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this result on the comparison of graph energies between unicyclic
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1. Introduction

Let G be a simple graph with n vertices and A be its adjacency matrix. Let λ1, . . . , λn be the

eigenvalues of A, then the energy of G, denoted by E(G), is defined [2,3] as E(G) = ∑n
i=1 |λi|.

In theoretical chemistry, the energy of a given molecular graph is related to the total π-electron

energy of the molecule represented by that graph. So the graph energy has some specific chemical

interests and has been extensively studied [2–4].

The characteristic polynomial det(xI − A) of the adjacency matrix A of a graph G is also called

the characteristic polynomial of G, written as φ(G, x) = ∑n
i=0 ai(G)xn−i. Using these coefficients of

�
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φ(G, x), the energy E(G) of a graphGwith n vertices can be expressed by the following Coulson integral

formula [4]:

E(G) = 1

2π

∫ +∞
−∞

1

x2
ln

⎡
⎢⎣

⎛
⎝�n/2�∑

j=0

(−1)ja2j(G)x2j

⎞
⎠

2

+
⎛
⎝�n/2�∑

j=0

(−1)ja2j+1(G)x2j+1

⎞
⎠

2
⎤
⎥⎦ dx. (1.1)

A unicyclic graph is a connected graph in which the number of edges equals the number of vertices.

Obviously, a unicyclic graph contains a unique cycle. Conversely, if a graph contains a unique cycle, then

it must be a disjoint union of a unicyclic graph and several trees. We call such graph as a single-cycle

graph.

In this paper, we use G(n, l) to denote the set of unicyclic graphs of order nwhose unique cycle has

length l, and use G1(n, l) to denote the set of single-cycle graphs of order n whose unique cycle has

length l.

A graph G is called a UOB graph, if it is a unicyclic graph or a bipartite graph.

Throughout this paper, we write:

bi(G) = |ai(G)|, where φ(G, x) =
n∑

i=0

ai(G)xn−i.

It is easy to see that b0(G) = 1, b1(G) = 0, and b2(G) equals the number of edges of G.

The following results related to the signs of the coefficients of the characteristic polynomials are

both true for single-cycle graphs [5] and bipartite graphs [1].

Lemma 1.1. Let G be a single-cycle graph or a bipartite graph. Then:
(1) b2j(G) = (−1)ja2j(G).

(2) b2j+1(G) = (−1)ja2j+1(G), if G contains a cycle of length l with l /≡ 1(mod 4).

(3) b2j+1(G) = (−1)j+1a2j+1(G), if G contains a cycle of length l with l ≡ 1(mod 4).

From Lemma 1.1, the Coulson integral formula (1.1) can be rewritten as the following form (in terms

of bi(G)) for UOB graphs:

E(G) = 1

2π

∫ +∞
−∞

1

x2
ln

⎡
⎢⎣

⎛
⎝�n/2�∑

j=0

b2j(G)x2j

⎞
⎠

2

+
⎛
⎝�n/2�∑

j=0

b2j+1(G)x2j+1

⎞
⎠

2
⎤
⎥⎦ dx. (1.2)

It follows that E(G) is a strictly monotonically increasing function of those numbers bi(G) (i =
0, 1, . . . , n) for UOB graphs. This in turn provides a way of comparing the energies of a pair of UOB

graphs. That is to say, the method of the quasi-ordering relation “�” defined by Gutman and Polansky

[4] on the set of forests can now be generalized to the set of UOB graphs as follows:

Definition 1.1. Let G1 and G2 be two UOB graphs of order n. If bi(G1) � bi(G2) for all i with 2� i � n,

then we write that G1 � G2. (Note that b0(G) = 1 and b1(G) = 0 for all graphs G.)

Furthermore, if G1 � G2 and there exists at least one index j such that bj(G1) < bj(G2), then we

write that G1 ≺ G2.

