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Abstract 

Thin-walled tubing used in various structures are mad
integrity to internal pressures is of prime importance 
the work performed on Zircaloy cladding commonly
that find applications in aerospace industry. Conside
end internal pressurization, (ii) uniaxial ring tests fo
biaxial internal pressurization. Burst and ring tests y
utility of ring tests to replace burst tests.  Importanc
predicting in-service dimensional changes is emphasi

© 2013 The Authors. Published by Elsevier Ltd. Se
Centre for Atomic Research. 

Keywords: Zircaloys; titanium; burst; biaxial creep; microstr

1. Introduction 

Several thin walled tube structures in nuc
Titanium alloys respectively due to their attr
primarily used as fuel cladding tubes and core i
been noted to improve long term corrosion r
Titanium and its alloys are used as gas carryin
strength to weight ratio and good corrosion resi
the tube structures becomes critical due to the 
addition, these structures are subject to complex
with axial forces due to end caps etc [4]. Since m
larger by more than 10 times thickness), radial o
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y used in LWRs as thin walled tubing as well as Cp-Ti and Ti3
ered here are three different types of tests: (i) burst tests using 
r characterization of hoop creep properties and (iii) hoop creep
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ce of transitions in creep mechanisms with decreased stress le
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axial) stresses. Thus, understanding the creep b
indispensible for designing long safe running rea

In this article, the burst and creep charact
presented with emphasis on transitions in cre
conditions are approached. Also considered here
pressurization of tubing as well as uniaxial hoop
analyzed in terms of Larson-Miller parameter w
Ti3Al2.5V tubing revealed the significance of d
underlying micromechanism(s) of creep [5]. I
strongly related to the creep properties along
evaluating creep properties along the hoop direc

2. Materials and experiments 

Biaxial burst and creep tests were performed
with their compositions. Biaxial creep tests are 
situ measurement of hoop and axial strains usi
Internal pressurization of tubing gives rise to a s
cases the axial strains are negligibly small, furth
is similar to the biaxial test and it is useful i
however, here the test is continued till fracture
Ring creep tests were performed to evaluate the
600 oC) [9]. The test involves application of t
specimens (Fig. 1b). The details of the test con
appropriate calibration was made to take care of

Table 1. Details of the materi

Tubing Processed Condition  Chemical com

Zircaloy-4 Recrystallized at 973 
K for 4 hrs 

Zr-1.5Sn-0.21F

Zirlo Cold worked stress 
relieved  

Zr-1Sn-1Nb-0.

Cp-Ti Recrystallized  Ti-0.2Fe-0.18O
Ti3Al2.5V Recrystallized at 973 

K for 4 hrs 
Ti-2.91Al-2.42
0.03Fe-0.02N-

 

Fig. 1. (a). Biaxial Creep

ehavior in particular under closed end internal pressuriza
actors and other structures. 
teristics of thin-walled tubing of Zr and Ti based allo
ep mechanisms as lower stresses corresponding to in-s
e are the hoop burst and creep characteristics using both in
p (ring) creep and rupture tests. Burst and creep rupture d
while transitions in creep mechanisms in internally press
deformation microstructures in unequivocally characterizi
It has been recognized that the burst properties of tub
g the hoop direction [6] while ring creep tests are use
ction [7]. 

d on the Zirconium and Titanium alloys listed in Table 1
conducted by internally pressurizing closed end tubes w

ing Laser telemetric and LVDT extensometers [1,5] (Fi
stress ratio (i.e. hoop stress to axial stress) of 2:1 and sinc
her discussions are confined to hoop strains only [5]. Bu
in predicting the short term creep rupture characteristi
e of the tube with only post-test measurement of hoop s
e properties in the hoop direction at various temperatures
tensile force in the hoop direction of specially machine
nfiguration and method have been described elsewhere [
f bending displacements of the device and the ring [10]. 

ials tested in this study and the testing conditions. 

mposition (wt%) Tests  Test temperature (K

Fe-0.1Cr-0.01O Burst 523-773K 

.01Fe-0.008C -0.01O Burst and Ring creep 523-873K 

O-0.1C-0.01H-0.03N Burst 523-773K 
2V-0.12O-0.05C-
-0.013H 

Biaxial creep 723-873K 
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2.1. Burst and ring creep tests 

Burst tests were carried out on Zircaloy-4, Zirlo and Cp-Ti to investigate the creep rupture behavior of these 
materials using closed end tubes of ~9.5 mm of outer diameter and ~0.6 mm of wall thickness by internally 
pressurizing using Argon gas for various pressures at a range of temperatures (~300°C-600°C). Each test was 
carried out till the tube fractures to estimate the creep rupture time. The test duration was recorded using a 
timer. The details of the burst set up are described elsewhere [6]. The diameter of the tube specimen was 
measured across its length before and after the burst test for calculating the uniform circumferential elongation 
(UCE) from which the steady state strain rate ( was calculated by dividing the UCE by the rupture time, tr, 

rr t

d

d

t

UCE == 0

ln

ε ,  (1) 

where d is the average uniform diameter of the burst specimen and d0 is the original diameter of the un-burst 
specimen. The burst hoop stress ( ) applied on the tubes was calculated using thin-wall approximation, 

t

pd

2
=θσ ,  (2) 

where p is the internal pressure, d is the mean diameter and t is the tube thickness. The creep data along the 
hoop direction in tubes can be obtained using the ring creep test setup which involves applying tensile stress in 
the hoop direction of the ring specimens machined from tubes (Fig. 1b). The biaxial burst and uniaxial ring 
creep tests were performed on Zirlo alloy at identical temperature and hoop stress conditions in order to 
compare these two data sets [9]. The creep rupture data obtained from both the burst and ring tests were fit to 
Larson-Miller parameter (Eq. 3) which is a useful design parameter to predict the creep rupture time at different 
stresses and temperatures, 

LMP = T(logtr + C).  (3) 

Here T is test temperature (K), tr is the rupture time in hours and C is a constant (~20). 

