus conclude that v3wl−1 /∈E(G).
Here, we set P ′ = 〈v1v2v3 . . . vn−2vn−1vnwl〉, Q′ = 〈wlv2v3 . . . vn−2vn−1vnv1〉, V ′ = {v1, v2, . . . , vn, wl},

W ′ = V (G) − V ′ and W ′0 = {v0, w1, w2, . . . , wl−1} ⊆ W ′. We notice that P
wl→P ′, and that Q′ wl−1← v0

�
w1→ v1

�
vn←Q.

Hence, P ′ Q′ implies P Q, and the same assertion as (A1), (B1) holds for P ′ and Q′. That is,

(A1)′ v3 is adjacent to precisely one vertex in W ′, which is either v0 or wl−1.
(B1)′ v2 is not adjacent to any vertex in W ′, particularly v2w1 /∈E(G).

Since v3wl−1 /∈E(G), v3 is adjacent to v0.
We set P ′′ = 〈v0v3v4 . . . vn−2vn−1vnv1v2〉, Q′′ = 〈v2v3v4 . . . vn−2vn−1vnv1v0〉, V ′′ = V = {v0, . . . , vn}, W ′′ =W .

We notice that P
wl→wl−1→ v0

�
w1← v1

�
v2→P ′′. If v4w1 ∈ E(G), then

P ′′ wl→ w1
�

w2←〈w2w1v4 . . . vn−2vn−1vnv1v2〉
[w3← w4←; l�4][w3← v2←; l = 3][ v2← v1←; l = 2]
v0
�

v1→ vn→ wl→ v3
�

v2← wl←w1
�

v1
�

vn←Q,

and therefore P Q. We thus assume that v4w1 /∈E(G). On the other hand, we have that Q′′ wl←wl−1← v0
�

w1→ v1
�

vn←Q,
hence P ′′ Q′′ implies P Q. As a consequence, the same assertion as (A1), (B1) holds for P ′′ and Q′′:
(A2) v4 is adjacent to precisely one vertex in W , which is either w1 or wl .
(B2) v3 is not adjacent to any vertex in W , particularly v3w1 /∈E(G).

Since v4w1 /∈E(G), v4 is adjacent to wl . We observe that P ′′ is obtained from P by shifting the vertices of V other
than v0 by two steps (see Fig. 7). Iterating in this way, we obtain that:

(A) none of v2, v4, . . . , vn−2, vn is adjacent to w1;
(B) none of v1, v3, . . . , vn−3, vn−1 is adjacent to w1.
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Fig. 7.

Fig. 8.

Particularly, n is even and w1 is adjacent to none of the vertices in V − v0. We consider an n-path

T = 〈vl+2vl+3 . . . vn−2vn−1v0v1vnwl . . . w2w1〉.
The vertex w1 is adjacent to some vertex in W −W0 since w1 is not adjacent to any of v2, . . . , vl+1, vl+2, however,
this contradicts the maximality of L.

Case 1.5.2: We assume that v2wl ∈ E(G), vn−2w1 ∈ E(G). In this case, we set P ′ = 〈v1v2v3 . . . vn−2vn−1vnwl〉,
Q′ = 〈wlv2v3 . . . vn−2vn−1vnv1〉 as in Case 1.5.1. We can deduce that P Q if v0v3 ∈ E(G), thus assume that
v0v3 /∈E(G). Since P ′ Q′ implies P Q, the same assertion as (A1), (B1) holds for P ′ and Q′. Here, let V ′, W ′
be as in Case 1.5.1.

(A1)′ v3 is adjacent to precisely one vertex in W ′, which is either v0 or wl−1.
(B1)′ v2 is not adjacent to any vertex in W ′, particularly v2w1 /∈E(G) (Fig. 8).

Since v3v0 /∈E(G), v3 is adjacent to wl−1. It is easy to see that P ′ Q′ if vn is adjacent to some vertex in W −wl ,
so we assume that vn is adjacent to none of the vertices in W −wl . Then P can only move to P ′. We similarly deduce
that P ′ can only move to wl−1 because the same form appears for P ′ and Q′. Iterating in this way, we conclude that P

has only one orbit P
wl→P ′ wl−1→ · · · w1→ v0→ v1→· · · vn→P

wl→· · ·, and this contradicts the reversibility of P.
Case 2: wlvn /∈E(G). We consider the next step of the following n-path:

X1 = 〈vn−lvn−l−1 . . . v2v1v0w1w2 . . . wl〉.

If wl is adjacent to vn−1, then P
wl
�

vn

�
v0
� Q, so we assume that wlvn−1 /∈E(G). Since wlvn /∈E(G) and L is a longest

path, wl is adjacent to one of the vertices vn−l , vn−l+1, . . . , vn−2. Let vj be such a vertex. Then we deduce that

P
w1← w2←· · ·wn−j← 〈wn−j . . . w1v0v1v2 . . . vn−l . . . vj−1vj 〉
wl→wl−1→ · · ·wl−(n−j)+1→ 〈v0v1v2 . . . vj−1vjwlwl−1 . . . wl−(n−j)+1〉
vn

�
vn−1← v0← w1← w2←· · ·wn−j−2← 〈wn−j−2 . . . w2w1v0vn−1vnv1v2 . . . vj−1vj 〉

vj+1→ vj+2→ · · · vn−2→〈v0vn−1vnv1v2 . . . vn−3vn−2〉 =: Y .

Let the last n-path be Y. If vn−2v0 ∈ E(G), then Y
v0→ vn−1→ �Q, so we assume that vn−2v0 /∈E(G). Since Y and P

are reversible, each of vn−2, vn is adjacent to vertices in W . If there are two different vertices x, x′ ∈ W such that
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vn−2x, vnx
′ ∈ E(G), then Y

x→ x′
�

vn−1
�

v0→Q, and therefore P Q. We hence assume that vn−2 and vn have only one
neighbor in W , say w.