If bi(G1) = bi(G2) for all i (i.e., if G1 � G2 � G1), we write G1 ∼ G2.

According to the Coulson integral formula (1.2), we have for two UOB graphs G1 and G2 of order n

that

G1 � G2 	⇒ E(G1) � E(G2),

and

G1 ≺ G2 	⇒ E(G1) < E(G2).

In this paper, we study how graph energies change under certain graph operations on UOB graphs.

Wewill show in Section 3 that for twoUOB graphs one ofwhich is obtained from the other by applying
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an “edge grafting" operation, the quasi-order relation between them is totally determined by the parity

of the shortest length among those relevant pendant paths. As an application,wedetermine (in Section

4) the maximal and minimal energy graph among all the graphs obtained by attaching some rooted

tree of fixed order to some vertex u of some UOB graph G.

2. A recurrence relation of the quasi-orders upon deleting a cut edge on unicyclic or bipartite

graphs

In this section, we will give a generalization (in Lemma 2.3) of a well known recurrence relation on

the quasi-orders from acyclic graphs to UOB graphs. This result will be used throughout the paper.

The following lemma is another form of Theorem 2.12 in [1]. We write down a short proof here for

the self-contained purpose of the paper.

Lemma 2.1. Let uv be a cut edge of a graph G. Then we have

φ(G, x) = φ(G − uv, x) − φ(G − u − v, x).

Proof. Write G − uv = G1 ∪ G2, where G1, G2 are graphs of order n1, n2 with adjacency matrices

A1, A2, respectively. Without loss of generality, we may assume that u is the last vertex of G1, and v is

the first vertex of G2. Let E1 be the n1 × n2 matrix with the (n1, 1) entry be 1 and all the other entries

zero, and e1 be the last row of E1. Then we have:

φ(G, x)= det(xI − A) = det

(
xIn1 − A1 −E1

−ET1 xIn2 − A2

)

= det

(
xIn1 − A1 O

−ET1 xIn2 − A2

)
+ det

⎛
⎝xIn1−1 − A(G1 − u) ∗ O

0 · · · 0 0 −e1
O −eT1 xIn2 − A2

⎞
⎠

= φ(G1, x)φ(G2, x) − φ(G1 − u, x)φ(G2 − v, x)=φ(G − uv, x) − φ(G − u − v, x). �

From Lemma 2.1, we can get the following recurrence relation of bi(G) for UOB graphs. This result

for the unicyclic graphs in the special case of the pendant edge can also be found in [5,6].

Lemma 2.2. Let uv be a cut edge of a UOB graph G. Then we have:
bi(G) = bi(G − uv) + bi−2(G − u − v) (i � 2). (2.1)

Proof. By Lemma 2.1, we have

n∑
i=0

ai(G)xn−i =
n∑

i=0

ai(G − uv)xn−i −
n−2∑
i=0

ai(G − u − v)xn−i−2.

Comparing the coefficients of xn−i for both sides of the above equation, we have

ai(G) = ai(G − uv) − ai−2(G − u − v). (2.2)

Case 1: i is even, say i = 2j.

Multiplying both sides of (2.2) by (−1)j , and using result (1) of Lemma 1.1, we obtain (2.1).

Case 2: i is odd, say i = 2j + 1.

If G is bipartite, then all the three terms of (2.1) are zero. So in this case we may assume that G is

unicyclic containing a (single) cycle C of length l.

Subcase 2.1: G − u − v contains no cycle. Then it is a forest, and thus ai−2(G − u − v) = 0 = bi−2

(G − u − v). So (2.2) implies ai(G) = ai(G − uv). Taking the absolute values for both sides, we obtain

bi(G) = bi(G − uv) = bi(G − uv) + bi−2(G − u − v).
Subcase 2.2: G − u − v contains the cycle C. Then both G − uv and G − u − v are single-cycle graphs

(containing the same cycle C).
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Multiplying both sides of (2.2) by (−1)j , we obtain

(−1)ja2j+1(G) = (−1)ja2j+1(G − uv) + (−1)j−1a2j−1(G − u − v). (2.3)

By using the result (2) or (3) of Lemma 1.1, we can see that the two terms of the right side of (2.3) can

not have the opposite signs (since the cycle in G − uv and in G − u − v have the same length l). Thus

taking the absolute values for both sides of (2.3), we obtain (2.2). �

From Lemma 2.2 we can get the following useful corollary which will be used in Sections 3 and 4.

