Discrete Mathematics 55 (1985) 101-106 North-Holland 101

NOTE

BIPARTITE REGULAR GRAPHS AND SHORTNESS PARAMETERS

P.J. OWENS

Department of Mathematics, University of Surrey, Guildford, United Kingdom

Received 15 November 1983 Revised 20 December 1984

By constructing sequences of non-Hamiltonian graphs it is proved that (1) for $k \ge 4$, the class of k-connected k-valent bipartite graphs has shortness exponent less than one and (2) the class of cyclically 4-edge-connected trivalent bipartite graphs has shortness coefficient less than one.

1. Introduction

In this paper, a graph has neither loops nor multiple edges. A multigraph has no loops but may have multiple edges. For any graph G, v(G) denotes the order (number of vertices) and h(G) the circumference (length of a maximum cycle). For any infinite class of graphs G, the shortness exponent $\sigma(G)$ and shortness coefficient $\rho(G)$ are defined as follows [3]:

 $\sigma(\mathscr{G}) = \liminf_{G \in \mathscr{G}} \frac{\log h(G)}{\log v(G)}, \qquad \rho(\mathscr{G}) = \liminf_{G \in \mathscr{G}} \frac{h(G)}{v(G)}.$

Both parameters lie between 0 and 1 inclusive and, since $\rho = 0$ when $\sigma < 1$, at most one of them is of interest for any particular class G. We denote a path with end vertices u and v by P(u, v). For other definitions and notation see, for instance, [1].

Let \mathscr{B}_k denote the class of all k-connected regular k-valent bipartite graphs and \mathscr{C}_r the class of all cyclically *r*-edge-connected graphs. Several small non-Hamiltonian graphs in \mathscr{B}_3 are known, of which the first was the one due to Horton (see [1, p. 240]), which has 96 vertices. The recent example due to Ellingham and Horton [2] has only 54 vertices and is in the class $\mathscr{B}_3 \cap \mathscr{C}_4$.

In this paper we prove two theorems;

Theorem 1. $\sigma(\mathfrak{B}_k) < 1$ for $k \ge 4$.

Theorem 2. $\rho(\mathcal{B}_3 \cap \mathcal{C}_4) < 1$.

0012-365X/85/\$3.30 (C) 1985, Elsevier Science Publishers B.V. (North-Holland)

P.J. Owens

The starting point of each proof is a non-Hamiltonian graph G_0 in $\mathfrak{B}_3 \cap \mathfrak{C}_4$. We denote the number of vertices in G_0 by g and call vertices in the two sets of the vertex bipartition the *x*-vertices and *y*-vertices. Every cycle in G_0 is even, of length at most g-2, and it misses at least one *x*-vertex and one *y*-vertex.

2. Proof of Theorem 1

Take G_0 (as above) and convert it into a k-valent bipartite multigraph H_0 by assigning multiplicity k-2t to the edges of a 1-factor F and multiplicity t to all other edges, where $t = \lfloor (k+1)/3 \rfloor$. We require H_0 to be k-edge-connected and, when k = 4 or $k \ge 6$, this follows from the fact that G_0 is cyclically 4-edgeconnected, because the sum of multiplicities of any four edges is at least k. When k = 5, the edges of F remain as single edges in H_0 and F must be chosen so that it does not contain four edges whose deletion would separate G_0 into two components, both with cycles. For instance, if G_0 is the graph shown in [2, Fig. 4] then it is a ring of four subgraphs joined by four pairs of edges and a suitable F would be the union of four 1-factors, chosen separately in the four subgraphs.

We now convert the multigraph H_0 into a graph J_0 by the method of Meredith [4], which we used previously in [5]. Denote the complete bipartite graph $K_{k,k-1}$ simply by K. Let the k vertices with valency k-1 and the k-1 vertices with valency k be called *l*-vertices and *m*-vertices, respectively. When a copy of K is an induced subgraph of a k-valent graph G, each *l*-vertex is incident with one of the edges that join K to G-K, so the *l*-vertices are the linking vertices of K. In the multigraph H_0 , replace each vertex v by a copy of K, as shown (for k = 4) in Fig. 1. The k edges originally incident at v become the edges incident at the *l*-vertices of the copy of K which replaces v. We denote the graph obtained after these substitutions by J_0 and note that it is k-valent and bipartite. By [4, Theorem 3], J_0 is also k-connected, so $J_0 \in \mathcal{B}_k$.

Lemma 1. Every cycle in J_0 misses at least two m-vertices.

Proof. Let C be a cycle in J_0 and suppose that it intersects all the copies of K, for

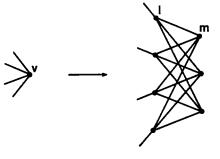


Fig. 1.