On the other hand, we consider the next step of the following n-path:

X′1 = 〈vlvl+1 . . . vn−2vn−1v0w1w2 . . . wl〉.

If wl is adjacent to v1, then P
wl

�
v0
�

vn

� Q, so we assume that wlv1 /∈E(G). Since wlvn /∈E(G) and L is a longest path,
wl is adjacent to one of v2, v3, . . . , vl−1, vl . Let vj ′ be such a vertex. We deduce that

Q
w1→ w2→· · ·wj ′→〈vj ′vj ′+1 . . . vl . . . vn−2vn−1v0w1w2 . . . wj ′ 〉
wl←wl−1← · · ·wl−j ′+1← 〈wl−j ′+1 . . . wl−1wlvj ′vj ′+1 . . . vn−2vn−1v0〉
vn
�

v1→ v0→ w1→· · ·wj ′−2→ 〈vj ′vj ′+1 . . . vn−2vn−1vnv1v0w1w2 . . . wj ′−2〉
vj ′−1← · · · v2←〈v2v3 . . . vn−2vn−1vnv1v0〉 =: Y ′.

Let the last n-path be Y ′. If v2v0 ∈ E(G), then Y ′ v0← v1← �P , and therefore P Q. We hence assume that v2v0 /∈E(G).
Since (Y ′)−1 is reversible, v2 is adjacent to some vertex in W . If v2 is adjacent to a vertex in W − w, say x′′, then

Y ′ x′′← w
�

v1
�

v0←P , and therefore P Q. We thus assume that v2 is adjacent to none of the vertices in W −w, and that
v2w ∈ E(G). As a consequence, we deduce that v2, vn−2 and vn have only one vertex w as their common neighbors
in W .

Let P ′=〈v1v2v3 . . . vn−2vn−1vnw〉, Q′=〈wv2v3 . . . vn−2vn−1vnv1〉. We notice that P
w→P ′, and that Q′ v0→Y ′ Q.

Hence, P ′ Q′ implies P Q.
If w /∈W0, then P ′ has a rut of length more than l, and by assumption, P ′ Q′. Hence, we assume that w ∈ W0. If

w = w1, then P Q by Lemma 7 (in fact, two paths vjwl . . . w1 and v0wvn play the roles of L and J in the lemma),
and the case w=wl has already been treated in Case 1.5.1, so we assume that w=wk , 1 < k < l (Fig. 9). We consider
the next step of the following n-path:

X2 = 〈v1v2wkvnvn−1 . . . v3〉.

If v3 is adjacent to v1, then P ′� wk← v0
�

w1→� vn←Q, so we assume that v3v1 /∈E(G).
We first show that v3 is adjacent to none of the vertices in W − W0; otherwise v3 is adjacent to some vertex in

W −W0, say y, then we consider the following n-path:

X3 = 〈v2wkvnvn−1 . . . v3y〉.

Since X3 is reversible, y is adjacent to one of the vertices v0, v1, v2, or to some vertex in W − wk , however, then we
can deduce that P Q or P ′ Q′ by Lemma 7 or 8. Therefore, v3 is adjacent to none of the vertices in W −W0.

We next show that v3v0 ∈ E(G); otherwise, we assume that v3v0 /∈E(G). Since X2 is reversible, v3 is adjacent to
some vertex in W − wk , say z. On the other hand, we consider the following n-path:

X4 = 〈vl−k−1 . . . vn−3vn−2wkwk+1 . . . wl〉.
If wl is adjacent to vn or vn−1, or if wl is adjacent to one of v1, v2, . . . , vl−k−1 for l − k − 1�1, then P Q or
P ′ Q′ by Lemma 7 or 8. We hence deduce that wl is adjacent to one of the vertices w1, w2, . . . , wk−1, v0 since X4
is reversible. Then we can find a vertex z′ ∈ {w1, . . . , wk−1, wk+1, . . . , wl, v0} which satisfies zz′ ∈ E(G) and

Y ′
z

�
z′←wl−1

� 〈z′zv3v4 . . . vn−1vnwk〉
v2→ wk−1

� (or
wk+1
� )

v2
�

v1← v0←P ,

and thus P Q. We hence conclude that v3v0 ∈ E(G).
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Fig. 9.

Let P ′′ and Q′′ be two n-paths as in Case 1.5.1. We can similarly deduce that P P ′′, Q′′ Q. By above consid-
eration, we observe that P ′′ is obtained from P by shifting the vertices of V other than v0 by two steps as in Case 1.5.1.
Continuing in this way, we can conclude that the assertion holds in this case.

As a consequence, we establish this theorem. �

Lemma 14. Let G be an n-reversible graph and P, Q as in Lemma 7. We assume that vi+1vi+3 ∈ E(G) for some index
i, 0� i�n− 4. If there are two vertices x, y /∈V (P ) with xv0, xvn, yvi, yvi+2 ∈ E(G), then P Q.

Proof. We have the following sequence of n-paths:

P
x→ v0→ v1→· · · vi→〈vi+2vi+3 . . . vn−2vn−1vnxv0v1v2 . . . vi−1vi〉
y→ vi+2→ vi+1→ vi+3→〈vi+6 . . . vn−2vn−1vnxv0v1v2 . . . vi−1viyvi+2vi+1vi+3〉

vi+4→ · · · vn−1→〈v0v1v2 . . . vi−1viyvi+2vi+1vi+3vi+4 . . . vn−2vn−1〉
v0→ x→ vn→〈v3 . . . vi−1viyvi+2vi+1vi+3vi+4 . . . vn−2vn−1v0xvn〉
v1→ v2→· · · vi→〈vi+1vi+3vi+4 . . . vn−2vn−1v0xvnv1v2 . . . vi〉
vi+1→ vi+2→ · · · vn−1→ v0→Q. �

Lemma 15. Let G be an n-reversible graph and P, Q as in Lemma 7. We assume that vi+1vi+4 ∈ E(G) for some index
i, 0� i�n− 5. If there are two vertices x, y /∈V (P ) with xv0, xvn, yvi, yvi+3 ∈ E(G), then P Q (Fig. 10).