Corollary 2.1. Let uv be a cut edge of a UOB graph G. Then we have G − uv ≺ G.

Proof. By Lemma 2.2 we have bi(G) − bi(G − uv) = bi−2(G − u − v) � 0 for i � 2.

On the other hand, we have b2(G) > b2(G − uv) since G obviously have more edges than G − uv.

So we have G − uv ≺ G. �

From Lemma 2.2 we can also directly obtain the following recurrence relation on the quasi-orders

of UOB graphs.

Lemma 2.3. Let uv (respectively, u′v′) be a cut edge of a UOB graph G (respectively, G′). Suppose that

G − uv� G′ − u′v′ and G − u − v� G′ − u′ − v′, then we have G� G′, with G ∼ G′ if and only if both

the two relations G − uv ∼ G′ − u′v′ and G − u − v ∼ G′ − u′ − v′ hold.

An important and frequently used special case of Lemma 2.3 is that u (respectively, u′) is a pendant
vertex of G (respectively, G′). Then in this case we have G − uv� G′ − u′v′ ⇐⇒ G − u� G′ − u′.

3. The effect of edge-graftings on the quasi-orders of UOB graphs

Let u, v be two vertices (not necessarily distinct) in a graphG, and a, b be two non-negative integers.

Let Gu,v(a, b) be the graph obtained by attaching to G two (new) pendent paths of lengths a and b at

u and v, respectively (see Fig. 1). Also, we sometimes use Gu,v to denote a graph G with two vertices u

and v specified.

When a + b = c + d (where a, b, c, d are non-negative integers), we say that the graph Gu,v(c, d)
is obtained from Gu,v(a, b) by an “edge grafting" operation (on the two relevant pendant paths of

Gu,v(a, b)).
The edge grafting operations on the treeswere often considered and used in the study of the spectra

of graphs. Recently [7],we also used the special case u = v of the edge grafting to study the quasi-order

relations and the comparison of graph energies between trees. In this section, we will study the effect

of the edge grafting operations on the quasi-orders and graph energies for UOB graphs.

Fig. 1. The graph Gu,v(a, b).
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We first consider a “total edge grafting" for the general case where u may not equal to v, and even

the two graphs G and H in the following Lemma 3.1 may not be the same.

Lemma 3.1. Let u, v be two vertices of a UOB graph G, s, t be two vertices of a UOB graph H. If G and H

satisfy:
(1) Gu,v(0, 2) � Hs,t(1, 1).
(2) Gu,v(0, 1) �Hs,t(0, 1).
(3) For any positive integer p, Gu,v(0, p) �Hs,t(p, 0).

Then for any positive integers a, b, we have Gu,v(0, a + b) � Hs,t(a, b).

Proof. Case 1: b = 1. We use induction on a.

If a = 0, then we have Gu,v(0, a + b) �Hs,t(a, b) by condition (2). If a = 1, then the result holds by

condition (1).

In general when a� 2, take the pendant edge in the pendant path of length a + 1 of Gu,v(0, a + b),
and the pendant edge in the pendant path of length a of Hs,t(a, b) as the cut edges, respectively, then

use Lemma 2.3 and the inductive hypothesis on a, we have:

Gu,v(0, a) � Hs,t(a − 1, 1), Gu,v(0, a − 1) �Hs,t(a − 2, 1) 	⇒ Gu,v(0, a + 1) � Hs,t(a, 1).

Case 2: b� 2. We use induction on b.

