Contents lists available at ScienceDirect

Computers and Mathematics with Applications

A note on "Stability and periodicity in dynamic delay equations" [Comput. Math. Appl. 58 (2009) 264–273]

Murat Adıvar^{a,*}, Youssef N. Raffoul^b

^a Izmir University of Economics, Department of Mathematics, 35330, Balçova, İzmir, Turkey ^b University of Dayton, Department of Mathematics, Dayton, OH 45469-2316, USA

ARTICLE INFO

Article history: Received 1 December 2009 Received in revised form 10 March 2010 Accepted 11 March 2010

Keywords: Delay dynamic equations Delay function Lyapunov Periodic solutions Stability Time scales

1. Article outline

Let \mathbb{T} be a time scale that is unbounded above and let $t_0 \in \mathbb{T}$ be a fixed point. In [1], we investigated the stability and periodicity of the completely delayed dynamic equations

$$x^{\Delta}(t) = -a(t)x(\delta(t))\delta^{\Delta}(t), \tag{1.1}$$

where $\delta : [t_0, \infty)_{\mathbb{T}} \to [\delta(t_0), \infty)_{\mathbb{T}}$ is a strictly increasing and Δ -differentiable delay function satisfying $\delta(t) < t$ and $|\delta^{\Delta}(t)| < \infty$, and the commutativity condition

$$\delta \circ \sigma = \sigma \circ \delta, \tag{1.2}$$

where σ is the forward jump operator defined by

$$\sigma(t) := \inf\{s \in \mathbb{T} : s > t\}.$$
(1.3)

Note that the condition (1.2) is also required in [2, Lemma 2.2] where the time scale is restricted to $\mathbb{T} = \mathbb{R}$ or to an isolated time scale so that Eq. (1.1) can be turned into a Volterra integro-dynamic equation of the form

$$x^{\Delta}(t) = -a(\delta^{-1}(t))x(t) - \left(\int_{\delta(t)}^{t} a(\delta^{-1}(s))x(s)\Delta s\right)^{\Delta}.$$
(1.4)

In [2, Section 2], instead of imposing the explicit invertibility condition, the delay function δ is assumed to be delta differentiable with $\delta(t) < t$ for $t \in [t_0, \infty)_T$ and $\lim_{t\to\infty} \delta(t) = \infty$. In [1], the formula (1.4) is obtained for an arbitrary

* Corresponding author. E-mail addresses: murat.adivar@ieu.edu.tr (M. Adıvar), youssef.raffoul@notes.udayton.edu (Y.N. Raffoul).

ABSTRACT

The purpose of this note is twofold: First we highlight the importance of an implicit assumption in [Murat Adıvar, Youssef N. Raffoul, Stability and periodicity in dynamic delay equations, Computers and Mathematics with Applications 58 (2009) 264–272]. Second we emphasize one consequence of the bijectivity assumption which enables ruling out the commutativity condition $\delta \circ \sigma = \sigma \circ \delta$ on the delay function.

© 2010 Elsevier Ltd. All rights reserved.

^{0898-1221/\$ –} see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2010.03.025

time scale having a strictly increasing delay function $\delta : [t_0, \infty)_{\mathbb{T}} \rightarrow [\delta(t_0), \infty)_{\mathbb{T}}$ satisfying $\delta(t) < t$, $|\delta^{\Delta}(t)| < \infty$, and (1.2). However, there is an implicit assumption of the invertibility of δ in the paper [1], as well. In the next section we give an example to show that a noninvertible delay function satisfying $\delta(t) < t$, $|\delta^{\Delta}(t)| < \infty$, and (1.2) on an arbitrary time scale \mathbb{T} may not be strictly increasing. Note that we still keep the assumption $\delta(t_0) \in \mathbb{T}$ of [1] in this paper.

2. A clarification

In the statement of the problem in [1], the time scale \mathbb{T} should be explicitly assumed to have an invertible delay function since we use the inverse of the delay function $\delta : [t_0, \infty)_{\mathbb{T}} \to [\delta(t_0), \infty)_{\mathbb{T}}$ throughout the paper. Evidently, the delay function δ is an injection since it is supposed to be strictly increasing. To guarantee the existence of δ^{-1} it is essential to ask whether δ maps $[t_0, \infty)_{\mathbb{T}}$ onto $[\delta(t_0), \infty)_{\mathbb{T}}$, where $[a, b)_{\mathbb{T}}$ indicates the time scale interval $[a, b) \cap \mathbb{T}$. The notation $\delta : [t_0, \infty)_{\mathbb{T}} \to [\delta(t_0), \infty)_{\mathbb{T}}$ may not be adequate for meaning the same thing, i.e., δ is surjective. In the case when δ is not surjective, one may easily obtain a contradiction for an arbitrary time scale. To see this we give the following example.