102

otherwise the result is immediate. If we contract all copies of K to single vertices, then J_0 becomes H_0 and C becomes a tour T that contains every vertex of H_0 . Since H_0 (like G_0) is non-Hamiltonian, T is not a cycle. As H_0 is bipartite, Tcontains an even number of edges and hence its length is at least g+2. At least two vertices, an x-vertex and a y-vertex, must occur twice in T, so there are at least two copies of K in J_0 such that $C \cap K$ consists of at least two paths. Each component path in $C \cap K$ has l- and m-vertices alternately, with an l-vertex at each end, so it contains one more of the l-vertices than the m-vertices. Since the number of l-vertices in K exceeds the number of m-vertices by only one, C must miss at least one m-vertex in K whenever $C \cap K$ consists of two or more paths. The lemma follows. \Box

Choose an *m*-vertex m_0 in J_0 and define $X = J_0 - m_0$.

Lemma 2. Let G be a graph that contains a copy of X and let C be a cycle in G that intersects both X and G-X. Then C misses at least two m-vertices in X.

Proof. Let T_0 be a tour of J_0 such that $T_0 \cap X = C \cap X$. If $C \cap X$ consists of t paths, then m_0 occurs t times in T_0 and no other vertex occurs more than once. If t = 1, then T_0 is a cycle and, by Lemma 1, misses at least two *m*-vertices. Both of these vertices are in X, so C misses two *m*-vertices in X. If t > 1, then the t-1 extra occurrences of m_0 in T_0 force T_0 to miss t-1 more *m*-vertices in the same copy of K, so C misses more than two *m*-vertices in X. \Box

We use X to construct an infinite sequence of graphs $\langle J_n \rangle$, starting with J_0 , as follows. For $n \ge 0$, let J_{n+1} be a graph obtained from J_n by replacing every *m*-vertex by a copy of X. For all n, J_n is bipartite, *k*-valent and *k*-connected, so $J_n \in \mathcal{B}_k$.

There are (k-1)g *m*-vertices in J_0 and one fewer in X so J_n contains $(k-1)g[(k-1)g-1]^n$ *m*-vertices.

Lemma 3. No cycle in J_n contains more than $[(k-1)g-2][(k-1)g-3]^n$ m-vertices.

Proof. Let $f(n) = [(k-1)g-2][(k-1)g-3]^n$. By Lemma 1, no cycle in J_0 contains more than f(0) *m*-vertices, so the lemma holds for n = 0. Suppose (as induction hypothesis) that the lemma holds for some *n* and consider any cycle C_{n+1} in J_{n+1} . If we shrink all copies of X to single *m*-vertices, so that J_{n+1} becomes J_n , then C_{n+1} becomes a tour T_n in which no vertices except *m*-vertices can occur more than once. If T_n contains g(n) different *m*-vertices, then C_{n+1} intersects g(n)copies of X and, by Lemma 2, C_{n+1} contains at most g(n)[(k-1)g-3] *m*vertices.

In case T_n is not a cycle, we can convert it into a cycle C_n , with more than g(n)

P.J. Owens

m-vertices in it, by replacing repetitions of an *m*-vertex by different *m*-vertices belonging to the same copy of K and not already in T_n . This is possible because all k-1 of the *m*-vertices in K are adjacent to all the *l*-vertices and, as there are only k *l*-vertices, $T_n \cap K$ contains at most k-1 occurrences of *m*-vertices. By the induction hypothesis, C_n contains no more than f(n) *m*-vertices, so $g(n) \leq f(n)$. Hence C_{n+1} contains no more than f(n)[(k-1)g-3] = f(n+1) *m*-vertices; that is, the lemma holds for n+1. By induction, it holds generally. \Box

We now have

$$v(J_{n+1}) - v(J_n) = (k-1)g[(k-1)g-1]^n(v(X)-1),$$

and, by Lemma 3,

$$h(J_{n+1}) - h(J_n) \leq [(k-1)g - 2][(k-1)g - 3]^n(v(X) - 1).$$

These recurrence relations have solutions of the form

 $v(J_n) = a[(k-1)g-1]^n + b, \qquad h(J_n) \le c[(k-1)g-3]^n + d,$

where a, b, c and d are constants such that a > 0 and c > 0. Therefore

 $\sigma(\mathscr{B}_k) \leq \log[(k-1)g-3]/\log[(k-1)g-1] < 1,$

and this completes the proof of Theorem 1. \Box

For example, if we take the graph shown in [2, Fig. 4] as G_0 and consider the 4-valent case, then we obtain the inequality of $\sigma(\mathfrak{B}_4) \leq \log 159/\log 161$.

Although Theorem 1 remains true if k=3, there is a simpler construction which gives a better bound for σ . See the Note at the end.

3. Proof of Theorem 2

Let Z denote a subgraph obtained from G_0 by deleting any two adjacent vertices x_0 and y_0 , that is, $Z = G_0 - K_2$. Let G be any graph in which Z is an induced subgraph with x_1 , x_2 , y_1 and y_2 (see Fig. 2) as its linking vertices. Let C be any cycle in G that intersects both Z and G - Z.

Lemma 4. (1) If $C \cap Z$ is of type $P(x_1, y_1)$ or $P(x_1, y_1) \cup P(x_2, y_2)$, then C misses at least two vertices of Z.

