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Abstract A series of novel 6-pyrazolinylcoumarins has been synthesized via multi-step protocol.

The synthetic procedure was based on the acetylation of hydroxycoumarins; Fries rearrangement

and Claisen–Schmidt condensation; the target 6-[5-aryl-4,5-dihydropyrazol-3-yl]-5-hydroxy-7-met

hylcoumarins (33–49) were obtained under reactions of hydrazine and 2-aryl-5-methyl-2,3-dihydro

pyrano[2,3-f]chromen-4,8-diones as the last phase of the protocol. Anticancer activity screening in

NCI60-cell lines assay allowed identification of compound 47 with the highest level of antimitotic

activity with mean GI50 value of 10.20 lM and certain sensitivity profile toward the Leukemia cell

lines CCRF-CEM and MOLT-4 (GI50/TGI values 1.88/5.06 lM and 1.92/4.04 lM respectively).
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coumarins of natural and synthetic origin constitute a large

family of heterocyclic compounds bearing a benzopyran-2-
one moiety. Coumarins occur as secondary metabolites in
the seeds, roots and leaves of many plant species (Borges

et al., 2005), bacteria, fungi, and marine sources (Vazquez-
Rodriguez et al., 2015) and exhibit diverse biological activities
(Riveiro et al., 2010; Barot et al., 2015). Coumarins are of

scientific interest as anti-HIV agents (Kostova et al., 2006),
antituberculosis agents (Keri et al., 2015), cholinesterase and
monoamine oxidase inhibitors (Orhan and Gulcan, 2015),

antioxidants and anti-inflammatories (Fylaktakidou et al.,
2004; Najmanová et al., 2015; Figueroa-Guiñez et al., 2015;
Torres et al., 2014). Despite numerous effects of coumarins

in the search for bioactive compounds, they still remain as
one of the most versatile class of compounds for anticancer
drug design and discovery (Kostova, 2005; Musa et al., 2008;
Thakur et al., 2015; Emami and Dadashpour, 2015).

In the recent years, the actual trend in the field of chemistry
of coumarins is a modification of the benzopyran-2-one by
directed introduction of heterocyclic substituent. Such studies

are of interest for the theory of organic synthesis and
purposeful search of new biologically active compounds based
on coumarin core. In most cases heteroaryl substituent is

introduced at position 3 or 4 of the coumarin ring. Thus,
3- and 4-heteroarylcoumarins are reported to exhibit signifi-
cant biological activities such as anticancer (Ganina et al.,
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2008), antimicrobial (Arshad et al., 2011), antibacterial, anti-
cancer (DNA cleavage) (Gali et al., 2015), human monoamine
oxidase inhibitory (Delogu et al., 2011), antioxidant and anti-

cholinesterase (Kurt et al., 2015). Much less works are devoted
to the synthesis of coumarins containing heterocyclic moiety in
the benzene ring of benzopyran-2-one.

On the other hand, pyrazoline-based heterocycles are
interesting compounds due to their high chemotherapeutic
potential (Kumar et al., 2009; Marella et al., 2013). Diversely

substituted pyrazolines combined with coumarin system
showed good cytotoxic and antiproliferative activities toward
a wide range of human tumor cell lines. For example, cou-
marin derivatives bearing 4,5-dihydropyrazole moiety possess

high antiproliferative activity (Liu et al., 2010; Wu et al.,
2014). They belong to the inhibitors of telomerase and PI3K
protein kinase (Amin et al., 2013) and act as the antiprolifera-

tive agents toward hepatocellular carcinoma cell line HepG2
(Amin et al., 2015).

In continuation of our work on the synthesis of

6-heteroarylcoumarins (Nagorichna et al., 2009b; Nikitina
et al., 2015; Galayev et al., 2015), we have synthesized new
6-pyrazolinylcoumarin derivatives and studied their anticancer

activity.

2. Experimental

2.1. Chemistry

All starting materials were purchased from Merck and used
without purification. NMR spectra were determined with
Varian Mercury 400 (400 MHz) spectrometer, in DMSO-d6
using tetramethylsilane (TMS) as an internal standard.

Elemental analysis (C, H, N, Cl) was performed at the
Perkin–Elmer 2400 CHN analyzer and was within ±0.4%
from the theoretical values. The purity of the compounds

was checked by thin-layer chromatography performed with
Merck Silica Gel 60 F254 aluminum sheets. Coumarins 1–5
(Nagorichna et al., 2009a) were synthesized as described

previously.

2.2. General procedure for synthesis of 5-acetoxy-7-
methylcoumarins 6–10

A mixture of 5-hydroxy-7-methylcoumarin (1–5, 50 mmol),
acetic anhydride (9.5 mL, 100 mmol), and freshly distilled pyr-
idine (5 mL) was heated for 1 h and left overnight at room

temperature. The resulting precipitate was filtered off and crys-
tallized from propanol-2. Spectral and analytical data of syn-
thesized 6–10 are described (Nagorichna et al., 2009a).