Example 1. Let the time scale $\widetilde{\mathbb{T}}$ be given by $\widetilde{\mathbb{T}} := (-\infty, 0] \cup [1, \infty)$. Suppose that there exists a strictly increasing and Δ -differentiable delay function $\delta : [0, \infty)_{\widetilde{\mathbb{T}}} \to [\delta(0), \infty)_{\mathbb{T}}$ on $\widetilde{\mathbb{T}}$ satisfying $\delta(t) < t$, $|\delta^{\Delta}(t)| < \infty$, and the commutativity condition (1.2). Since δ is strictly increasing we have $\delta(0) < \delta(1)$. However, from the commutativity condition we find

$$\delta(1) = \delta(\sigma(0)) = \sigma(\delta(0)) = \delta(0).$$

This shows that without the invertibility assumption on δ , commutativity condition (1.2) contradicts the condition that δ is strictly increasing.

Classification of the time scales having invertible strictly increasing delay function is the topic of another research paper. However, we can give the following sets:

$$\begin{split} \mathbb{T}_1 &= \bigcup_{n=0}^{\infty} \left[q^{2n}, q^{2n+1} \right], \quad q > 1, \qquad \delta : \left[q^2, \infty \right]_{\mathbb{T}_1} \to \left[1, \infty \right]_{\mathbb{T}_1}, \quad \delta(t) = q^{-2}t, \\ \mathbb{T}_2 &= \left[-\tau, \infty \right), \qquad \delta : \left[0, \infty \right) \to \left[-\tau, \infty \right), \qquad \delta(t) = t - \tau, \quad \tau > 0, \\ \mathbb{T}_3 &= \left[0, \infty \right), \qquad \delta : \left[1, \infty \right) \to \left[\frac{1}{\tau}, \infty \right), \qquad \delta(t) = t/\tau, \quad \tau > 1, \end{split}$$

to show that a time scale does not have to be periodic, isolated, or equal to \mathbb{R} in order to have an invertible strictly increasing delay function.

3. An observation

•

In this section, we show that commutativity condition (1.2) is redundant when the delay function δ is assumed to be invertible and strictly increasing. Thus, we improve on the results of the papers [1,2] in which condition (1.2) is required besides the existence of δ^{-1} .

Hereafter, we shall suppose that \mathbb{T} is a time scale having a strictly increasing and invertible delay function $\delta : [t_0, \infty)_{\mathbb{T}} \rightarrow [\delta(t_0), \infty)_{\mathbb{T}}$ satisfying $\delta(t) < t$ and $|\delta^{\Delta}(t)| < \infty$, where $t_0 \in \mathbb{T}$ is fixed. Denote by \mathbb{T}_1 and \mathbb{T}_2 the sets

$$\mathbb{T}_1 = [t_0, \infty)_{\mathbb{T}}$$
 and $\mathbb{T}_2 = \delta(\mathbb{T}_1).$

(3.1)

By the closedness of \mathbb{T} and the real interval $[t_0, \infty)$, we know that \mathbb{T}_1 is closed. Since δ is strictly increasing and invertible we have $\mathbb{T}_2 = [\delta(t_0), \infty)_{\mathbb{T}}$. Hence, \mathbb{T}_1 and \mathbb{T}_2 are both closed subsets of the reals. Let σ_1 and σ_2 denote the forward jumps on the time scales \mathbb{T}_1 and \mathbb{T}_2 , respectively. Since

 $\mathbb{T}_1 \subset \mathbb{T}_2 \subset \mathbb{T}$,

we get

$$\sigma(t) = \sigma_2(t) \quad \text{for all } t \in \mathbb{T}_2$$

and

σ

$$\sigma(t) = \sigma_1(t) = \sigma_2(t)$$
 for all $t \in \mathbb{T}_1$.

