CORE

NOTE

BIPARTITE REGULAR GRAPHS AND SHORTNESS PARAMETERS

P.J. OWENS

Department of Mathematics, University of Surrey, Guildford, United Kingdom

Received 15 November 1983
Revised 20 December 1984
By constructing sequences of non-Hamiltonian graphs it is proved that (1) for $k \geqslant 4$, the class of k-connected k-valent bipartite graphs has shortness exponent less than one and (2) the class of cyclically 4-edge-connected trivalent bipartite graphs has shortness coefficient less than one.

1. Introduction

In this paper, a graph has neither loops nor multiple edges. A multigraph has no loops but may have multiple edges. For any graph $G, v(G)$ denotes the order (number of vertices) and $h(G)$ the circumference (length of a maximum cycle). For any infinite class of graphs \mathscr{G}, the shortness exponent $\sigma(\mathscr{G})$ and shortness coefficient $\rho(\mathscr{G})$ are defined as follows [3]:

$$
\sigma(\mathscr{G})=\liminf _{G \in \mathscr{G}} \frac{\log h(G)}{\log v(G)}, \quad \rho(\mathscr{G})=\liminf _{G \in \mathscr{G}} \frac{h(G)}{v(G)} .
$$

Both parameters lie between 0 and 1 inclusive and, since $\rho=0$ when $\sigma<1$, at most one of them is of interest for any particular class \mathscr{G}. We denote a path with end vertices u and v by $P(u, v)$. For other definitions and notation see, for instance, [1].
Let \mathscr{B}_{k} denote the class of all k-connected regular k-valent bipartite graphs and \mathscr{C}_{r} the class of all cyclically r-edge-connected graphs. Several small nonHamiltonian graphs in \mathscr{B}_{3} are known, of which the first was the one due to Horton (see [1, p. 240]), which has 96 vertices. The recent example due to Ellingham and Horton [2] has only 54 vertices and is in the class $\mathscr{B}_{3} \cap \mathscr{C}_{4}$.

In this paper we prove two theorems;
Theorem 1. $\sigma\left(\mathscr{B}_{k}\right)<1$ for $k \geqslant 4$.
Theorem 2. $\rho\left(\mathscr{B}_{3} \cap \mathscr{C}_{4}\right)<1$.

The starting point of each proof is a non-Hamiltonian graph G_{0} in $\mathscr{B}_{3} \cap \mathscr{C}_{4}$. We denote the number of vertices in G_{0} by g and call vertices in the two sets of the vertex bipartition the x-vertices and y-vertices. Every cycle in G_{0} is even, of length at most $g-2$, and it misses at least one x-vertex and one y-vertex.

2. Proof of Theorem 1

Take G_{0} (as above) and convert it into a k-valent bipartite multigraph H_{0} by assigning multiplicity $k-2 t$ to the edges of a 1 -factor F and multiplicity t to all other edges, where $t=\lfloor(k+1) / 3\rfloor$. We require H_{0} to be k-edge-connected and, when $k=4$ or $k \geqslant 6$, this follows from the fact that G_{0} is cyclically 4-edgeconnected, because the sum of multiplicities of any four edges is at least k. When $k=5$, the edges of F remain as single edges in H_{0} and F must be chosen so that it does not contain four edges whose deletion would separate G_{0} into two components, both with cycles. For instance, if G_{0} is the graph shown in [2, Fig. 4] then it is a ring of four subgraphs joined by four pairs of edges and a suitable F would be the union of four 1 -factors, chosen separately in the four subgraphs.

We now convert the multigraph H_{0} into a graph J_{0} by the method of Meredith [4], which we used previously in [5]. Denote the complete bipartite graph $K_{k, k-1}$ simply by K. Let the k vertices with valency $k-1$ and the $k-1$ vertices with valency k be called l-vertices and m-vertices, respectively. When a copy of K is an induced subgraph of a k-valent graph G, each l-vertex is incident with one of the edges that join K to $G-K$, so the l-vertices are the linking vertices of K. In the multigraph H_{0}, replace each vertex v by a copy of K, as shown (for $k=4$) in Fig. 1 . The k edges originally incident at v become the edges incident at the l-vertices of the copy of K which replaces v. We denote the graph obtained after these substitutions by J_{0} and note that it is k-valent and bipartite. By [4, Theorem 3], J_{0} is also k-connected, so $J_{0} \in \mathscr{B}_{k}$.