2.3. General procedure for synthesis of 6-acetyl-5-hydroxy-7-

methylcoumarins 11–15

A ground mixture of 5-acetoxy-7-methylcoumarin (6–10,
30 mmol) and anhydrous AlCl3 (12.00 g, 90 mmol) was heated
at 120–130 �C for 1 h, cooled, and diluted with HCl solution
(100 mL, 1 N). The resulting precipitate was filtered off and

crystallized from propanol-2. Spectral and analytical data of
synthesized 11–15 are described (Nagorichna et al., 2009a).
Please cite this article in press as: Garazd, Y. et al., Synthesis and evaluation of antica
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2.4. General procedure for synthesis of 2-aryl-10-alkyl-5-methyl-
2,3-dihydropyrano[2,3-f]chromen-4,8-diones 16–32

A mixture of 6-acetyl-5-hydroxycoumarin (11–15, 4 mmol)
and the appropriate aromatic aldehyde (4.8 mmol) in EtOH

was refluxed for 5–6 h in the presence of catalytic amounts
(1–2 drops) of pyrrolidine (end of reaction was determined
by TLC). The reaction mixture was cooled. The resulting
precipitate was filtered off and crystallized from EtOH.

2.4.1. 2-(2-Methoxyphenyl)-5,10-dimethyl-2,3-dihydropyrano
[2,3-f]chromene-4,8-dione (16)

Spectral and analytical data are described (Nikitina et al.,
2015).

2.4.2. 2-(4-Methoxyphenyl)-5,10-dimethyl-2,3-dihydropyrano

[2,3-f]chromene-4,8-dione (17)

Spectral and analytical data are described (Nikitina et al.,
2015).

2.4.3. 2-(2,4-Dimethoxyphenyl)-5,10-dimethyl-2,3-
dihydropyrano[2,3-f]chromene-4,8-dione (18)

Spectral and analytical data are described (Nikitina et al.,

2015).

2.4.4. 2-(4-Dimethylaminophenyl)-5-methyl-10-propyl-2,3-
dihydropyrano[2,3-f]chromene-4,8-dione (19)

Spectral and analytical data are described (Nikitina et al.,
2015).

2.4.5. 2-(3-Fluorophenyl)-5,9,10-trimethyl-2,3-dihydropyrano
[2,3-f]chromene-4,8-dione (20)

Yield 79%, mp 208–209 �C. 1H NMR (400 MHz, DMSO-d6,
TMS) d: 7.43–7.56 (m, 3H), 7.24–7.29 (m, 1H), 6.88 (s, 1H,

H-6), 5.75 (dd, J= 2.4 Hz, J= 13.6 Hz, 1H, H-2), 3.22 (dd,
J= 13.6 Hz, J= 16.8 Hz, 1H, H-3ax), 2.85 (dd, J = 2.4 Hz,
J= 16.8 Hz, 1H, H-3eq), 2.61 (s, 3H, CH3-5), 2.40 (s, 3H,
CH3-10), 2.03 (s, 3H, CH3-9).

13C NMR (100 MHz,

DMSO-d6, TMS): d 189.17 (C-4), 162.96, 161.18 (C-8),
152.58, 149.85, 146.95, 142.81, 142.11, 129.51, 123.69, 123.43,
121.74, 115.04, 114.78, 113.08, 107.55, 78.99 (C-2), 44.78

(C-3), 22.04, 16.51, 15.18. Anal. Calcd. for C21H17FO4: C,
71.58; H, 4.86. Found: C, 71.36; H, 4.95.

2.4.6. 2-(4-Hydroxyphenyl)-5,9,10-trimethyl-2,3-
dihydropyrano[2,3-f]chromene-4,8-dione (21)

Yield 67%, mp 223–224 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 9.38 (s, 1H, OH-400), 7.45 (d, J = 8.8 Hz, 2H, H-200,
H-600), 6.83 (d, J= 8.8 Hz, 2H, H-300, H-500), 6.85 (s, 1H,
H-6), 5.65 (dd, J= 2.4 Hz, J= 13.6 Hz, 1H, H-2), 3.28 (dd,
J= 13.6 Hz, J= 16.8 Hz, 1H, H-3ax), 2.79 (dd, J = 2.4 Hz,

J= 16.8 Hz, 1H, H-3eq), 2.61 (s, 3H, CH3-5), 2.40 (s, 3H,
CH3-10), 2.05 (s, 3H, CH3-9).