That is, σ_1 and σ_2 are the restrictions of the forward jump operator $\sigma : \mathbb{T} \to \mathbb{T}$ to the time scales \mathbb{T}_1 and \mathbb{T}_2 , respectively, i.e.,

$$\sigma_1 = \sigma|_{\mathbb{T}_1}$$
 and $\sigma_2 = \sigma|_{\mathbb{T}_2}$.

Recall that the Hilger derivatives Δ , Δ_1 , and Δ_2 on the time scales \mathbb{T} , \mathbb{T}_1 , and \mathbb{T}_2 are defined in terms of forward jump operators σ , σ_1 , and σ_2 , respectively. Hence, if *f* is a differentiable function on \mathbb{T}_1 , then we have

$$f^{\Delta_2}(t) = f^{\Delta_1}(t) = f^{\Delta}(t) \text{ for all } t \in \mathbb{T}_1.$$

Similarly, if $a, b \in \mathbb{T}_2$ are two points with a < b and f is an rd-continuous function on the interval $[a, b]_{\mathbb{T}_2}$, then

$$\int_{a}^{b} f(s) \Delta_{2} s = \int_{a}^{b} f(s) \Delta s.$$

Lemma 1. Let \mathbb{T} be a time scale that is unbounded above. If \mathbb{T} has a strictly increasing and invertible delay function $\delta : \mathbb{T}_1 \to \mathbb{T}_2$ satisfying $\delta(t) < t$, then δ preserves the structure of every point in \mathbb{T}_1 , i.e.,

$$\sigma_1(t) = t$$
 implies $\sigma_2(\delta(t)) = \delta(t)$ for all $t \in \mathbb{T}_1$

and

$$\sigma_1(t) > t$$
 implies $\sigma_2(\delta(t)) > \delta(t)$ for all $t \in \mathbb{T}_1$

Proof. It is follows from (1.3) that $\sigma_1(t) \ge t$ for all $t \in \mathbb{T}_1$. Thus,

$$\delta(\sigma_1(t)) \ge \delta(t).$$

Since $\sigma_2(\delta(t))$ is the smallest element satisfying

 $\sigma_2(\delta(t)) \ge \delta(t),$

we get

 $\delta(\sigma_1(t)) \ge \sigma_2(\delta(t))$ for all $t \in \mathbb{T}_1$.

First, if $t^* \in \mathbb{T}_1$ is right dense, i.e., $\sigma_1(t^*) = t^*$, then we get

$$\delta(t^*) = \delta(\sigma_1(t^*)) \ge \sigma_2(\delta(t^*))$$

by (3.2). That is,

 $\delta(t^*) = \sigma_2(\delta(t^*)).$

Second, if $t^* \in \mathbb{T}_1$ is right scattered, i.e., $\sigma_1(t^*) > t^*$, then

$$(t^*, \sigma_1(t^*))_{\mathbb{T}_1} = (t^*, \sigma_1(t^*))_{\mathbb{T}} = \emptyset$$

and

$$\delta(\sigma_1(t^*)) > \delta(t^*).$$

Suppose to the contrary that $\delta(t^*)$ is right dense, i.e., $\sigma_2(\delta(t^*)) = \delta(t^*)$. This along with (3.2) implies

 $(\delta(t^*), \delta(\sigma_1(t^*)))_{\mathbb{T}_2} \neq \emptyset.$

Pick one element $s \in (\delta(t^*), \delta(\sigma_1(t^*)))_{\mathbb{T}_2}$. Since δ is strictly increasing and invertible there should be an element $t \in (t^*, \sigma_1(t^*))_{\mathbb{T}_1}$ such that $\delta(t) = s$. This leads to a contradiction. Hence, $\delta(t^*)$ must be right scattered. \Box

Conclusion 1. Let \mathbb{T} be a time scale having a strictly increasing and invertible delay function $\delta : \mathbb{T}_1 \to \mathbb{T}_2$ satisfying $\delta(t) < t$. Then

$$\delta \circ \sigma_1(t) = \sigma_2 \circ \delta(t)$$
 for all $t \in \mathbb{T}_1$.

That is,

 $\delta \circ \sigma(t) = \sigma \circ \delta(t)$ for all $t \in \mathbb{T}_1$.