Proof. The proof is similar to that of Lemma 14. �

Lemma 16. Let G be an n-reversible graph and P, Q as in Lemma 7. We assume that vi+1vi+5, vi+2vi+6 ∈ E(G) for
some index i, 0� i�n− 7. If there are two vertices x, y /∈V (P ) with xv0, xvn, yvi, yvi+3 ∈ E(G), then P Q.

Proof. We can find that

P
x→ v0→ v1→· · · vi→〈vi+2vi+3 . . . vn−2vn−1vnxv0v1v2 . . . vi−1vi〉
y→ vi+3→ vi+4→ vi+5→ vi+1→ vi+2→ vi+6→〈vi+9 . . . vn−2vn−1vnxv0v1v2 . . . vi−1viyvi+3vi+4vi+5vi+1vi+2vi+6〉

vi+7→ · · · vn−1→〈v0v1v2 . . . vi−1viyvi+3vi+4vi+5vi+1vi+2vi+6 . . . vn−2vn−1〉
v0→ x→ vn→〈v3 . . . vi−1viyvi+3vi+4vi+5vi+1vi+2vi+6 . . . vn−2vn−1v0xvn〉
v1→ v2→· · · vi→〈vi+4vi+5vi+1vi+2vi+6 . . . vn−2vn−1v0xvnv1v2 . . . vi〉
y→ vi+3→ vi+4→ vi+5→〈vi+6 . . . vn−2vn−1v0xvnv1v2 . . . viyvi+3vi+4vi+5〉

vi+6→ · · · vn−1→ v0→ x→ vn→ v1→ v2→· · · vi→ vi+1→ · · · vn−1→ v0→Q. �

Lemma 17. Let G be an n-reversible graph and P, Q as in Lemma 7. If there are three vertices x, y, z /∈V (P ) with
xv0, xvn, yvi, yvi+3, zvi+1, zvi+4 ∈ E(G) for some index i, 1� i�n− 5, then P Q.
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Fig. 10. The configurations of Lemmas 14–18.

Proof. We have the following sequence:

P
x→ v0→ v1→· · · vi→〈vi+2vi+3 . . . vn−2vn−1vnxv0v1v2 . . . vi−1vi〉
y→ vi+3→ vi+2→ vi+1→ z→〈vi+7 . . . vn−2vn−1vnxv0v1v2 . . . vi−1viyvi+3vi+2vi+1z〉

vi+4→ · · · vn−1→〈v1v2 . . . vi−1viyvi+3vi+2vi+1zvi+4vi+5 . . . vn−2vn−1〉
v0→ x→ vn→〈v4 . . . vi−1viyvi+3vi+2vi+1zvi+4vi+5 . . . vn−2vn−1v0xvn〉
v1→· · · vi→ vi+1→ vi+2→ · · · vn−1→ v0→Q. �

Lemma 18. Let G be an n-reversible graph and P, Q as in Lemma 7. If there are two vertices x, y /∈V (P ) with
xv0, xvn, xvi+1, yvi, yvi+2 ∈ E(G) for some index i, 1� i�n− 3, then P Q.

Proof. We can find that

P
x→ v0→ v1→· · · vi→〈vi+2vi+3 . . . vn−2vn−1vnxv0v1v2 . . . vi−1vi〉
y→ vi+2→ · · · vn−1→ vn→〈v0v1v2 . . . vi−1viyvi+2vi+3 . . . vn−2vn−1vn〉 = P ′.

Let the last n-path be P ′. To compare P ′ with P, we observe that their (i + 1)th vertices are different. Let Q′ be the
following n-path that has the same vertices as Q except the (i + 1)th vertex:

Q′ = 〈vnv1v2 . . . vi−1viyvi+2vi+3 . . . vn−2vn−1v0〉.

We notice that r(P ′)�2 (in fact, ‖vi+1xv0‖= 2), therefore P ′ Q′ by Theorem 13. And then Q′ x→ vn→ v1→· · · vi−1→ vi→
vi+1→ · · · vn−1→ v0→Q, thus P Q . �

Theorem 19. Let G be an n-reversible graph and P, Q as in Lemma 7. If r(P )= r(Q)= 1 and |V (G)|�n+ 3, then
P Q.

Proof. We set V = {v0, . . . , vn}, W = V (G) − V , W �= ∅. The case v0vn ∈ E(G) is already treated in Theorem 9,
so we assume that v0vn /∈E(G). Since v0vn /∈E(G) and P is reversible, vn is adjacent to some vertex in W . Let the
set of all vertices in W that are adjacent to vn be W0 = {w1, w2, . . . , wm}. Here, we consider the following n-paths
R1, . . . , Rm:

Ri = 〈v1v2 . . . vn−2vn−1vnwi〉.
The vertex wi is adjacent to none of the vertices in W since r(P ) = 1, and hence wi is adjacent to v0 or v1. If wi is

adjacent to v1, then P
wi

�
v0
�

vn

� Q, we thus assume that wiv0 ∈ E(G) for each i, 1� i�m.
We will show that W =W0; otherwise we assume that W −W0 �= ∅. Since G is connected and there are no edges

between W0 and W−W0, there is at least one edge between V and W−W0. Let vju1 be such an edge, here 1�j �n−1,
u1 ∈ W −W0. We consider an n-path

S = 〈vj−1vj−2 . . . v1v0vn−1vn−2 . . . vj+1vju1〉.
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Fig. 11.