13C NMR (100 MHz, DMSO-
d6, TMS): d 189.54 (C-4), 161.29 (C-8), 157.63, 152.51,

150.88, 147.12, 142.89, 131.93, 128.12, 127.35, 123.69, 121.74,
115.86, 115.18, 114.78, 107.55, 77.63 (C-2), 44.71 (C-3),
22.09, 16.59, 15.12. Anal. Calcd. for C21H18O5: C, 71.99; H,
5.18. Found: C, 72.12; H, 5.21.
ncer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharmaceutical Journal
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2.4.7. 2-(4-Hydroxy-3-methoxyphenyl)-5,9,10-trimethyl-2,3-

dihydropyrano[2,3-f]chromene-4,8-dione (22)

Yield 71%, mp 216–217 �C. 1H NMR (400 MHz, DMSO-d6,
TMS) d: 8.95 (1H, s, OH-40), 6.97–7.01 (m, 3H, H-20, 50, 60),
6.91 (s, 1H, H-6), 5.62 (dd, J= 2.4 Hz, J = 13.6 Hz, 1H, H-

2), 3.82 (s, 3H, OCH3-3), 3.25 (dd, J = 13.6 Hz,
J = 16.8 Hz, 1H, H-3ax), 2.76 (dd, J = 2.4 Hz, J = 16.8 Hz,
1H, H-3eq), 2.61 (s, 3H, CH3-5), 2.41 (s, 3H, CH3-10), 2.05

(s, 3H, CH3-9).
13C NMR (100 MHz, DMSO-d6, TMS): d

190.12 (C-4), 161.13 (C-8), 152.58, 150.77, 147.49, 147.16,
146.95, 142.89, 132.93, 123.61, 121.79, 118.17, 114.93, 114.13,
110.47, 107.32, 78.55 (C-2), 55.61, 44.96 (C-3), 22.04, 16.65,

15.39. Anal. calcd for C22H20O6: C, 69.46; H, 5.30. Found:
C, 69.56; H, 5.25.

2.4.8. 2-(2,4-Dimethoxyphenyl)-5,9,10-trimethyl-2,3-
dihydropyrano[2,3-f]chromene-4,8-dione (23)

Yield 81%, mp 225–226 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 7.47 (d, J= 8.8 Hz, 1H, H-60), 6.86 (s, 1H, H-6),

6.66 (d, J = 2.4 Hz, 1H, H-30), 6.62 (dd, J = 2.4 Hz,
J = 8.8 Hz, 1H, H-50), 5.79 (dd, J= 2.4 Hz, J= 13.6 Hz,
1H, H-2), 3.82 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 3.26 (dd,

J = 13.6 Hz, J = 16.8 Hz, 1H, H-3ax), 2.73 (dd, J = 2.4 Hz,
J = 16.8 Hz, 1H, H-3eq), 2.63 (s, 3H, CH3-5), 2.40 (s, 3H,
CH3-10), 2.04 (s, 3H, CH3-9).

13C NMR (100 MHz, DMSO-

d6, TMS): d 189.95 (C-4), 160.91 (C-8), 159.79, 157.13,
152.91, 152.58, 146.88, 143.13, 130.38, 124.35, 121.74, 118.53,
114.14, 108.37, 107.92, 97.92, 75.37 (C-2), 56.39, 55.23, 44.29

(C-3), 22.35, 16.84, 15.42. Anal. Calcd. for C23H22O6: C,
70.04; H, 5.62. Found: C, 70.12; H, 5.54.
2.4.9. 5,9,10-Trimethyl-2-(2,4,5-trimethoxyphenyl)-2,3-

dihydropyrano[2,3-f]chromene-4,8-dione (24)

Yield 84%, mp 232–233 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 7.20 (1H, s, H-60), 6.92 (s, 1H, H-6), 6.78 (s, 1H,
H-30), 5.83 (dd, J= 2.4 Hz, J = 13.6 Hz, 1H, H-2), 3.84 (s,

3H, OCH3), 3.82 (s, 3H, OCH3), 3.74 (s, 3H, OCH3), 3.24 (dd,
J = 13.6 Hz, J = 16.8 Hz, 1H, H-3ax), 2.68 (dd, J = 2.4 Hz,
J = 16.8 Hz, 1H, H-3eq), 2.65 (s, 3H, CH3-5), 2.45 (s, 3H,

CH3-10), 2.06 (s, 3H, CH3-9).
13C NMR (100 MHz, DMSO-

d6, TMS): d 189.82 (C-4), 160.95 (C-8), 152.89, 152.58, 151.01,
150.76, 146.95, 144.24, 142.89, 125.56, 123.57, 121.86, 121.68,

114.78, 107.43, 102.76, 76.22 (C-2), 56.59, 56.13, 55.90, 43.86
(C-3), 22.23, 16.81, 15.43. Anal. Calcd. for C24H24O7: C,
67.91; H, 5.70. Found: C, 67.84; H, 5.61.
2.4.10. 2-(2-Chlorophenyl)-5-methyl-10,11-dihydrocyclopenta
[c]pyrano[2,3-f]chromene-4,8-dione (25)

Yield 83%, mp 248–249 �C. 1H NMR (400 MHz, DMSO-d6,

TMS): d 7.81 (d, J = 7.2 Hz, 1H, H-60), 7.45–7.58 (m, 3H),
6.97 (s, 1H, H-6), 5.99 (dd, J = 2.4 Hz, J= 13.6 Hz, 1H,
H-2), 3.05–3.20 (m, 3H, H-3ax, CH2-9), 2.86 (dd, J= 2.4 Hz,

J = 16.8 Hz, 1H, H-3eq), 2.68 (s, 3H, CH3-5), 2.63–2.75 (m,
2H, CH2-11), 1.91–2.08 (m, 2H, CH2-10).