If b = 0, then we have Gu,v(0, a + b) �Hs,t(a, b) by condition (3). If b = 1, then the result hold by

Case 1.

In general when b� 2, take the pendant edge in the pendant path of length a + b of Gu,v(0, a + b),
and the pendant edge in the pendant path of length b of Hs,t(a, b), respectively. Then by the inductive

hypothesis on bwe have:

Gu,v(0, a + b − 1) � Hs,t(a, b − 1), Gu,v(0, a + b − 2) �Hs,t(a, b − 2),

which imply Gu,v(0, a + b) � Hs,t(a, b) by using Lemma 2.3. �

The following Lemma 3.2 will only be used in the proof of Theorem 3.1.

Lemma 3.2. Let u, v be two vertices of a UOB graph G satisfying Gu,v(0, 2) � Gu,v(1, 1), then we have:
(1) For any integer k � 0, we have

Gu,v(2k, 2k + 2) � Gu,v(2k + 1, 2k + 1).

(2) For any integer k � 0, we have

Gu,v(2k + 2, 2k + 2) � Gu,v(2k + 1, 2k + 3).

Proof. (1) We use induction on k. If k = 0, then the result holds by the hypothesis. So we assume that

k � 1. By the inductive hypothesis we have

Gu,v(2k − 2, 2k) � Gu,v(2k − 1, 2k − 1).

First we prove the following relation (3.1):

Gu,v(2k, 2k) � Gu,v(2k − 1, 2k + 1). (3.1)

Take the pendant vertex x and pendant edge xy in the pendant path of length 2k (starting from u) of

Gu,v(2k, 2k), and the pendant vertex x′ and pendant edge x′y′ in the pendant path of length 2k + 1 of

Gu,v(2k − 1, 2k + 1), respectively, and then use the inductive hypothesis on k, we have:

Gu,v(2k, 2k) − x = Gu,v(2k − 1, 2k) = Gu,v(2k − 1, 2k + 1) − x′,
Gu,v(2k, 2k) − x − y = Gu,v(2k − 2, 2k) � Gu,v(2k − 1, 2k − 1)

= Gu,v(2k − 1, 2k + 1) − x′ − y′.

Using these two relations and Lemma 2.3, we obtain (3.1).



552 H.-Y. Shan et al. / Linear Algebra and its Applications 433 (2010) 547–556

Next, take the pendant vertex x and pendant edge xy in the pendant path of length 2k + 2 of

Gu,v(2k, 2k + 2), and the pendant vertex x′ and pendant edge x′y′ in the pendant path of length 2k + 1

(starting from u) of Gu,v(2k + 1, 2k + 1), respectively, we have:

Gu,v(2k, 2k + 2) − x = Gu,v(2k, 2k + 1) = Gu,v(2k + 1, 2k + 1) − x′,
Gu,v(2k, 2k + 2) − x − y = Gu,v(2k, 2k) � Gu,v(2k − 1, 2k + 1)

= Gu,v(2k + 1, 2k + 1) − x′ − y′ by (3.1).

Using these two relations and Lemma 2.3, we obtain the result (1).

(2) Similarly, take the pendant vertex x and pendant edge xy in the pendant path of length 2k + 2

(starting from u) of Gu,v(2k + 2, 2k + 2), and the pendant vertex x′ and pendant edge x′y′ in the

pendant path of length 2k + 3 of Gu,v(2k + 1, 2k + 3), respectively, we have:

Gu,v(2k + 2, 2k + 2) − x = Gu,v(2k + 1, 2k + 2) = Gu,v(2k + 1, 2k + 3) − x′,
Gu,v(2k + 2, 2k + 2) − x − y = Gu,v(2k, 2k + 2) � Gu,v(2k + 1, 2k + 1)

= Gu,v(2k + 1, 2k + 3) − x′ − y′.