Since u1 /∈W0, u1 is not adjacent to vn. If u1 is adjacent to vj−1, then the assertion holds by Lemma 8. We hence
assume that u1 is adjacent to some vertex in W −W0, say u2. We consider the following n-path:

S′ = 〈vj−2vj−3 . . . v1v0vn−1vn−2 . . . vj+1vju1u2〉.
If u2 is adjacent to vj−2 or vj−3, then the assertion holds by Lemma 8, so we assume that u2 is adjacent to some vertex
in W −W0, say u3. Iterating in this way, we obtain a sequence of vertices u1, u2, . . ., in W −W0, however, when we
have got the jth vertex uj , the assertion will hold by Lemma 7. We therefore deduce that W =W0.

We set W = {w1, w2, . . . , wm}. We notice that the vertices in W are pairwise non-adjacent, and that m�2 by
assumption. We consider an n-path

T = 〈v3v4 . . . vn−2vn−1vnw2v0w1〉.
Since T is reversible, w1 is adjacent to v2 or v3. We first assume that w1v3 ∈ E(G). Then we can define the next n-path

T ′ = 〈v6v7 . . . vn−2vn−1vnw2v0v1v2v3w1〉.
Since T ′ is reversible, w1 is adjacent to one of v4, v5, v6. If w1v4 ∈ E(G), then the assertion holds by Lemma 8, so we
assume that w1v5 ∈ E(G) or w1v6 ∈ E(G). In this way, we can find that w1 is adjacent to the vertices of P at intervals
of two or three edges. Similarly, the vertices wi , 1� i�m, are also adjacent to the vertices of P at intervals of two or
three edges (Fig. 11).

Case 1: We assume that no vertex in W has a 3-interval; suppose that wiv0, wiv2, . . . , wivn−2, wivn ∈ E(G) for
each i, 1� i�m.

Let U1 = {v0, v2, . . . , vn−2, vn}, U2 = {v1, v3, . . . , vn−3, vn−1}. Each vertex in U1 is adjacent to each vertex in W ,
and there are no edges between U2 and W . We set

P2t−1 := 〈v0v1 . . . v2t−2w1v2t . . . vn−1vn〉,
Q2t−1 := 〈vnv1 . . . v2t−2w1v2t . . . vn−1v0〉,

and

V2t−1 := {v0, v1, . . . , v2t−2} ∪ {w1} ∪ {v2t , . . . , vn−1, vn},
W2t−1 := {v2t−1, w2, . . . , wm}.

For these two paths, we deduce that

P
w2→ v0→ v1→· · · v2t−2→ w1→ v2t→· · · vn−1→ vn→P2t−1,

Q2t−1
w2→ vn→ v1→· · · v2t→ v2t+1→ v2t+2→ · · · vn−1→ vn→Q,

thus P2t−1 Q2t−1 implies P Q. We apply the same method to v2t−1 as above, and deduce that v2t−1 is adjacent
to the vertices of P2t−1 at intervals of two or three edges. If v2t−1 has a 3-interval, then we deduce that P2t−1 Q2t−1
by Lemma 18, so we assume that v2t−1 has no 3-intervals:

v2t−1v0, v2t−1v2, . . . , v2t−1vn−2, v2t−1vn ∈ E(G),

v2t−1v1, v2t−1v3, . . . , v2t−1vn−3, v2t−1vn−1 /∈E(G).

The index t varies for 1� t �n/2, we therefore deduce that the vertices in U1 and the vertices in U2 are mutually adjacent
and that the vertices in U2 are pairwise non-adjacent. If there are two or more edges in U1, then we can find an n-path
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Fig. 12.

whose head and tail are in W and which passes through all vertices of U1. However, this path cannot move, and this fact
contradicts the reversibility of G. We therefore deduce that U1 has at most one edge, and then G is either a complete
bipartite graph Kn/2+1,n/2+m with partition sets U1 and U2 ∪W , or a graph Kn/2+1,n/2+m with an additional edge in
U1. However, we have already seen in the proof of Theorem 9 that these graphs are not n-reversible, a contradiction.

Case 2: We assume that some vertex in W has a 3-interval. Let the two vertices in P that make the interval be vk and
vk+3, and choose the index k as small as possible. Without loss of generality, we assume that w1vk, w1vk+3 ∈ E(G).
Here, we consider the neighbors of w2; this vertex is adjacent to one of vk+1, vk+2, vk+3 (Fig. 12).

Case 2.1: w2vk+1 ∈ E(G). In this case, w2 is also adjacent to vk−2 or vk−1. If w2vk−2 ∈ E(G), this contradicts the
minimality of k. If w2vk−1 ∈ E(G), then the assertion holds by Lemma 18.

Case 2.2: w2vk+2 ∈ E(G). The vertex w2 is adjacent to vk−1 or vk . If w2vk−1 ∈ E(G), this contradicts the minimality
of k. We hence assume that w2vk ∈ E(G). On the other hand, w2 is also adjacent to vk+4 or vk+5. If w2vk+4 ∈ E(G),
then the assertion holds by Lemma 18, we thus assume that w2vk+5 ∈ E(G). We consider the following n-path:

A= 〈vk+5 . . . vn−1vnw1v0v1 . . . vkw2vk+2vk+1〉.
If vk+1 is adjacent to vk+3 or vk+4, then the assertion holds by Lemma 14 or 15. The case that vk+1 is adjacent to some
vertex in W is already treated in Case 2.1, therefore vk+1 must be adjacent to vk+5.

Here, we will show that k + 5= n; otherwise, if k + 5 < n, then we consider the following n-path:

B = 〈vk+3vk+4vk+5vk+1vk . . . v0w1vn . . . vk+7vk+6〉.
If vk+6 is adjacent to vk+2 or vk+3, then the assertion holds by Lemma 16 or 15. Since B is reversible, vk+6 must be
adjacent to some vertex in W − {w1, w2}, say w3. The vertex w3 is adjacent to vk+3 or vk+4, and then the assertion
holds by Lemma 17 or 18. Therefore, we conclude that k + 5= n.