13C NMR
(100 MHz, DMSO-d6, TMS): d 190.16 (C-4), 160.94 (C-8),
152.67, 152.26, 150.12, 142.63, 136.65, 131.33, 129.49, 128.78,

128.07, 126.51, 126.22, 123.16, 114.48, 111.78, 74.44 (C-2),
44.98 (C-3), 35.04, 31.98, 24.99, 22.04. Anal. Calcd. for
C22H17ClO4: C, 69.45; H, 4.50; Cl, 9.31. Found: C, 69.34; H,

4.58; Cl, 9.38.
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2.4.11. 2-(2-Methoxyphenyl)-5-methyl-10,11-

dihydrocyclopenta[c]pyrano[2,3-f]chromene-4,8-dione (26)

Yield 74%, mp 221–222 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 7.57 (d, J= 7.6 Hz, 1H, H-60), 7.41 (t, J = 7.6 Hz,
1H), 7.06–7.12 (m, 2H), 6.89 (s, 1H, H-6), 5.85 (dd,

J= 2.4 Hz, J= 13.6 Hz, 1H, H-2), 3.84 (s, 3H, OCH3-6
0),

3.07–3.21 (m, 3H, H-3ax, CH2-9), 2.78 (dd, J = 2.4 Hz,
J= 16.8 Hz, 1H, H-3eq), 2.63 (s, 3H, CH3-5), 2.58–2.71 (m,

2H, CH2-11), 1.90–2.07 (m, 2H, CH2-10).
13C NMR

(100 MHz, DMSO-d6, TMS): d 190.32 (C-4), 161.06 (C-8),
154.82, 153.01, 152.67, 152.26, 142.89, 129.30, 126.51, 125.34,
123.81, 123.27, 120.69, 114.69, 111.89, 110.52, 75.37 (C-2),

55.51, 43.86 (C-3), 35.23, 32.49, 25.86, 22.34. Anal. Calcd.
for C23H20O5: C, 73.39; H, 5.36. Found: C, 73.46; H, 5.34.

2.4.12. 2-(2,4-Dimethoxyphenyl)-5-methyl-10,11-
dihydrocyclopenta[c]pyrano[2,3-f]chromene-4,8-dione (27)

Yield 69%, mp 207–208 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 7.47 (d, J = 8.4 Hz, 1H, H-60), 6.96 (s, 1H, H-6),

6.66 (d, J = 2.4 Hz, 1H, H-30), 6.63 (dd, J = 2.4 Hz,
J= 8.4 Hz, 1H, H-50), 5.81 (dd, J= 2.4 Hz, J = 13.6 Hz,
1H, H-2), 3.83 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 3.23 (dd,

J= 13.6 Hz, J= 16.8 Hz, 1H, H-3ax), 3.12–3.16 (m, 2H,
CH2-9), 2.74 (dd, J= 2.4 Hz, J = 16.8 Hz, 1H, H-3eq), 2.65
(s, 3H, CH3-5), 2.64–2.69 (m, 2H, CH2-11), 1.94–2.04 (m,

2H, CH2-10).
13C NMR (100 MHz, DMSO-d6, TMS): d

190.53 (C-4), 161.12 (C-8), 159.79, 157.13, 153.01, 152.79,
152.26, 143.26, 130.38, 126.92, 123.85, 118.56, 114.48, 112.03,

108.37, 97.92, 75.12 (C-2), 55.78, 55.13, 44.02 (C-3), 35.04,
32.11, 24.99, 22.18. Anal. Calcd. for C24H22O6: C, 70.93; H,
5.46. Found: C, 71.02; H, 5.49.

2.4.13. 5-Methyl-2-(2,3,4-trimethoxyphenyl)-10,11-
dihydrocyclopenta[c]pyrano[2,3-f]chromene-4,8-dione (28)

Yield 78%, mp 214–215 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d7.31 (d, J = 8.8 Hz, 1H, H-60), 6.95 (s, 1H, H-6),

6.93 (d, J = 8.8 Hz, 1H, H-50), 5.81 (dd, J = 2.4 Hz,
J= 13.6 Hz, 1H, H-2), 3.85 (s, 6H, OCH3), 3.80 (s, 3H,
OCH3), 3.22 (dd, J= 13.6 Hz, J = 16.8 Hz, 1H, H-3ax),

3.12–3.16 (m, 2H, CH2-9), 2.71 (dd, J = 2.4 Hz,
J= 16.8 Hz, 1H, H-3eq), 2.67 (s, 3H, CH3-5), 2.64–2.70 (m,
2H, CH2-11), 1.94–2.04 (m, 2H, CH2-10).