Lemma 1. Every cycle in J_{0} misses at least two m-vertices.
Proof. Let C be a cycle in J_{0} and suppose that it intersects all the copies of K, for

Fig. 1.
otherwise the result is immediate. If we contract all copies of K to single vertices, then J_{0} becomes H_{0} and C becomes a tour T that contains every vertex of H_{0}. Since H_{0} (like G_{0}) is non-Hamiltonian, T is not a cycle. As H_{0} is bipartite, T contains an even number of edges and hence its length is at least $g+2$. At least two vertices, an x-vertex and a y-vertex, must occur twice in T, so there are at least two copies of K in J_{0} such that $C \cap K$ consists of at least two paths. Each component path in $C \cap K$ has l - and m-vertices alternately, with an l-vertex at each end, so it contains one more of the l-vertices than the m-vertices. Since the number of l-vertices in K exceeds the number of m-vertices by only one, C must miss at least one m-vertex in K whenever $C \cap K$ consists of two or more paths. The lemma follows.

Choose an m-vertex m_{0} in J_{0} and define $X=J_{0}-m_{0}$.
Lemma 2. Let G be a graph that contains a copy of X and let C be a cycle in G that intersects both X and $G-X$. Then C misses at least two m-vertices in X.

Proof. Let T_{0} be a tour of J_{0} such that $T_{0} \cap X=C \cap X$. If $C \cap X$ consists of t paths, then m_{0} occurs t times in T_{0} and no other vertex occurs more than once. If $t=1$, then T_{0} is a cycle and, by Lemma 1 , misses at least two m-vertices. Both of these vertices are in X, so C misses two m-vertices in X. If $t>1$, then the $t-1$ extra occurrences of m_{0} in T_{0} force T_{0} to miss $t-1$ more m-vertices in the same copy of K, so C misses more than two m-vertices in X.

We use X to construct an infinite sequence of graphs $\left\langle J_{n}\right\rangle$, starting with J_{0}, as follows. For $n \geqslant 0$, let J_{n+1} be a graph obtained from J_{n} by replacing every m-vertex by a copy of X. For all n, J_{n} is bipartite, k-valent and k-connected, so $J_{n} \in \mathscr{B}_{k}$.

There are $(k-1) g m$-vertices in J_{0} and one fewer in X so J_{n} contains $(k-1) g[(k-1) g-1]^{n} m$-vertices.

Lemma 3. No cycle in J_{n} contains more than $[(k-1) g-2][(k-1) g-3]^{n} m$ vertices.

Proof. Let $f(n)=[(k-1) g-2][(k-1) g-3]^{n}$. By Lemma 1, no cycle in J_{0} contains more than $f(0) m$-vertices, so the lemma holds for $n=0$. Suppose (as induction hypothesis) that the lemma holds for some n and consider any cycle C_{n+1} in J_{n+1}. If we shrink all copies of X to single m-vertices, so that J_{n+1} becomes J_{n}, then C_{n+1} becomes a tour T_{n} in which no vertices except m-vertices can occur more than once. If T_{n} contains $\mathrm{g}(n)$ different m-vertices, then C_{n+1} intersects $\mathrm{g}(n)$ copies of X and, by Lemma $2, C_{n+1}$ contains at most $g(n)[(k-1) g-3] m-$ vertices.
In case T_{n} is not a cycle, we can convert it into a cycle C_{n}, with more than $g(n)$
m-vertices in it, by replacing repetitions of an m-vertex by different m-vertices belonging to the same copy of K and not already in T_{n}. This is possible because all $k-1$ of the m-vertices in K are adjacent to all the l-vertices and, as there are only $k l$-vertices, $T_{n} \cap K$ contains at most $k-1$ occurrences of m-vertices. By the induction hypothesis, C_{n} contains no more than $f(n) m$-vertices, so $g(n) \leqslant f(n)$. Hence C_{n+1} contains no more than $f(n)[(k-1) g-3]=f(n+1) m$-vertices; that is, the lemma holds for $n+1$. By induction, it holds generally.