By considering the following n-path, we can also deduce that vkvk+4 ∈ E(G):

A′ = 〈vkvk−1 . . . v1v0w2vk+5w1vk+3vk+4〉.
Furthermore, if k > 0, then the assertion holds in the same way as above by considering the following n-path:

B ′ = 〈vk+2vk+1vkvk+4vk+5 . . . vnw1v0 . . . vk−2vk−1〉.
We therefore deduce that k = 0. As a consequence, vertices and edges of G are obtained:

V (G) ⊇ {v0, v1, v2, v3, v4, v5} ∪ {w1, w2},
E(G) ⊇ {v0v1, v1v2, v2v3, v3v4, v4v5, v0v4, v1v5, w1v0, w1v3, w1v5, w2v0, w2v2, w2v5}.

And then, we have that P
w2→ v0→ v1→ v2→ v3→ w1→ v5→ w2→ v0→ v4→ v3→ w1→ v5→ v1→ v2→ w2→ v0→ w1→ v5→ v1→ v2→ v3→ v4→ v0→Q.

Case 2.3: w2vk+3 ∈ E(G). We further assume that w2vk ∈ E(G) and that all vertices in W are also adjacent to vk

and vk+3 since the other cases are already treated.
We first assume that |W |�3, and consider the following n-path:

C = 〈vk+5vk+6 . . . vn−2vn−1vnw3v0v1v2 . . . vk−1vkw2vk+3w1〉.
If w1 is adjacent to vk+4, then the assertion holds by Lemma 8, so w1 is adjacent to vk+5 since C is reversible. By
considering the following n-path:

C′ = 〈vk+7vk+8 . . . vn−2vn−1vnw3v0v1v2 . . . vk−1vkw2vk+3vk+4vk+5w1〉,
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we deduce that w1vk+7 ∈ E(G) in a similar way. Continuing in this way, we obtain that

w1vk+5, w1vk+7, . . . , w1vn−2, w1vn ∈ E(G).

A similar fact can be deduced for the other side of w1 and for the other vertices of W , that is, each vertex in W is
adjacent to the vertices v0, v2, v4, . . . , vk−2, vk , vk+3, vk+5, . . . , vn−2, vn. We notice that k is even and n is odd.

Secondly, we assume that |W | = 2. We consider the following n-paths:

D1 = 〈w1vk+3vk+2 . . . v2v1vnvn−1vn−2 . . . vk+5vk+4〉,
D′1 = 〈w1vk+3vk+2 . . . v2v1v0vn−1vn−2 . . . vk+5vk+4〉.

Since D1 and D′1 are reversible and vk+4 is adjacent neither to w1 nor to w2, the vertex vk+4 is adjacent to v0 and vn.
We consider the following n-paths:

D2 = 〈vk+5vk+6 . . . vn−2vn−1vnvk+4v0v1v2 . . . vk−1vkw2vk+3w1〉,
D′2 = 〈vk+5vk+6 . . . vn−2vn−1vnvk+4v0v1v2 . . . vk−1vkw1vk+3w2〉.

Since D2 and D′2 are reversible, w1 and w2 are adjacent to vk+5. We set

D3 = 〈w1vk+5vk+4 . . . v2v1vnvn−1vn−2 . . . vk+7vk+6〉,
D′3 = 〈w1vk+5vk+4 . . . v2v1v0vn−1vn−2 . . . vk+7vk+6〉.

Since D3 and D′3 are reversible and vk+6 is adjacent neither to w1 nor to w2, the vertex vk+6 is adjacent to v0 and vn.
Successively, the following n-paths are defined:

D4 = 〈vk+7vk+8 . . . vn−2vn−1vnvk+6v0v1v2 . . . vk−1vkw2vk+3vk+4vk+5w1〉,
D′4 = 〈vk+7vk+8 . . . vn−2vn−1vnvk+6v0v1v2 . . . vk−1vkw1vk+3vk+4vk+5w2〉.

Since these paths are reversible, w1 and w2 are adjacent to vk+7. Continuing in this way, we can obtain the sequence
of edges w1vk+5, w2vk+5, w1vk+7, w2vk+7, . . . , alternatively. We can deduce a similar fact for the other sides of w1
and w2. As a consequence, we similarly deduce for the case |W | = 2 that each vertex in W is adjacent to the vertices
v0, v2, v4, . . . , vk−2, vk , vk+3, vk+5, . . . , vn−2, vn.

Here, we set

U1 = {v0, v2, . . . , vk−2, vk, vk+3, vk+5, . . . , vn−2, vn},
U2 = {v1, v3, . . . , vk−1, vk+1, vk+2, vk+4, . . . , vn−3, vn−1}.

Each vertex in U1 is adjacent to each vertex in W , and there are no edges between U2 and W . We consider the n-paths
P1, P3, . . . , Pk−1, Pk+4, Pk+6, . . . , Pn−1, and Q1, Q3, . . . , Qk−1, Qk+4, Qk+6, . . . , Qn−1 as in Theorem 9; only the
tth vertices of Pt and Qt differ from the vertices of P and Q, respectively. We can deduce that P Pt and Qt Q

for each pair of two paths, so Pt Qt implies P Q.
To apply the same method as in Theorem 9, we deduce that each vertex in U1 is adjacent to each vertex in U2 and that

U2 has no edges other than vk+1vk+2. If there is an edge in U1, then we can find an n-path whose head and tail are in W

and which passes through all vertices of U1. However, this path cannot move, and this fact contradicts the reversibility
of G. We therefore deduce that U1 has no edges. And then G is a complete bipartite graph K(n+1)/2+1,(n+1)/2+m with
an additional edge vk+1vk+2. However, this graph is not n-reversible for n�5, and is 3-transferable for n= 3. �

Theorem 20. Let G be an n-reversible graph and P, Q as in Lemma 7. If r(P )= r(Q)= 1 and |V (G)| = n+ 2, then
P Q.