Using these two relations and Lemma 2.3, we obtain the result (2). �

The following Theorem 3.1 concerns a kind of edge grafting for the two pairs of pendant paths

rooted at two (possibly distinct) vertices u and v. Here the result (2) of Theorem 3.1 will only be used

in the proof of result (3) of Theorem 3.1.

Theorem 3.1. Let u, v be two vertices of UOB graph G. Suppose that G satisfies:
(i) Gu,v(0, 2) � Gu,v(1, 1).
(ii) For any non-negative integers p, q, we have Gu,v(p, q) = Gu,v(q, p).

Let a, b, c, d be non-negative integers with a� b, c � d, a + b = c + d, and a < c, then we have:
(1) If a is even, then Gu,v(a, b) � Gu,v(c, d).
(2) If both k, j are not equal to 1, then Gu,v(1, k + j − 1) ≺ Gu,v(k, j).
(3) If a is odd, then Gu,v(a, b) ≺ Gu,v(c, d).

Proof. (1) Write a = 2k. Take H = Gu,v(a, a), let s, t be the pendant vertices of the two pendant paths

of length a of H. Then by condition (ii) we have:

Hs,t(p, q) = Gu,v(a + p, a + q) = Gu,v(a + q, a + p) = Hs,t(q, p).

By Lemma 3.2 we also have:

Gu,v(0, 2) � Gu,v(1, 1) 	⇒ Gu,v(2k, 2k + 2) � Gu,v(2k + 1, 2k + 1)

	⇒ Hs,t(0, 2) � Hs,t(1, 1).

Thus Hs,t satisfies all the conditions of Lemma 3.1 (take Gu,v in Lemma 3.1 to be Hs,t). So use Lemma 3.1

for Hs,t , we can obtain Hs,t(0, b − a) � Hs,t(c − a, d − a), and this is the same as our desired result

Gu,v(a, b) � Gu,v(c, d).
(2) If one of k, j is zero, then (2) follows directly from (1). So in the followingwe assume that k, j � 2.

Now we use induction on k. If k = 0, the result holds by the previous result (1). If k = 1, then we

obviously have Gu,v(1, k + j − 1) = Gu,v(k, j). Now the general case follows from Lemma 2.3 and the

inductionon k, by taking thependant edge in thependant pathof length k + j − 1ofGu,v(1, k + j − 1),
and the pendant edge in the pendant path of length k of Gu,v(k, j), respectively.

(3) By result (2) we may assume that a = 2k + 1� 3. Take H = Gu,v(2k, 2k). Then similar to (1)

we can check that Hs,t satisfies the conditions (i) and (ii) of this theorem for Gu,v. So the result (2) of
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this theorem also holds for Hs,t , namely we have Hs,t(1, b − 2k) ≺ Hs,t(c − 2k, d − 2k), and this is the

same as our desired result Gu,v(a, b) ≺ Gu,v(c, d). �

Next we are going to show (in Corollary 3.1) that if u = v and v is a non-isolated vertex of a UOB

graph G, then the condition (i) of Theorem 3.1 can always be satisfied. For this purpose, we need first

to prove the following Lemmas 3.3 and 3.4. The proof of Lemma 3.3 will also need to use the following

well known Sachs Theorem [1].

Let Li(G) be the set of subgraphs with order i of G each of whose components is either a single

edge or a single cycle, then the well-known Sachs Theorem gives:

ai(G) = ∑
S∈Li(G)

(−1)p(S)2c(S), (3.2)

where p(S) is the number of components of S and c(S) is the number of cycles of S.

Recalling that G1(n, l) denotes the set of single-cycle graphs of order n whose unique cycle has

length l.

Now let G ∈ G1(n, l) with a single cycle C of length l.

Let m(G, k) be the number of k-matchings of G, and we assume that m(G, k) = 0 if k is not a

non-negative integer.

Lemma 3.3. Let G ∈ G1(n, l) with a single cycle C of odd length l, e = uv be an edge of G. Then we have

G � G − e.