We now have

$$
v\left(J_{n+1}\right)-v\left(J_{n}\right)=(k-1) g[(k-1) g-1]^{n}(v(X)-1),
$$

and, by Lemma 3,

$$
h\left(J_{n+1}\right)-h\left(J_{n}\right) \leqslant[(k-1) g-2][(k-1) g-3]^{n}(v(X)-1) .
$$

These recurrence relations have solutions of the form

$$
v\left(J_{n}\right)=a[(k-1) g-1]^{n}+b, \quad h\left(J_{n}\right) \leqslant c[(k-1) g-3]^{n}+d,
$$

where a, b, c and d are constants such that $a>0$ and $c>0$. Therefore

$$
\sigma\left(\mathscr{B}_{k}\right) \leqslant \log [(k-1) g-3] / \log [(k-1) g-1]<1,
$$

and this completes the proof of Theorem 1.
For example, if we take the graph shown in [2, Fig. 4] as G_{0} and consider the 4 -valent case, then we obtain the inequality of $\sigma\left(\mathscr{B}_{4}\right) \leqslant \log 159 / \log 161$.

Although Theorem 1 remains true if $k=3$, there is a simpler construction which gives a better bound for σ. See the Note at the end.

3. Proof of Theorem 2

Let Z denote a subgraph obtained from G_{0} by deleting any two adjacent vertices x_{0} and y_{0}, that is, $Z=G_{0}-K_{2}$. Let G be any graph in which Z is an induced subgraph with x_{1}, x_{2}, y_{1} and y_{2} (see Fig. 2) as its linking vertices. Let C be any cycle in G that intersects both Z and $G-Z$.

Lemma 4. (1) If $C \cap Z$ is of type $P\left(x_{1}, y_{1}\right)$ or $P\left(x_{1}, y_{1}\right) \cup P\left(x_{2}, y_{2}\right)$, then C misses at least two vertices of Z.
(2) If $C \cap Z$ is of type $P\left(x_{1}, x_{2}\right)$, then C misses a vertex of Z.

Fig. 2. The subgraph Z in G_{0}.

Proof. In each case, we define a cycle C_{0} in G_{0} such that $C_{0} \cap Z=C \cap Z$.
(1) If $C \cap Z=P\left(x_{1}, y_{1}\right)$, let $C_{0}=P\left(x_{1}, y_{1}\right) \cup y_{1} x_{0} y_{0} x_{1}$. If $C \cap Z=$ $P\left(x_{1}, y_{1}\right) \cup P\left(x_{2}, y_{2}\right)$, let $C_{0}=P\left(x_{1}, y_{1}\right) \cup y_{1} x_{0} y_{2} \cup P\left(y_{2}, x_{2}\right) \cup x_{2} y_{0} x_{1}$, where we write $P\left(x_{2}, y_{2}\right)$ as $P\left(y_{2}, x_{2}\right)$ to exhibit C_{0} as a cycle.
Since $v\left(C_{0}\right) \leqslant g-2$ and C_{0} contains x_{0} and y_{0}, C_{0} must miss two vertices of Z. As $C \cap Z=C_{0} \cap Z$, it follows that C also misses two vertices of Z.
(2) If $C \cap Z=P\left(x_{1}, x_{2}\right)$, let $C_{0}=P\left(x_{1}, x_{2}\right) \cup x_{2} y_{0} x_{1}$.

Since $v\left(C_{0}\right) \leqslant g-2$ and C_{0} only misses one vertex x_{0} outside Z, it must miss a vertex of Z. As $C \cap Z=C_{0} \cap Z$, it follows that C misses a vertex of Z.