Proof. Let the vertex not in V (P ) be vn+1. Then V (G) = {v0, v1, . . . , vn, vn+1}. For the sake of convenience, the
index of the vertices in V (G) can be extended to any integer; we regard two vertices vi and vj as the same vertex if i is
congruent to j modulo n+ 2. The case v0vn ∈ E(G) is already treated in Theorem 9, so we assume that v0vn /∈E(G).
Since P and Q are reversible, both v0 and vn are adjacent to vn+1. If v1vn+1 ∈ E(G) or vn−1vn+1 ∈ E(G), then
P Q, we thus assume that v1vn+1, vn−1vn+1 /∈E(G).
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If there are no edges between vi and vi+2 for any i, 1� i�n + 1, then the path P cannot stray out of the orbit

P
vn+1→ v0→ v1→· · · vn→P

vn+1→ · · ·, and this contradicts the reversibility of P. Hence, there is at least one edge between vi

and vi+2. Let vtvt+2 be the edge that first appears in the sequence of the pairs, i.e., vtvt+2 ∈ E(G) and vi−1vi+1 /∈E(G)

for 0� i� t . We define a sequence of n-paths R1, R2, . . . , Rt , Rt+1 inductively as follows: We first set

R1 = 〈v0v1vnvn−1vn−2 . . . v3v2〉.
We suppose that the ith n-path Ri is already obtained, and denote it by the following:

Ri = 〈vi−1vivi−3vi−4 . . . v1v0vn+1vn . . . vi+1〉.
For 1� i� t , vi+1 is adjacent to vi−2 since vi−1vi+1 /∈E(G). And then the next n-path can be defined.

Ri+1 = 〈vivi+1vi−2vi−3 . . . v1v0vn+1vn . . . vi+2〉.
While the paths are defined, the edges v2vn+1, v3v0, . . . , vtvt−3, vt+1vt−2 are also obtained one after another.

We will show that the index t is even; otherwise the graph G has the edges v2vn+1, v3v0, . . . , vtvt−3, vt+1vt−2,
vtvt+2, and we have the following sequence:

P
vn+1→ v0→ v1→· · · vt→〈vt+2vt+3 . . . vn−1vnvn+1v0v1v2 . . . vt−2vt−1vt 〉
vt← vt+1←〈vt+1vtvt+2vt+3 . . . vn−1vnvn+1v0v1v2 . . . vt−2〉
vt−2← vt−1← vt−4← vt−3← · · · v1← v2← vn+1← v0←〈v0vn+1v2v1v4v3 . . . vt−3vt−4vt−1vt−2vt+1vtvt+2vt+3 . . . vn−2vn−1〉
v0→ vn+1→ vn→ v1→ v2→ v3→· · · vt−1→ vt→ vt+1→ · · · vn−1→ v0→Q.

we thus assume that t is even. We deduce a similar fact for the other side: let vt ′vt ′+2 be the edge that last appears in
the sequence of the pairs of vi and vi+2, i.e., vt ′vt ′+2 ∈ E(G) and vivi+2 /∈E(G) for t ′< i�n− 1. We can similarly
deduce P Q if n− t ′ is odd, so we deduce that n− t ′ is even.

We have known that v1vn, v2vn+1, v3v0, . . . , vtvt−3, vt+1vt−2, vtvt+2 ∈ E(G) and that vt ′vt ′+2, vt ′+1vt ′+4,
vt ′+2vt ′+5, . . . , vn−3vn, vn−2vn+1, vn−1v0 ∈ E(G).

We assume that t + 2� t ′. Then we consider the following n-path:

S = 〈vt+1vtvt+2vt+3 . . . vt ′−1vt ′vt ′+2vt ′+1vt ′+4vt ′+3 . . . vnvn−1v0vn+1v2v1v4v3 . . . vt−4vt−5vt−2vt−1〉.
The vertex vt−1 is adjacent to vt−3 or vt+1, however, this contradicts vi−1vi+1 /∈E(G) for 0� i� t . We thus deduce
that t � t ′< t + 2.

Case 1: We assume t ′=t . There is only one edge between vi and vi+2, 0� i�n+1, which is the edge vtvt+2=vt ′vt ′+2.
In this case, both n and t are even, and vt+1vt−2, vtvt−3, . . . , v2vn+1, v1vn, v0vn−1, vn+1vn−2, . . . , vt+5vt+2, vt+4vt+1,
vtvt+2 ∈ E(G). If vt+4vt ∈ E(G), we can define the following n-path:

X1 = 〈vt−1vt−2 . . . vt+6vt+5vt+2vtvt+4vt+1〉,
however, this path cannot move since vt+1 is adjacent neither to vt−1 nor to vt+3, a contradiction. We therefore deduce
that vt+4vt /∈E(G), and consider the following n-path:

X2 = 〈vt+2vt+5vt+6 . . . vnvn+1v0v1v2 . . . vt−1vtvt+1vt+4〉.
If vt+6vt+2 /∈E(G), then the path X2 cannot stray out of the orbit X2

vt+3→ vt+2→ vt+5→ vt+6→ · · · vt→ vt+1→ vt+4→ X2
vt+3→ . . . , and

this contradicts the reversibility of X2. We thus deduce that vt+6vt+2 ∈ E(G). Then we can define the following n-path:

X3 = 〈vt−1vt−2 . . . vt+8vt+7vt+4vt+5vt+6vt+2vtvt+1〉,
however, X3 cannot move since vt+1 is adjacent neither to vt−1 nor to vt+3, a contradiction.

Case 2: We assume that t ′ = t + 1. There are only two edges between vi and vi+2, 0� i�n + 1, which are the
edges vtvt+2 and vt+1vt+3. In this case, n is odd and t is even, and vt+1vt−2, vtvt−3, . . . , v2vn+1, v1vn, v0vn−1,
vn+1vn−2, . . . , vt+6vt+3, vt+5vt+2, vtvt+2, vt+1vt+3 ∈ E(G). We set

U1 = {v0, v2, . . . , vt−4, vt−2, vt } ∪ {vt+3, vt+5, vt+7, . . . , vn−2, vn},
U2 = {v1, v3, . . . , vt−3, vt−1, vt+1} ∪ {vt+2, vt+4, vt+6, . . . , vn−3, vn−1, vn+1}.
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Fig. 13. The fundamental relation and the result of exchanging two vertices vt+3 and vt+5.