(2) If $C \cap Z$ is of type $P(x_1, x_2)$, then C misses a vertex of Z.

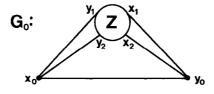


Fig. 2. The subgraph Z in G_0 .

Proof. In each case, we define a cycle C_0 in G_0 such that $C_0 \cap Z = C \cap Z$.

(1) If $C \cap Z = P(x_1, y_1)$, let $C_0 = P(x_1, y_1) \cup y_1 x_0 y_0 x_1$. If $C \cap Z = P(x_1, y_1) \cup P(x_2, y_2)$, let $C_0 = P(x_1, y_1) \cup y_1 x_0 y_2 \cup P(y_2, x_2) \cup x_2 y_0 x_1$, where we write $P(x_2, y_2)$ as $P(y_2, x_2)$ to exhibit C_0 as a cycle.

Since $v(C_0) \leq g-2$ and C_0 contains x_0 and y_0 , C_0 must miss two vertices of Z. As $C \cap Z = C_0 \cap Z$, it follows that C also misses two vertices of Z.

(2) If $C \cap Z = P(x_1, x_2)$, let $C_0 = P(x_1, x_2) \cup x_2 y_0 x_1$.

Since $v(C_0) \le g-2$ and C_0 only misses one vertex x_0 outside Z, it must miss a vertex of Z. As $C \cap Z = C_0 \cap Z$, it follows that C misses a vertex of Z. \Box

Note that Lemma 4 makes no assertion if $C \cap Z$ is of the type $P(x_1, x_2) \cup P(y_1, y_2)$.

For n > 1, let R_n consist of n copies of Z (called Z_i , $0 \le i \le n-1$) joined to form a ring by 2n edges which link the vertices x_1 and x_2 of each Z_i to the vertices y_1 and y_2 of Z_{i+1} (or Z_0 , in the case i = n-1). The graph R_n is in the class $\mathfrak{B}_3 \cap \mathscr{C}_4$. To find an upper bound for $h(R_n)$ we need only consider cycles C which intersect all the copies of Z. There are three cases:

(i) $C \cap Z_i$ is of type $P(x_1, y_1)$ for all *i*. By Lemma 4(1), $v(R_n) - v(C) \ge 2n$.

(ii) $C \cap Z_0$ is of type $P(x_1, x_2)$, $C \cap Z_i$ if of type $P(x_1, y_1) \cup P(x_2, y_2)$ for $1 \le i \le n-2$ and $C \cap Z_{n-1}$ is of type $P(y_1, y_2)$. By Lemma 4, $v(R_n) - v(C) \ge 1 + 2(n-2) + 1$.

(iii) $C \cap Z_0$ is of type $P(x_1, x_2) \cup P(y_1, y_2)$ and $C \cap Z_i$ is of type $P(x_1, y_1) \cup P(x_2, y_2)$ for $1 \le i \le n-1$. By Lemma 4, $v(R_n) - v(C) \ge 0 + 2(n-1)$. Hence

$$h(R_n) \leq v(R_n) - 2(n-1).$$

But $v(R_n) = n(g-2)$, so it follows that

$$\rho(\mathcal{B}_3) \cap \mathscr{C}_4) \leq (g-4)/(g-2) < 1.$$

If we take G_0 to be the graph shown in [2, Fig. 4], then we obtain

 $\rho(\mathfrak{B}_3 \cap \mathscr{C}_4) \leq 25/26.$

4. Note

The author is grateful to a referee for pointing out an error in [6], which invalidates the first result of that paper. In fact (see [6, Fig. 2]) I can be spanned by a pair of cycles, one in H_1 and the other in H_2 . Hence (see [6, Fig. 3]) each copy of L in J_1 can be spanned by a pair of paths, one entering and leaving through x-vertices and the other through y-vertices. It is easy to find a spanning cycle of J_1 which contains these paths, so J_1 is Hamiltonian.

The construction used for the second result in [6] remains valid, provided that we use a different graph as starting point. With the graph of Ellingham and Horton [2, Fig. 4] in place of J_1 we obtain (in our new notation) the improved inequality

 $\sigma(\mathcal{B}_3) \leq \log 26 / \log 27 < 1.$

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976).
- [2] M.N. Ellingham and J.D. Horton, Non-Hamiltonian 3-connected cubic bipartite graphs, J. Combin. Theory Ser. B 34 (1983) 350-353.
- [3] B. Grünbaum and H. Walther, Shortness exponents of families of graphs, J. Combin. Theory Ser. A 14 (1973) 364-385.
- [4] G.H.J. Meredith, Regular n-valent n-connected non-Hamiltonian non-n-edge colorable graphs, J. Combin. Theory Ser. B 14 (1973) 55-60.
- [5] P.J. Owens, On regular graphs and Hamiltonian circuits, including answers to some questions of Joseph Zaks, J. Combin. Theory Ser. B 28 (1980) 262-277.
- [6] P.J. Owens, Bipartite cubic graphs and a shortness exponent, Discrete Math. 44 (1983) 327-330.