Proof. If e = uv is a cut edge of G, then the result follows directly from Corollary 2.1. So we may

assume that the edge e is on the cycle C. In this case, G − e is a forest, so by Sachs Theorem we have

bi(G − e) = m
(
G − e, i

2

)
. Now we consider two cases.

Case 1: i is odd. Then bi(G − e) = 0� bi(G).
Case 2: i is even. Now l is odd. Then each subgraph in Li(G) does not contain the unique cycle C of G,

and thus must be an i
2
-matching of G. So we have

ai(G) = ∑
S∈Li(G)

(−1)p(S)2c(S) = (−1)
i
2 m

(
G,

i

2

)

and so bi(G) = |ai(G)| = m
(
G, i

2

)
�m

(
G − e, i

2

)
= bi(G − e).

Combining the above two cases, we always have bi(G) � bi(G − e).
On theotherhand, it is obvious thatb2(G) = |E(G)| > |E(G − e)| = b2(G − e). Fromthisweobtain

that G � G − e. �

Lemma 3.4. Let v be a non-isolated vertex in a UOB graph G, K1 be the trivial graph of order 1. Then
G � (G − v) ∪ K1.

Proof. Case 1: G is a bipartite graph. Then (G − v) ∪ K1 is also a bipartite graph.

Let μ1 � μ2 � · · · � μn be the eigenvalues of G with μs > 0� μs+1, λ
′
1 � λ′

2 � · · · � λ′
n−1 be the

eigenvalues of G − v, and λ1 � λ2 � · · · � λn be the eigenvalues of (G − v) ∪ K1. By the Cauchy inter-

lacing theorem, we have λ′
s−1 � μs > 0� μs+1 � λ′

s+1.

On the other hand, the spectrum of G − v can be obtained by deleting an eigenvalue 0 from the

spectrum of (G − v) ∪ K1, so we have λs+1 �Max{λ′
s+1, 0} � 0, and 0� λs = Max{λ′

s, 0} � μs.

Since G and (G − v) ∪ K1 are both bipartite graphs, We get the following formulas:

φ(G, x) = xn−2s
s∏

i=1

(
x2 − μ2

i

)
, φ((G − v) ∪ K1, x) = xn−2s

s∏
i=1

(
x2 − λ2

i

)
,

where μi � λ′
i = λi > 0 for i = 1, . . . , s − 1, and μs � λs � 0.
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Now using Viète’s formulas on the relations between roots and coefficients of polynomials, we get:

b2k(G) = ∑
1� i1<i2<···<ik � s

(μi1μi2 · · · μik )
2, b2k((G − v) ∪ K1) = ∑

1� i1<i2<···<ik � s

(λi1λi2 · · · λik )
2.

It follows from this that bi(G) � bi((G − v) ∪ K1) for all i. Since v is a non-isolated vertex of G, the edge set

of (G − v) ∪ K1 is a proper subset of the edge set of G. Then b2(G) = |E(G)| > |E((G − v) ∪ K1)| = b2((G −
v) ∪ K1), so we obtain G � (G − v) ∪ K1.

Case 2: G is a unicyclic graph with the cycle length l.

Subcase 2.1: l is even. Then G is a bipratite graph, and the result follows from Case 1.

Subcase 2.2: l is odd. Since v is a non-isolated vertex of G, (G − v) ∪ K1 is a proper spanning subgraph of G. So

by Lemma 3.3 we have G � (G − v) ∪ K1. �

Nowwe can show that if u = v and v is a non-isolated vertex of a UOB graph G, then the condition

(i) of Theorem 3.1 can always be satisfied.

Corollary 3.1. Let v be a non-isolated vertex in a UOB graph G. Then we have Gv,v(0, 2) � Gv,v(1, 1).

