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By constructing sequences of non-Hamiltonian graphs it is proved that (1) for k >4, the class 
of k-connected k-valent bipartite graphs has shortness exponent less than one and (2) the class 
of cyclically 4-edge-connected trivalent bipartite graphs has shortness coefficient less than one. 

1. Introduction 

In this paper, a graph has neither loops nor multiple edges. A multigraph has 
no loops but may have multiple edges. For any graph G, v(G) denotes the order 
(number of vertices) and h(G) the circumference (length of a maximum cycle). 
For any i&mite class of graphs %, the shortness exponent a(%?) and shortness 
coefficient p(g) are defined as follows [3]: 

a(~)=liJnirlf log h(G) h(G) 
GE% log u(G) ’ 

p(%)=liminf- 
GE% u(G) * 

Both parameters lie between 0 and 1 inclusive and, since p = 0 when u < 1, at 
most one of them is of interest for any particular class 3. We denote a path with 
end vertices u and u by P(u, u). For other definitions and notation see, for 
instance, [ 11. 

Let $& denote the class of all k-connected regular k-valent bipartite graphs 
and ‘&, the class of all cyclically r-edge-connected graphs. Several small non- 
Hamiltonian graphs in 48, are known, of which the first was the one due to 
Horton (see [l, p. 240]), which has 96 vertices. The recent example due to 
Ellingham and Horton [2] has only 54 vertices and is in the class BBS fl %.+ 

In this paper we prove two theorems; 

Theorem 1. a($?&) < 1 for k a 4. 

Theorem 2. p(9, fl %J < 1. 
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The starting point of each proof is a non-Hamiltonian graph GO in 9& n %,+. We 
denote the number of vertices in GO by g and cab vertices in the two sets of the 
vertex bipartition the x-uetices and y-vertices. Every cycle in GO is even, of 
length at most g -2, and it misses at least one x-vertex and one y-vertex. 

2. Proof of Theorem 1 

Take GO (as above) and convert it into a k-valent bipartite multigraph I&, by 
assigning multiplicity k -2t to the edges of a l-factor F and multiplicity t to all 
other edges, where t = L(k + 1)/3]. We require I-&, to be k-edge-connected and, 
when k = 4 or k 2 6, this follows from the fact that GO is cyclically 4-edge- 
connected, because the sum of multiplicities of any four edges is at least k. When 
k = 5, the edges of F remain as single edges in HO and F must be chosen so that it 
does not contain four edges whose deletion would separate G,, into two compo- 
nents, both with cycles. For instance, if GO is the graph shown in [2, Fig. 41 then it 
is a ring of four subgraphs joined by four pairs of edges and a suitable F would be 
the union of four l-factors, chosen separately in the four subgraphs. 

We now convert the multigraph H,, into a graph JO by the method of Meredith 
[4], which we used previously in [5]. Denote the complete bipartite graph Kk,k--l 
simply by K. Let the k vertices with valency k - 1 and the k - 1 vertices with 
valency k be called I-uerfices and m-uetices, respectively. When a copy of K is an 
induced subgraph of a k-valent graph G, each I-vertex is incident with one of the 
edges that join K to G-K, so the I-vertices are the linking vertices of K. In the 
multigraph I-&,, replace each vertex 2, by a copy of K, as shown (for k = 4) in Fig. 
1. The k edges originally incident at u become the edges incident at the I-vertices 
of the copy of K which replaces u. We denote the graph obtained after these 
substitutions by .Q, and note that it is k-valent and bipartite. By [4, Theorem 31, JO 
is also k-connected, so J,-,E Bk. 

Lemma 1. Every cycle in Jo misses at least two m-uertices. 