13C NMR

(100 MHz, DMSO-d6, TMS): d 190.12 (C-4), 161.11 (C-8),
155.31, 152.89, 152.67, 152.21, 150.03, 143.96, 142.85, 126.51,
124.25, 123.27, 121.71, 114.89, 111.89, 108.08, 76.22 (C-2),

60.05, 59.73, 56.81, 43.88 (C-3), 35.04, 32.06, 24.91, 22.08.
Anal. Calcd. for C25H24O7: C, 68.80; H, 5.54. Found: C,
68.73; H, 5.57.

2.4.14. 5-Methyl-2-(3,4,5-trimethoxyphenyl)-10,11-
dihydrocyclopenta[c]pyrano[2,3-f]chromene-4,8-dione (29)

Yield 72%, mp 214–215 �C. 1H NMR (400 MHz, DMSO-d6,

TMS): d 6.96 (s, 2H, H-20,60), 6.93 (s, 1H, H-6), 5.63 (dd,
J= 2.4 Hz, J = 13.6 Hz, 1H, H-2), 3.81 (s, 6H, OCH3-3

0,
OCH3-5

0), 3.68 (s, 3H, OCH3-4
0), 3.46 (dd, J = 13.6 Hz,

J= 16.8 Hz, 1H, H-3ax), 3.08–3.15 (m, 2H, CH2-9), 2.71

(dd, J = 2.4 Hz, J = 16.8 Hz, 1H, H-3eq), 2.65 (s, 3H,
CH3-5), 2.65–2.72 (m, 2H, CH2-11), 1.95–2.05 (m, 2H,
CH2-10).

13C NMR (100 MHz, DMSO-d6, TMS): d 189.93

(C-4), 160.91 (C-8), 154.69, 154.43, 152.89, 152.18, 150.75,
142.89, 137.87, 133.59, 126.79, 123.38, 114.48, 112.01, 104.12,
cer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharmaceutical Journal
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103.91, 76.11 (C-2), 59.90, 59.18, 56.09, 44.58 (C-3), 35.12,
32.08, 24.85, 22.01. Anal. Calcd. for C25H24O7: C, 68.80; H,
5.54. Found: C, 68.89; H, 5.48.

2.4.15. 2-(4-Hydroxy-3-methoxyphenyl)-5-methyl-2,3,9,10,11,
12-hexahydrobenzo[c]pyrano[2,3-f]chromene-4,8-dione (30)

Yield 69%, mp 223–224 �C. 1H NMR (400 MHz, DMSO-d6,

TMS): d 9.22 (s, 1H, OH-40), 7.17 (s, 1H, H-6), 6.93 (dd,
J= 2.0 Hz, J = 8.0 Hz, 1H, H-60), 6.85 (d, J= 2.0 Hz, 1H,
H-20), 6.85 (d, J = 8.0 Hz, 1H, H-50), 5.56 (dd, J = 2.4 Hz,

J= 13.6 Hz, 1H, H-2), 3.80 (s, 3H, OCH3-3
0), 3.22 (dd,

J= 13.6 Hz, J = 16.8 Hz, 1H, H-3ax), 2.88–2.96 (m, 2H,
CH2-9), 2.75 (dd, J= 2.4 Hz, J = 16.8 Hz, 1H, H-3eq), 2.61

(s, 3H, CH3-5), 2.34–2.41 (m, 2H, CH2-12), 1.52–1.66 (m,
4H, CH2-10, CH2-11).

13C NMR (100 MHz, DMSO-d6,
TMS): d 189.54 (C-4), 161.57 (C-8), 152.33, 150.51, 149.12,

147.46, 147.16, 142.89, 132.93, 123.37, 122.96, 118.17, 114.72,
114.47, 113.77, 110.47, 79.29 (C-2), 55.63, 44.85 (C-3), 25.76,
24.36, 22.04, 21.65, 21.36. Anal. Calcd. for C24H22O6: C,
70.93; H, 5.46. Found: C, 71.02; H, 5.49.

2.4.16. 2-(3,5-Dimethoxyphenyl)-5-methyl-2,3,9,10,11,12-
hexahydrobenzo[c]pyrano[2,3-f]chromene-4,8-dione (31)

Yield 73%, mp 209–210 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 6.88 (s, 1H, H-6), 6.74 (d, J = 2.4 Hz, 2H, H-20,
H-60), 6.52 (dd, J= 2.4 Hz, J = 2.4 Hz, 1H, H-40), 5.64 (dd,
J= 2.4 Hz, J = 13.6 Hz, 1H, H-2), 3.79 (s, 6H, OCH3-3

0,
OCH3-5

0), 3.16 (dd, J = 13.6 Hz, J = 16.8 Hz, 1H, H-3ax),
2.96–3.07 (m, 2H, CH2-9), 2.84 (dd, J = 2.4 Hz,
J= 16.8 Hz, 1H, H-3eq), 2.63 (s, 3H, CH3-5), 2.38–2.44 (m,

2H, CH2-12), 1.56–1.71 (m, 4H, CH2-10, CH2-11).
13C NMR

(125 MHz, DMSO-d6, TMS): d 192.56 (C-4), 161.76 (C-8),
161.20, 155.77, 148.89, 144.24, 141.45, 122.48, 116.68, 113.60,

113.55, 109.12, 104.96, 104.83, 100.78, 80.16 (C-2), 55.09,
55.91, 45.33 (C-3), 30.43, 25.02, 23.38, 22.28, 20.97. Anal.
Calcd. for C25H24O6: C, 71.42; H, 5.75. Found:C, 71.50; H,
5.78.