Proof. Let e = xy be the pendant edge (with pendant vertex x) on the pendant path of length 2 of

Gv,v(0, 2), and e′ = x′y′ be the pendant edge (with pendant vertex x′ and y′ = v) on a pendant path of

length 1 of Gv,v(1, 1). Then we have:

Gv,v(0, 2) − x = Gv,v(0, 1) = Gv,v(1, 1) − x′ (3.2)

and

Gv,v(0, 2) − x − y = Gv,v(0, 0) = G, Gv,v(1, 1) − x′ − y′ = Gv,v(0, 1) − v = (G − v) ∪ K1.

By Lemma 3.4 we have

Gv,v(0, 2) − x − y � Gv,v(1, 1) − x′ − y′. (3.3)

Combining (3.2) and (3.3) and using Lemma 2.3 we obtain Gv,v(0, 2) � Gv,v(1, 1). �

Combining Theorem 3.1 and Corollary 3.1, we can now obtain the following result on the quasi-

orders of two UOB graphs one of which is obtained from the other by an edge grafting operation.

Theorem 3.2. Let v be a non-isolated vertex of a UOB graph G. Let a, b, c, d be non-negative integers with

a� b, c � d, a + b = c + d, and a < c. Then we have:
(1) If a is even, then Gv,v(a, b) � Gv,v(c, d).
(2) If a is odd, then Gv,v(a, b) ≺ Gv,v(c, d).

Proof. From Corollary 3.1 we see that Gv,v satisfies the two conditions of Theorem 3.1 (with u = v). So

the results follow from Theorem 3.1. �

In the special case when a = 0, we have Gv,v(0, c + d) � Gv,v(c, d) when 0 < c � d. This special

case is called a total edge grafting at the same vertex.

4. Some applications

In this section, wewill give some applications of the above results (about the effect of edge grafting

on the quasi-orders of UOB graphs) to the comparison of the energies of some unicyclic and bipartite

graphs.

Let u be a vertex of a graph G, and T be a rooted tree. Let Gu(T) denote the graph obtained by

attaching T to G such that the root of T is at u. When T is a path Pk+1 with one of its ends as the root,

then we simply write Gu(T) as Gu(k). When T is a star K1,k with the center as its root, then we simply

write Gu(T) as G
∗
u(k).
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Theorem 4.1. Let u be a vertex of a UOB graph G and T be a tree of order k + 1 rooted at u. Then we have:
(1) If Gu(T) /= Gu(k), then Gu(T) ≺ Gu(k).
(2) If Gu(T) /= G∗

u(k), then Gu(T) � G∗
u(k).

Proof. If u is an isolated vertex of G, then the results follow from the well known results of trees. So in

the following we assume that u is a non-isolated vertex of G.

(1) Let r be the number of vertices of degree at least 3 in T different from u. We use induction on r.

If r = 0, Then T consists of some (say, i) pendant paths starting from u. Since Gu(T) /= Gu(k), we have

i � 2. Now by using (i − 1)-times “total edge graftings” for Gu(T) at u, we can get Gu(k). Thus using
Corollary 3.1 we obtain Gu(T) ≺ Gu(k).

Nowwe assume r � 1. Let v be a vertex of T with degree at least 3 which is furthest to u. Then there

are (d(v) − 1) many pendant paths starting from v. By using (d(v) − 2) many “total edge graftings”

on these pendant paths at v, we can obtain a Gu(T
′) where the tree T ′ (rooted at u) contains (r − 1)

vertices of degree at least 3 different from u. So by using Corollary 3.1 and the inductive hypothesis we

have Gu(T) ≺ Gu(T
′) � Gu(k).

(2) We use induction on k.

If k = 2, then the result follows from the result (1) of this theorem. Now we assume k � 3.