Proof. If $t^* \in \mathbb{T}_1$ is right dense then the proof is trivial from the previous lemma. Suppose that $t^* \in \mathbb{T}_1$ is right scattered. Then from the second part of the proof of Lemma 1,

 $(t^*, \sigma_1(t^*))_{\mathbb{T}_1} = \emptyset$ implies $(\delta(t^*), \delta(\sigma_1(t^*)))_{\mathbb{T}_2} = \emptyset$.

This shows that $\delta(\sigma_1(t^*))$ cannot be greater than $\sigma_2 \circ \delta(t^*)$. The proof is completed by using (3.2).

Hereafter, we shall use the above given terminology to give the proof of [1, Corollary 1] which is omitted in the original paper.

Theorem 1 (Chain Rule [3, Theorem 1.93]). Assume that $\nu : \mathbb{T} \to \mathbb{R}$ is strictly increasing and $\widetilde{\mathbb{T}} := \nu(\mathbb{T})$ is a time scale. Let $\omega : \widetilde{\mathbb{T}} \to \mathbb{R}$. If $\nu^{\Delta}(t)$ and $\omega^{\widetilde{\Delta}}(\nu(t))$ exist for $t \in \mathbb{T}^{\kappa}$, then

$$(\omega \circ \nu)^{\Delta} = (\omega^{\Delta} \circ \nu)\nu^{\Delta}.$$

(3.2)

Let \mathbb{T}_1 and \mathbb{T}_2 be the time scales defined as in (3.1). Hence, if for any differentiable function $\omega : \mathbb{T}_2 \to \mathbb{R}$ and for $t \in \mathbb{T}_1$ the derivative $(\omega \circ \delta)^{\Delta_1}(t)$ exists, then from Theorem 1 we have

$$(\omega \circ \delta)^{\Delta}(t) = (\omega \circ \delta)^{\Delta_1}(t) = \omega^{\Delta_2}(\delta(t))\delta^{\Delta_1}(t) = \omega^{\Delta}(\delta(t))\delta^{\Delta}(t).$$
(3.3)

Let ω be defined by

$$\omega(u) = \int_{u}^{t_0} f(s) \Delta_2 s,$$

where *f* is an *rd*-continuous function on \mathbb{T}_2 . From (3.1),

$$\omega(u) = \int_u^{t_0} f(s) \Delta_2 s = \int_u^{t_0} f(s) \Delta s, \quad \text{for all } u \in \mathbb{T}_2.$$

By [3, Theorem 1.117] we know that $\omega^{\Delta_2}(u) = -f(u)$. Since $\delta(t) \in \mathbb{T}_2$ for all $t \in \mathbb{T}_1$, we get by (3.3) that

$$(\omega \circ \delta)^{\Delta}(t) = (\omega \circ \delta)^{\Delta_1}(t) = \omega^{\Delta_2}(\delta(t))\delta^{\Delta_1}(t) = -f(\delta(t))\delta^{\Delta}(t)$$
(3.4)

for all $t \in \mathbb{T}_1^{\kappa} = \mathbb{T}_1$. This verifies [1, Corollary 1]. Hence, the formula

$$\left[\int_{\delta(t)}^{t} f(s)\Delta s\right]^{\Delta} = f(t) - f(\delta(t))\delta^{\Delta}(t)$$
(3.5)

in [1, Lemma 3] follows from (3.4) and the equality

$$\int_{\delta(t)}^{t} f(s)\Delta s = \int_{\delta(t)}^{t_0} f(s)\Delta s + \int_{t_0}^{t} f(s)\Delta s, \quad (t_0 \in \mathbb{T} \text{ is fixed})$$

(see [3, Theorem 1.77 (iv)]).

Acknowledgement

The authors would like to thank Professor Douglas R. Anderson for valuable discussions and providing counterexamples that led to this note.

References

- [1] Murat Adıvar, Youssef N. Raffoul, Stability and periodicity in dynamic delay equations, Computers and Mathematics with Applications 58 (2009) 264–272.
- [2] Douglas R. Anderson, Robert J. Krueger, Allan C. Peterson, Delay dynamic equations with stability, Advances in Difference Equations 2006 (2006) 19. doi:10.1155/ADE/2006/94051. Article ID 94051.
- [3] Martin Bohner, Allan C. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser Boston Inc., Boston, MA, 2001.