2.4.17. 5-Methyl-2-(2,4,5-trimethoxyphenyl)-2,3,9,10,11,12-
hexahydrobenzo[c]pyrano[2,3-f]chromene-4,8-dione (32)

Yield 82%, mp 229–230 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 7.20 (s, 1H, H-60), 6.92 (s, 1H, H-6),6.78 (s, 2H, H-
30), 5.66 (dd, J= 2.4 Hz, J= 13.6 Hz, 1H, H-2), 3.84 (s, 3H,
OCH3), 3.82 (s, 3H, OCH3), 3.74 (s, 3H, OCH3), 3.18 (dd,

J= 13.6 Hz, J = 16.8 Hz, 1H, H-3ax), 2.95–3.05 (m, 2H,
CH2-9), 2.82 (dd, J= 2.4 Hz, J = 16.8 Hz, 1H, H-3eq), 2.65
(s, 3H, CH3-5), 2.35–2.45 (m, 2H, CH2-12), 1.55–1.70 (m,

4H, CH2-10, CH2-11).
13C NMR (100 MHz, DMSO-d6,

TMS): d 189.95 (C-4), 161.52 (C-8), 152.54, 152.44, 151.01,
150.84, 149.12, 144.24, 142.89, 125.56, 123.98, 122.96, 121.71,

114.47, 113.66, 102.76, 78.11 (C-2), 56.59, 56.13, 55.96, 43.86
(C-3), 25.76, 24.36, 22.08, 21.65, 21.37. Anal. Calcd. for
C26H26O7:C, 69.32; H, 5.82. Found: C, 69.27; H, 5.76.

2.5. General procedure for synthesis of 6-[5-aryl-4,5-dihydropy-

razol-3-yl]-4-alkyl-5-hydroxy-7-methylchromen-2-ones 33–49

A mixture of 20–32 (2 mmol) and hydrazine monohydrate

(0.50 mL, 10 mmol) in EtOH was refluxed for 2–3 h (end of
reaction was determined by TLC). The reaction mixture was
Please cite this article in press as: Garazd, Y. et al., Synthesis and evaluation of antica
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cooled. The resulting precipitate was filtered off and crystal-
lized from EtOH.

2.5.1. 6-[5-(2-Methoxyphenyl)-4,5-dihydropyrazol-3-yl]-5-
hydroxy-4,7-dimethylchromen-2-one (33)

Spectral and analytical data are described (Nikitina et al.,
2015).

2.5.2. 6-[5-(4-Methoxyphenyl)-4,5-dihydropyrazol-3-yl]-5-
hydroxy-4,7-dimethylchromen-2-one (34)

Spectral and analytical data are described (Nikitina et al.,
2015).

2.5.3. 6-[5-(2,4-Dimethoxyphenyl)-4,5-dihydropyrazol-3-yl]-5-

hydroxy-4,7-dimethylchromen-2-one (35)

Spectral and analytical data are described (Nikitina et al.,
2015).

2.5.4. 6-[5-(4-Dimethylaminophenyl)-4,5-dihydropyrazol-3-yl]-
5-hydroxy-4-propyl-7-methylchromen-2-one (36)

Spectral and analytical data are described (Nikitina et al.,

2015).

2.5.5. 6-[5-(3-Fluorophenyl)-4,5-dihydropyrazol-3-yl]-5-

hydroxy-3,4,7-trimethylchromen-2-one (37)

Yield 85%, mp 219–220 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.73 (s, 1H, OH-5), 7.88 (d, J= 3.6 Hz, 1H, NH),
7.43 (q, J= 7.2 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.12–7.16

(m, 1H), 6.68 (s, 1H, H-8), 4.88 (ddd, J = 3.6 Hz,
J= 10.4 Hz, J = 11.2 Hz, H-50), 3.82 (dd, J = 10.4 Hz,
J= 16.4 Hz, H-40b), 3.31 (dd, J= 11.2 Hz, J = 16.4 Hz,
H-40a), 2.61 (s, 3H, CH3-4), 2.48 (s, 3H, CH3-7), 2.07 (s, 3H,

CH3-3).
13C NMR (100 MHz, DMSO-d6, TMS): d 164.12,

161.69 (C-2), 160.09, 156.51, 156.09 (C-30), 146.31, 143.52,
140.96, 132.69, 125.75, 123.19, 115.26, 114.88, 113.56, 108.68,

107.95, 59.82 (C-50), 46.45 (C-40), 21.38, 16.51, 15.16. Anal.
Calcd. for C21H19FN2O3: C, 68.84; H, 5.23; N, 7.65. Found:
C 68.92; H, 5.19; N, 7.69.