Let x be a pendent vertex in G∗
u(k) and let y = u. Then we have

G∗
u(k) − x = G∗

u(k − 1), G∗
u(k) − x − y = (G − u) ∪ (k − 1)K1. (4.1)

Since Gu(T) /= G∗
u(k), there exists at least one non-pendant vertex in T different from u. Let y′ be

a non-pendant vertex of T which is furthest to u. Then there are (d(y′) − 1) many pendant vertices

adjacent to y′. Let x′ be a pendant vertex adjacent to y′. Then we have:

Gu(T) − x′ = Gu(T − x′), Gu(T) − x′ − y′ = Gu(T − x′) − y′ = Gu(T
′) ∪ (d(y′) − 2)K1,

(4.2)

where T ′ is some tree of order k + 1 − d(y′) rooted at u.

Let E′ be the edge set of the tree T ′. Since every edge of T ′ is a cut edge of Gu(T
′), by Corollary 2.1

we have Gu(T
′) � Gu(T

′) − E′ = G ∪ (k − d(y′))K1. It follows from this and Lemma 3.4 that

G∗
u(k) − x − y = (G − u) ∪ (k − 1)K1 = (G − u) ∪ K1 ∪ (k − d(y′))K1 ∪ (d(y′) − 2)K1

≺ G ∪ (k − d(y′))K1 ∪ (d(y′) − 2)K1 � Gu(T
′) ∪ (d(y′) − 2)K1 = Gu(T) − x′ − y′.

On the other hand, by induction we have

G∗
u(k) − x = G∗

u(k − 1) � Gu(T − x′) = Gu(T) − x′

Thus by using Lemma 2.3 we have Gu(T) � G∗
u(k). �

Now let G∗(n, l) be the set of unicyclic graphs in G(n, l) such that all the trees attached to the cycle

Cl are paths rooted at one of their ends. It is easy to see that G ∈ G∗(n, l) if and only if G satisfies the

following three conditions:

(1) G ∈ G(n, l).
(2) �(G) � 3.

(3) All the vertices of degree 3 of G (if any) are on the cycle Cl .

The following corollary follows directly from Theorem 4.1 which tells that the graph in G(n, l) with

the greatest energy must be in G∗(n, l).

Corollary 4.1. Let G ∈ G(n, l)\G∗(n, l). Then there exists some graph H ∈ G∗(n, l) such that G ≺ H.
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The result in the following Example 4.1 was obtained in [6]. Here we give a short proof of this result

by using Corollary 4.1 and our edge grafting result for two pairs of pendant paths rooted at different

vertices in Theorem 3.1.

Example 4.1. Let P3n be the unicyclic graph of order n obtained by identifying a vertex of the cycle C3

with an end vertex of the path Pn−2. Then P3
n is the graph with the greatest energy in G(n, 3).

Proof. Let G be any graph in G(n, 3) with G /= P3
n .

Case 1: G ∈ G∗(n, 3).
Let v1, v2, v3 be the three vertices on the cycle of G, and there is a pendant path Qi of length ai

attached to vi (i = 1, 2, 3), where a1, a2, a3 are integers with 0� a1 � a2 � a3. We denote this graph G

by C3(a1, a2, a3). Since G /= P3
n , we have a2 > 0.

Let H be the graph obtained from G by deleting all the vertices of Q2 and Q3 except v2 and v3, then

we have G = Hv2 ,v3(a2, a3). It is now easy to check that Hv2 ,v3 satisfies the two conditions on Gu,v in

Theorem 3.1:

(i) Using Lemmas 2.3 and 3.3 we can check that Hv2 ,v3(0, 2) �Hv2 ,v3(1, 1).
(ii) It is obvious that Hv2 ,v3(p, q) = Hv2 ,v3(q, p).

So by using Theorem 3.1, we obtain

G = C3(a1, a2, a3) ≺ C3(a1, 0, a2 + a3) � C3(0, 0, a1 + a2 + a3) = P3
n .

Case 2: G /∈ G∗(n, 3). Then by Corollary 4.1 we know that there exists a graph H ∈ G∗(n, 3) such

that G ≺ H. So by Case 1 we have G ≺ H � P3
n . �
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