Proof. Let C be a cycle in JO and suppose that it intersects all the copies of K, for 

Fig. 1. 
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otherwise the result is immediate. If we contract all copies of K to single vertices, 
then J,-, becomes H,, and C becomes a tour T that ‘contains every vertex of II,-,. 
Since Ho (like G,) is non-Hamihonian, T is not a cycle. As Ho is bipartite, T 
contains an even number of edges and hence its length is at least g+2. At least 
two vertices, an x-vertex and a y-vertex, must occur twice in T, so there are at 
least two copies of K in .I,, such that C n K consists of at least two paths. Each 
component path in C n K has I- and m-vertices alternately, with an I-vertex at 
each end, so it contains one more of the I-vertices than the m-vertices. Since the 
number of I-vertices in K exceeds the number of m-vertices by only one, C must 
miss at least one m-vertex in K whenever C n K consists of two or more paths. 
The lemma follows. Cl 

Choose an m-vertex m, in .I0 and define X = Jo - m,. 

Lemma 2. Let G be a graph thut contains a copy of X and let C be a cycle in G 
that intersects both X and G-X. Then C misses at least two m-vertices in X. 

Proof. Let To be a tour of Jo &ch that To fl X = C fl X. If C n X consists of t 
paths, then m. occurs t times in To and no other vertex occurs more than once. If 
t = 1, then To is a cycle and, by Lemma 1, misses at least two m-vertices. Both of 
these vertices are in X, so C misses two m-vertices in X. If t > 1, then the t - 1 
extra occurrences of m, in To force To to miss t - 1 more m-vertices in the same 
copy of K, so C misses more than two m-vertices in X. 0 

We use X to construct an infinite sequence of graphs (J,), starting with Jo, as 
follows. For na0, let J,+1 be a graph obtained from J, by replacing every 
m-vertex by a copy of X. For all n, J, is bipartite, k-valent and k-connected, so 
J, E P&. 

There are (k - l)g m-vertices in Jo and one fewer in X so .I,, contains 
(k - l)g[(k- l)g- l]” m-vertices. 

Lemma 3. No cycle in J,, contains more than [(k - l)g-2][(k - l)g-3]” m- 
vertices. 

Proof. Let f(n)=[(k-l)g-2][(k-l)g-3]“.ByLemma l,nocycleinJ,contains 
more than f(0) m-vertices, so the lemma holds for n = 0. Suppose (as induction 
hypothesis) that the lemma holds for some n and consider any cycle Cn+l in J,,+r. 
If we shrink all copies of X to single m-vertices, so that .I,+i becomes J,, then 
C PI+1 becomes a tour T, in which no vertices except m-vertices can occur more 
than once. If T, contains g(n) ditferent m-vertices, then C,,,, intersects g(n) 
copies of X and, by Lemma 2, C,,+l contains at most g(n)[(k- l)g-31 m- 
vertices. I 

In case T, is not a cycle, we can convert it into a cycle C,,, with more than g(n) 
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m-vertices in it, by replacing repetitions of an m-vertex by different m-vertices 
belonging to the same copy of K and not already in T,. This is possible because 
all k - 1 of the m-vertices in K are adjacent to all the I-vertices and, as there are 
only k I-vertices, T,, fl K contains at most k - 1 occurrences of m-vertices. By the 
induction hypothesis, C,, contains no more than f(n) m-vertices, so g(n)<f(n). 
Hence C,,, contains no more than f(n)[(k - 1)g - 3]= f(n + 1) m-vertices; that is, 
the lemma holds for n + 1. By induction, it holds generally. 0 

We now have 

4.&n+,)-dJJ = (k - l)g[(k - l)g- ll”(d;Y)- 11, 

and, by Lemma 3, 

h(J,+,)-h(J,)~[(k-l)g-21[(k-l)g-31n(~(X)-1). 

These recurrence relations have solutions of the form 

u(J,) = a[(k - 1)g - 11” + b, h(J,)<c[(k-l)g-3l”+d, 

where a, b, c and d are constants such that a > 0 and c > 0. Therefore 

u(&J~log[(k-l)g-3]llog[(k-l)g-l&l, 

and this completes the proof of Theorem 1. 0 

For example, if we take the graph shown in [2, Fig. 41 as Go and consider the 
4-valent case, then we obtain the inequality of cT(S8JSlog 159/lag 161. 