2.5.6. 5-Hydroxy-6-[5-(4-hydroxyphenyl)-4,5-dihydropyrazol-
3-yl]-3,4,7-trimethylchromen-2-one (38)

Yield 71%, mp 236–237 �C. 1H NMR (400 MHz, DMSO-d6,

TMS): d 13.94 (s, 1H, OH-5), 9.38 (s, 1H, OH-400), 7.72 (d,
J= 3.6 Hz, 1H, NH), 7.23 (d, J = 8.8 Hz, 2H, H-200, H-600),
6.75 (d, J= 8.8 Hz, 2H, H-300, H-500), 6.68 (s, 1H, H-8), 4.75

(ddd, J = 3.6 Hz, J = 10.4 Hz, J = 11.2 Hz, H-50), 3.72 (dd,
J= 10.4 Hz, J = 16.4 Hz, H-40b), 3.13 (dd, J = 11.2 Hz,
J= 16.4 Hz, H-40a), 2.61 (s, 3H, CH3-4), 2.48 (s, 3H,

CH3-7), 2.07 (s, 3H, CH3-3).
13C NMR (100 MHz,

DMSO-d6, TMS): d 161.13 (C-2), 160.28, 156.95, 156.51,
155.91 (C-30), 146.48, 142.15, 130.99, 128.63, 128.14, 123.18,
117.69, 117.25, 115.18, 108.96, 108.13, 59.06 (C-50), 46.88

(C-40), 21.37, 16.59, 15.09. Anal. Calcd. for C21H20N2O4: C,
69.22; H, 5.53; N, 7.69. Found: C, 69.31; H, 5.48; N, 7.73.

2.5.7. 6-[5-(4-Hydroxy-3-methoxyphenyl)-4,5-dihydropyrazol-
3-yl]-5-hydroxy-3,4,7-trimethyl-2H-chromen-2-one (39)

Yield 83%, mp 229–230 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.94 (s, 1H, OH-5), 8.94 (s, 1H, OH-400), 7.74 (d,

J= 3.6 Hz, 1H, NH), 7.23 (d, J = 2.4 Hz, 1H, H-200), 6.81
ncer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharmaceutical Journal

http://dx.doi.org/10.1016/j.jsps.2016.05.005


Anticancer activity of 6-pyrazolinylcoumarin derivatives 5
(dd, J = 2.4 Hz, J = 8.8 Hz, 1H, H-600), 6.75 (d, J = 8.8 Hz,
1H, H-500), 6.68 (s, 1H, H-8), 4.76 (ddd, J = 3.6 Hz,
J = 10.4 Hz, J= 11.2 Hz, H-50), 3.78 (s, 3H, OCH3-3

00), 3.72
(dd, J = 10.4 Hz, J = 16.4 Hz, H-40b), 3.17 (dd,
J = 11.2 Hz, J= 16.4 Hz, H-40a), 2.61 (s, 3H, CH3-4), 2.48
(s, 3H, CH3-7), 2.07 (s, 3H, CH3-3).

13C NMR (100 MHz,

DMSO-d6, TMS): d 161.26 (C-2), 160.09, 156.66, 156.24
(C-30), 149.15, 146.31, 144.56, 140.96, 132.98, 123.29, 122.06,
121.34, 115.26, 109.63, 108.91, 108.13, 63.38, 59.26 (C-50),
46.48 (C-40), 21.38, 16.51, 15.10. Anal. Calcd. for
C22H22N2O5: C, 66.99; H, 5.62; N, 7.10. Found: C, 67.08; H,
5.66; N, 7.02.

2.5.8. 6-[5-(2,4-Dimethoxyphenyl)-4,5-dihydropyrazol-3-yl]-5-
hydroxy-3,4,7-trimethylchromen-2-one (40)

Yield 74%, mp 218–219 �C. 1H NMR (400 MHz, DMSO-d6,

TMS): d 13.87 (s, 1H, OH-5), 7.53 (d, J = 3.6 Hz, 1H, NH),
7.30 (d, J = 8.0 Hz, 1H, H-600), 6.62 (s, 1H, H-8), 6.59 (d,
J = 2.4 Hz, 1H, H-300), 7.30 (dd, J = 2.4 Hz, J = 8.0 Hz,
1H, H-500), 4.99 (ddd, J= 3.6 Hz, J = 10.4 Hz, J = 11.2 Hz,

H-50), 3.81 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.69 (dd,
J = 10.4 Hz, J = 16.4 Hz, H-40b), 3.07 (dd, J = 11.2 Hz,
J = 16.4 Hz, H-40a), 2.59 (s, 3H, CH3-4), 2.45 (s, 3H,

CH3-7), 2.06 (s, 3H, CH3-3).
13C NMR (100 MHz,

DMSO-d6, TMS): d 161.25 (C-2), 160.09, 159.56, 158.25,
157.02, 156.28 (C-30), 146.42, 140.96, 128.56, 123.20, 117.28,
115.64, 109.61, 109.12, 108.45, 102.53, 59.46 (C-50), 55.87,
55.27, 46.62 (C-40), 21.36, 16.46, 15.14. Anal. Calcd. for
C23H24N2O5: C, 67.63; H, 5.92; N, 6.86. Found: C, 67.71; H,

5.95; N, 6.81.