Note that Lemma 4 makes no assertion if $C \cap Z$ is of the type $P\left(x_{1}, x_{2}\right) \cup$ $P\left(y_{1}, y_{2}\right)$.
For $n>1$, let R_{n} consist of n copies of Z (called $Z_{i}, 0 \leqslant i \leqslant n-1$) joined to form a ring by $2 n$ edges which link the vertices x_{1} and x_{2} of each Z_{i} to the vertices y_{1} and y_{2} of Z_{i+1} (or Z_{0}, in the case $i=n-1$). The graph R_{n} is in the class $\mathscr{B}_{3} \cap \mathscr{C}_{4}$. To find an upper bound for $h\left(R_{n}\right)$ we need only consider cycles C which intersect all the copies of Z. There are three cases:
(i) $C \cap Z_{i}$ is of type $P\left(x_{1}, y_{1}\right)$ for all i. By Lemma 4(1), $v\left(R_{n}\right)-v(C) \geqslant 2 n$.
(ii) $C \cap Z_{0}$ is of type $P\left(x_{1}, x_{2}\right), C \cap Z_{i}$ if of type $P\left(x_{1}, y_{1}\right) \cup P\left(x_{2}, y_{2}\right)$ for $1 \leqslant i \leqslant n-2$ and $C \cap Z_{n-1}$ is of type $P\left(y_{1}, y_{2}\right)$. By Lemma 4, $v\left(R_{n}\right)-v(C) \geqslant$ $1+2(n-2)+1$.
(iii) $C \cap Z_{0}$ is of type $P\left(x_{1}, x_{2}\right) \cup P\left(y_{1}, y_{2}\right)$ and $C \cap Z_{i}$ is of type $P\left(x_{1}, y_{1}\right) \cup$ $P\left(x_{2}, y_{2}\right)$ for $1 \leqslant i \leqslant n-1$. By Lemma 4, $v\left(R_{n}\right)-v(C) \geqslant 0+2(n-1)$.
Hence

$$
h\left(R_{n}\right) \leqslant v\left(R_{n}\right)-2(n-1) .
$$

But $v\left(R_{n}\right)=n(g-2)$, so it follows that

$$
\left.\rho\left(\mathscr{B}_{3}\right) \cap \mathscr{C}_{4}\right) \leqslant(g-4) /(g-2)<1 .
$$

If we take G_{0} to be the graph shown in [2, Fig. 4], then we obtain

$$
\rho\left(\mathscr{P}_{3} \cap \mathscr{C}_{4}\right) \leqslant 25 / 26 .
$$

4. Note

The author is grateful to a referee for pointing out an error in [6], which invalidates the first result of that paper. In fact (see [6, Fig. 2]) I can be spanned by a pair of cycles, one in H_{1} and the other in H_{2}. Hence (see [6, Fig. 3]) each copy of L in J_{1} can be spanned by a pair of paths, one entering and leaving through x-vertices and the other through y-vertices. It is easy to find a spanning cycle of J_{1} which contains these paths, s J_{1} is Hamiltonian.
The construction used for the second result in [6] remains valid, provided that we use a different graph as starting point. With the graph of Ellingham and

Horton [2, Fig. 4] in place of J_{1} we obtain (in our new notation) the improved inequality

$$
\sigma\left(\mathscr{B}_{3}\right) \leqslant \log 26 / \log 27<1 .
$$

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976).
[2] M.N. Ellingham and J.D. Horton, Non-Hamiltonian 3-connected cubic bipartite graphs, J. Combin. Theory Ser. B 34 (1983) 350-353.
[3] B. Grünbaum and H. Walther, Shortness exponents of families of graphs, J. Combin. Theory Ser. A 14 (1973) 364-385.
[4] G.H.J. Meredith, Regular n-valent n-connected non-Hamiltonian non- n-edge colorable graphs, J. Combin. Theory Ser. B 14 (1973) 55-60.
[5] P.J. Owens, On regular graphs and Hamiltonian circuits, including answers to some questions of Joseph Zaks, J. Combin. Theory Ser. B 28 (1980) 262-277.
[6] P.J. Owens, Bipartite cubic graphs and a shortness exponent, Discrete Math. 44 (1983) 327-330.