Although Theorem 1 remains true if k = 3, there is a simpler construction 
which gives a better bound for cr. See the Note at the end. 

3. Proof of Theorem 2 

Let Z denote a subgraph obtained from G,-, by deleting any two adjacent 
vertices x0 and yo, that is, Z = Go- &. Let G be any graph in which Z is an 
induced subgraph with x1, x2, y1 and y2 (see Fig. 2) as its linking vertices. Let C 
be any cycle in G that intersects both Z and G-Z. 

Lemma 4. (1) If C n Z is of type P(x,, yJ or P(x,, yl) U P(x,, yJ, then C misses at 
least two vertices of Z. 

(2) If C n Z is of type P(x,, x2), then C misses a vertex of Z. 

Fig. 2. The subgraph 2 in G,. 
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Proof. In each case, we define a cycle CO in GO such that Cc flZ = C n Z. 

(1) If c n z = pb,, YJ, let co = Pbl, Yl) u Ylxoyoxl. If cnz= 
Ph YJ U P(x2, YA let CO = ph, YJ U ~1x0~2 U P(Yz, 4 U x2~O~lr where we 
write P(x,, y2) as P(y,, x2) to exhibit C, as a cycle. 

Since u (Co) d g - 2 and Co contains x0 and y,, Co must miss two vertices of 2. As 
C rl Z = Co tl Z, it follows that C also misses two vertices of Z. 

(2) If c n z = P(x,, x2), let Co = P(x,, ~2) u x2yox1. 
Since u (Co) < g - 2 and Co only misses one vertex x0 outside Z, it must miss a 

vertex of Z. As C n Z = Co tl Z, it follows that C misses a vertex of Z. Cl 

Note that Lemma 4 makes no assertion if C nZ is of the type P(x,, x2) U 

P(YlY YJ. 
For n > 1, let R, consist of n copies of Z (called Zi, 0~ i G n - 1) joined to 

form a ring by 2n edges which link the vertices x1 and x2 of each Zi to the 
vertices y1 and y2 of Zi+l (or Z,, in the case i = n - 1). The graph R, is in the class 
9& n qe4. To find an upper bound for h(R,) we need only consider cycles C which 
intersect all the copies of Z. There are three cases: 

(i) C nZi is of type P(x,, yr) for all i. By Lemma 4(l), u(R,)-u(C)s2n. 
(ii) c nz, is of type P(x,, xJ, C nZi if of type P(x,, yl) UP(x,, ~2) for 

lsisn-2 and CnZ,-, is of type P(y,,yJ. By Lemma 4, u(R,)-u(C)> 
1+2(n-2)+1. 

(iii) Cfl Z, is of type P(x,, x3 U P(y,, y2) and Cn Z is of type P(xl, yl) U 

P(x2,y2) for lSi<n-1. By Lemma 4, u(R,)-v(C)?=O+2(n-1). 
Hence 

h(R,)Su(R,)-2(n-1). 

But u(R,) = n(g -2), so it follows that 

p(~B,)n(e,)~(g-4)l(g-2)<1. 

If we take Go to be the graph shown in [2, Fig. 41, then we obtain 

p(9i?3n%,)~25/26. 

4. Note 

The author is grateful to a referee for pointing out an error in [6], which 
invalidates the first result of that paper. In fact (see [6, Fig. 21) I can be spanned 
by a pair of cycles, one in HI and the other in Hz. Hence (see [6, Fig. 31) each 
copy of L in J1 can be spanned by a pair of paths, one entering and leaving 
through x-vertices and the other through y-vertices. It is easy to find a spanning 
cycle of J1 which contains these paths, so J1 is Hamiltonian. 

The construction used for the second result in [6] remains valid, provided that 
we use a difIerent graph as starting point. With the graph of Ellingham and 
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Horton [2, Fig. 41 in place of .T1 we obtain (in our new notation) the improved 
inequality 

a(~,) =s log 26/lag 27 < 1. 
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