We will show that each vertex in U1 is adjacent to each vertex in U2 and that there are no edges between U1 and U2.
If vt−1vt+2 ∈ E(G) or vt+1vt+4 ∈ E(G), then we can deduce that P Q in the same way as above, so we assume

that vt−1vt+2, vt+1vt+4 /∈E(G). Consequently, we have obtained the relations between two vertices vi and vj that
satisfy |i − j | ≡ 2, 3, except vtvt+3. This is called fundamental relation (Fig. 13).

Here, let us view from another aspects by exchanging the two vertices vt+3 and vt+5. To compare with the fundamental
relation, we have three lacking relations: the pairsvt+1vt+5, vt+3vt+7 and vt+3vt+8. By considering the following n-path:

Y1 = 〈vt+4vt+3vt+6vt+7 . . . vt−1vtvt+2vt+1〉,
we deduce that vt+1vt+5 ∈ E(G) since vt+1vt+4 /∈E(G). If vt+3vt+7 ∈ E(G), we can define the following n-path:

Y2 = 〈vt+6vt+3vt+7vt+8 . . . vt vt+1vt+5vt+4〉,
however, Y2 cannot move since vt+4 is adjacent neither to vt+2 nor to vt+6, a contradiction. We hence conclude that
vt+3vt+7 /∈E(G). By considering the following n-path:

Y3 = 〈vt+7vt+6vt+9vt+10 . . . vt vt+1vt+2vt+5vt+4vt+3〉,
we deduce that vt+3vt+8 ∈ E(G) since vt+3vt+7 /∈E(G).

As a consequence of the exchange, we have got the same form as before, however, which has a little advantage than
the fundamental relation; we have found that vt+1vt+5, vt+3vt+8 ∈ E(G) and vt+3vt+7 /∈E(G). Symmetrically, we
can deduce a similar fact by exchanging two vertices vt , vt−2.

Furthermore, by exchanging the two consecutive vertices vt+2i+1 and vt+2i+3 in U1 for index i, 1 < i < (n− 1)/2,
we can also find four lacking relations: the pairs vt+2i+1vt+2i+6, vt+2i−2vt+2i+3, vt+2i+1vt+2i+5 and vt+2i−1vt+2i+3.
We set

Z1 = 〈vt+2i+4vt+2i+5vt+2i+2vt+2i+3vt+2ivt+2i−1 . . . vt+2i+7vt+2i+6〉.
Since vt+2i+4vt+2i+6 /∈E(G), vt+2i+6 is adjacent to vt+2i+1. By considering the following n-path:

Z2 = 〈vt+2ivt+2i−1vt+2i+2vt+2i+1vt+2i+4vt+2i+5 . . . vt+2i−3vt+2i−2〉,
we similarly deduce that vt+2i−2vt+2i+3 ∈ E(G).

If vt+2i+1vt+2i+5 ∈ E(G), we can define the following n-path:

Z3 = 〈vt+2i+4vt+2i+1vt+2i+5vt+2i+6 . . . vt−2vt−1vtvt+2vt+1vt+4vt+3

. . . vt+2i−3vt+2i−4vt+2i−1vt+2i−2vt+2i+3vt+2i+2〉,
however, Z3 cannot move since vt+2i+2 is adjacent neither to vt+2i nor to vt+2i+4, a contradiction. We hence deduce
that vt+2i+1vt+2i+5 /∈E(G). We similarly deduce that vt+2i−1vt+2i+3 /∈E(G). As a consequence, the lacking pairs are
supplied and the fundamental relation appears again.



3802 R. Torii / Discrete Mathematics 308 (2008) 3782–3804

Fig. 14.

As we have seen above, the fundamental relation is obtained again by the results of exchanging the consecutive
vertices of U1. Step by step, exchanging the vertices of U1 for all over its combination, we deduce that each vertex in
U1 is adjacent to each vertex in U2 and that there are no edges in U1.

If U2 has no edges other than vt+1vt+2, then the graph is a complete bipartite graph K(n+1)/2,(n+3)/2 with an edge
lying in the not smaller partition set. However, this one is not n-reversible for n�5, and is 3-transferable for n = 3.
Therefore, U2 has at least one edge other than vt+1vt+2. We consider the two cases whether such an edge is adjacent
to vt+1vt+2 or not.

We first assume that the edge in U2 is adjacent to vt+1vt+2. Without loss of generality, the edge has vt+1 as its end,
and let vt+1vs , s� t + 4, be such an edge (Fig. 14). In this case, we can deduce P Q as follows:

P
vn+1→ v0→ v1→· · · vt→ vt+1→〈vt+3vt+4vt+5 . . . vn−1vnvn+1v0v1 . . . vt−1vtvt+1〉
vt+3→ vt+2→ vt+5→ vt+4→ · · · vs−1→ vs−2→
〈vs+1vs+2 . . . vn−1vnvn+1v0v1 . . . vt−1vtvt+1vt+3vt+2vt+5vt+4 . . . vs−4vs−1vs−2〉
vs+1→ vs+2→ vs+3→ · · · vn→ vn+1→ v0→ v1→· · · vt→
〈vt+1vt+3vt+2vt+5vt+4 . . . vs−4vs−1vs−2vs+1vs+2 . . . vn−1vnvn+1v0v1 . . . vt−1vt 〉

vs→ vt+1→ vt+2→ vt+5→ vt+4→ · · · vs−1→ vs−2→
〈vs+1vs+2 . . . vn−1vnvn+1v0v1 . . . vt−1vtvsvt+1vt+2vt+5vt+4 . . . vs−4vs−1vs−2〉