2.2. Biaxial creep test 

Biaxial creep tests on recrystallized Ti3Al2.5V tubes were carried out in a temperature range 723–873 K by 
closed end gas pressurization with Argon. The grain size of the recrystallized Ti3Al2.5V was measured to be 
6.6±0.4 m using the linear intercept method. Hoop strains were monitored in-situ using a Lasermike and the 
tube specimens tested at 873 K were coated with gold in a pulsed laser deposition chamber to avoid oxidation 
issues [5]. Deformation microstructures were studied using TEM of samples prepared using mechanical and 
electro jet polishing procedures from the gage section of the tube. TEM imaging was carried out in order to 
correlate and explain the active creep deformation mechanisms [5].  

3. Results and discussion 

3.1. Burst and ring creep 

Figure 2a comprises the rupture data plotted as LMP versus hoop stress for Zirlo and Zircaloy-4 both in 
cold-worked stress-relieved (CWSR) and recrystallized (Rx) conditions obtained from burst and ring creep 
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tests [9]. We note three important features: (i)
approached, (ii) overlapping of LMP of Zirlo 
negligible effect on their creep life, and (iii) bot
significance of ring tensile and creep tests to yi
commonly encountered in-reactor. The 3rd 
deformation of highly irradiated materials since 
to burst tests. Similar LMP plot for Cp-Ti is sho

 

Fig. 2. Hoop Stress vs Larson-Mille
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Fig. 3. Hoop Creep Results Plotted in Terms of Do

Fig. 4. A bright field TEM image of Cp-Ti showin

3.2. Ti3Al2.5V Hoop creep results 

Hoop creep data on recrystallized Ti3Al
temperatures and stresses to cover 2 orders of m
on the gauge sections prevented problems w
parameters and a double-log plot of dimension
stress exponents of 1, 2 and 5 [5]. Figure 5 i
observed at different stress levels in various regi
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well known that the activation energy for grain
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the active deformation mechanism(s) in the diff
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Fig. 5. Normalized strain-rate versus stress depicting
microstru
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Fig. 6. Correlation of region I experimental creep data with predictions of Coble creep model and Spingarn-Nix model with slip band 
spacing ( SB) of 250 nm. 

At high stresses in region III the creep-rates followed the power-law equation with n~5 and Q=QD, 

5
9107.1=

EkT

DEb
xIII

σε .  (6) 

With n around 5 and the activation energy for creep identified to be that for lattice diffusion, the rate 
controlling mechanism is identified to be the climb of edge dislocations [14]. TEM studies in this region 
however revealed two distinct types of dislocation microstructures depending on the stress level. In the low 
stress end of region III at σ=3.02x10-3E, subgrains of size 1.2 μm were noted that followed the standard 
empirical relation valid when Weertman edge dislocation climb creep mechanism controls creep [15], 

1

20
−

=
Eb

SG σδ
,  (7) 

where SG is the subgrain size. On the other hand, at high stresses in region III with n=5 and Qc=QD, dispersed 
dislocations mainly long screw type were noted (Fig. 5) indicative of jogged screw dislocation model where the 
climb of jogs on screw dislocations controls the creep ra te [16,17]. The jogged screw dislocation creep model 
originally put forth by Barrett and Nix has been modified by Karthikeyan et al [18] according to which the 
creep-rates are given by, 

−
Ω

= 1
4

exp
2

kThGbh

D

d

jog

d
s β

λσ
α
σ

β
πε

.  (8) 

Here D is lattice diffusivity, hd is the maximum jog height that can be achieved for a given stress level,  and β 
are constants, G is the shear modulus,  is the atomic volume, jog is the jog spacing and the rest of the terms 
are the same as defined previously. The average jog height is represented as hd. Although the jogged screw 
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dislocations observed here at high stresses are not well formed, we believe that the absence of subgrain 
boundaries reveals the change in the creep mechanism in region III at high stress end compared to that at the 
lower stress range. These observations clearly point out that in some cases there may be a possible transition in 
creep mechanism that is too subtle to be revealed as a marked change in the stress exponent and can only be 
revealed by careful studies of dislocation microstructures following creep deformation. 

It is seen from the analysis of creep data and microstructural investigations on Ti3Al2.5V that there are 
transitions in creep mechanisms depending on the applied stress and temperature from a dislocation glide-climb 
creep at higher stresses to a GBS-controlled mechanism at intermediate stresses to a diffusion controlled 
viscous creep at lower stresses. Such transitions in the rate controlling creep mechanisms were also found in 
Zirlo [8, 19], Zircaloy-4 [20] and Cp-Ti [6] using burst and ring tests. It is important to recognize that blind 
extrapolation of high stress data to low stresses corresponding to those encountered in service could result in 
non-conservative predictions of creep-rate and creep life, and thus the transitions in creep mechanisms must be 
considered while extrapolating the creep data to predict the rupture time of the structures in-service. Just a 
linear extrapolation of creep data would be invalid and is potentially dangerous while designing the critical 
structures in nuclear reactors and aircrafts.  
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