vs+1→ vs+2→ · · · vn−2→ vn−1→ vt+3→ vn+1→ vn→
〈v1v2 . . . vt−1vtvsvt+1vt+2vt+5vt+4 . . . vs−4vs−1vs−2vs+1vs+2 . . . vn−2vn−1vt+3vn+1vn〉

vn← vn+1← v0← vn−1← vn−2← · · · vs+1←
〈vs+1vs+2 . . . vn−2vn−1v0vn+1vnv1v2 . . . vt−1vtvsvt+1vt+2vt+5vt+4 . . . vs−4vs−1vs−2〉

vs−2← vs−1← · · · vt+5← vt+2←
〈vt+2vt+5vt+4 . . . vs−1vs−2vs+1vs+2 . . . vn−2vn−1v0vn+1vnv1v2 . . . vt−1vtvsvt+1〉

vt+3← vt+1← vt←· · · v2← v1←
〈v1v2 . . . vt−1vtvt+1vt+3vt+2vt+5vt+4 . . . vs−1vs−2vs+1vs+2 . . . vn−2vn−1v0vn+1vn〉

vn← vn+1← v0← vn−1← · · · vs+2← vs+1←
〈vs+1vs+2 . . . vn−2vn−1v0vn+1vnv1v2 . . . vt−1vtvt+1vt+3vt+2vt+5vt+4 . . . vs−1vs−2〉

vs← vs−1← · · · vt+4← vt+3←
〈vt+3vt+4 . . . vs−1vsvs+1vs+2 . . . vn−2vn−1v0vn+1vnv1v2 . . . vt−1vtvt+1〉

vt+2← vt+1← · · · v1← vn←Q,
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hence, the assertion holds. In the other case when the edge in U2 is not adjacent to vt+1vt+2, we can also deduce that
P Q. �

Proposition 21. Let G be an n-reversible graph and P = 〈v0v1v2 . . . vn−2vn−1vn〉, Q= 〈vnv1v2 . . . vn−2vn−1v0〉 two
n-paths in G. Then P Q, that is, P ∝ Q.

Proof. The path P cannot be reversible if V (P )= V (G), we therefore assume that there is a vertex not in V (P ). We
have already seen in Theorems 9, 13, 19 and 20 that P can transfer to Q by a cross flip, so that we can conclude that
P Q. �

Proof of main theorem. The “only if” part is immediate from Definitions 1 and 2. We prove the “if” part by induction
on n. The cases n= 1, 2 are already shown in Remark 2, so we assume that n�3 and suppose that the assertion holds
for n− 1.

We assume that G is n-reversible. We notice that G is (n−1)-reversible by Theorem 2, and is also (n−1)-transferable
by induction.

Let P, P ′ be any two n-paths in G, and Q, Q′ the subpaths of P, P ′ that have length n − 1 with h(P ) = h(Q),
h(P ′)=h(Q′). Since G is (n−1)-transferable, there is a sequence of (n−1)-paths Q=Q0 → Q1 → · · · → Qm=Q′.
For this sequence, if P also has the same sequence, then P can transfer to P ′ as synchronized with Qi . However, this
is not always possible (Fig. 15).

It happens when Qi moves to t (Qi) for some i, then Pi can no longer keep step with Qi directly. Therefore, we will
search another route by taking a roundabout way instead of directly moving to t (Qi).

Let Pi = 〈u0u1u2 . . . un〉 and Qi = 〈u1u2 . . . un〉. Since Pi is reversible, there is a vertex w ∈ V (G) − V (Qi)

to which Pi can move by a step. On the other hand, since P ′i = 〈u0u1unun−1 . . . u2〉 is reversible, there is a vertex
w′ ∈ V (G)− V (Qi) to which P ′i can move by a step. If w �= w′, we have the following sequence:

Pi
w→〈u1u2 . . . unw〉
w′
� 〈w′u2 . . . unw〉
u1
� 〈w′u2 . . . unu1〉 =: Pi+1.

Let the last n-path be Pi+1. The path Pi+1 contains Qi+1 = 〈u2 . . . unu1〉 as a subpath, so can keep step with Qi . If
w = w′,

Pi
w→〈u1u2 . . . unw〉
∝ 〈wu2 . . . unu1〉 =: Pi+1.

Let the last n-path be Pi+1. This path also contains Qi+1. Anyway, we have a sequence P = P0 P1 · · · Pm

such that Qi ⊂ Pi , h(Pi)= h(Qi) for each i. We may last consider the case that Pm does not have the same tail as P ′,
however, we can deduce Pm P ′ by its tail flip.

As a consequence, any two n-paths in G can transfer from one to another. We establish this theorem. �
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4. Union of graphs

If G is a graph with induced subgraphs G1, G2 and S such that G=G1 ∪G2 and S =G1 ∩G2, we say that G arises
from G1 and G2 by pasting these graphs together along S.

Theorem 22. If G is obtained from two n-transferable graphs G1 and G2 by pasting them together along their complete
subgraphs, then G is n-transferable.

Proof. Let P be an arbitrary n-path in G. It is sufficient to show that P is reversible. If P is fully contained in G1 or
G2, then P is reversible, we thus assume that P crosses the complete subgraph S where they intersect. Without loss of
generality, we assume that h(P ) is lying in G1.

Replacing the subpaths of P buried under G2 by edges of S, we obtain a new path Q (see Fig. 16). We notice that
the length of Q, say l, is less than n. By Lemma 5, the path Q is contained in some (l + 1)-path in G1 and let Q+ be
one of such paths.

If t (Q) = t (Q+), then P can take a step to h(Q+). If h(Q) = h(Q+), then there is a vertex in V (G1) − V (Q) to
which Q+ can move by a step, and then P can also take a step to the vertex. Anyway, continuing in this way, we will
have an n-path in G1 to which P can transfer. The path is reversible since G1 is reversible, and by Proposition 1, P is
reversible. �
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