2.5.9. 5-Hydroxy-3,4,7-trimethyl-6-[5-(2,4,5-trimethoxyphenyl)-
4,5-dihydropyrazol-3-yl]-chromen-2-one (41)

Yield 69%, mp 214–215 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.90 (s, 1H, OH-5), 7.63 (d, J = 3.6 Hz, 1H, NH),
7.06 (s, 1H, H-600), 6.72 (s, 1H, H-300), 6.67 (s, 1H, H-8), 5.02
(ddd, J= 3.6 Hz, J= 10.4 Hz, J= 11.2 Hz, H-50), 3.79 (s,

6H, OCH3), 3.71 (dd, J = 10.4 Hz, J = 16.4 Hz, H-40b), 3.70
(s, 3H, OCH3), 3.06 (dd, J = 11.2 Hz, J= 16.4 Hz, H-40a),
2.61 (s, 3H, CH3-4), 2.46 (s, 3H, CH3-7), 2.07 (s, 3H,

CH3-3).
13C NMR (125 MHz, DMSO-d6, TMS): d 161.06

(C-2), 157.98 (C-30), 153.57, 152.36, 151.74, 149.49, 148.88,
143.13, 140.19, 121.26, 119.41, 113.37, 112.39, 110.25, 108.19,

99.07, 57.44 (C-50), 56.96, 56.93, 56.51, 44.40 (C-40), 23.22,
20.05, 13.46. Anal. Calcd. for C24H26N2O6: C, 65.74; H,
5.98; N, 6.39. Found: C, 65.65; H, 5.91; N, 6.42.

2.5.10. 8-[5-(2-Chlorophenyl)-4,5-dihydropyrazol-3-yl]-9-
hydroxy-7-methyl-2,3-dihydrocyclopenta[c]chromen-4-one
(42)

Yield 79%, mp 231–232 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.29 (s, 1H, OH-9), 7.84 (d, J = 3.6 Hz, 1H, NH),
7.66 (d, J= 7.6 Hz, 1H, H-60 0), 7.48 (d, J= 7.6 Hz, 1H),

7.32–7.41 (m, 2H), 6.69 (s, 1H, H-8), 5.16 (ddd, J= 3.6 Hz,
J = 10.4 Hz, J= 11.2 Hz, H-50), 3.90 (dd, J = 10.4 Hz,
J = 16.4 Hz, H-40b), 3.08 (dd, J = 11.2 Hz, J = 16.4 Hz,
H-40a), 3.28–3.40 (m, 2H, CH2-3), 2.62–2.70 (m, 2H, CH2-1),

2.45 (s, 3H, CH3-7), 2.00–2.09 (m, 2H, CH2-2). Anal. Calcd.
for C22H19ClN2O3: C, 66.92; H, 4.85; Cl, 8.98; N 7.09. Found:
C, 66.68; H, 4.80; Cl, 9.02; N, 7.03.
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2.5.11. 9-Hydroxy-8-[5-(2-methoxyphenyl)-4,5-dihydropy-

razol-3-yl]-7-methyl-2,3-dihydrocyclopenta[c]chromen-4-one
(43)

Yield 75%, mp 205–206 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.54 (s, 1H, OH-9), 7.66 (d, J = 3.6 Hz, 1H, NH),

7.66 (d, J = 7.2 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.03 (d,
J= 8.0 Hz, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.72 (s, 1H, H-8),
5.06 (ddd, J = 3.6 Hz, J= 10.4 Hz, J = 11.2 Hz, H-50), 3.79
(s, 3H, OCH3-2

0 0), 3.76 (dd, J= 10.4 Hz, J = 16.4 Hz, H-
40b), 3.29–3.42 (m, 2H, CH2-3), 3.08 (dd, J = 11.2 Hz,
J= 16.4 Hz, H-40a), 2.63–2.69 (m, 2H, CH2-1), 2.48 (s, 3H,
CH3-7), 2.01–2.11 (m, 2H, CH2-2). Anal. Calcd. for

C23H22N2O4: C, 70.75; H, 5.68; N, 7.17. Found: C, 70.81; H,
5.62; N, 7.19.

2.5.12. 8-[5-(2,4-Dimethoxyphenyl)-4,5-dihydropyrazol-3-yl]-
9-hydroxy-7-methyl-2,3-dihydrocyclopenta[c]chromen-4-one
(44)

Yield 86%, mp 219–220 �C. 1H NMR (400 MHz, DMSO-d6,

TMS): d 13.57 (s, 1H, OH-9), 7.58 (d, J = 3.6 Hz, 1H, NH),
7.29 (d, J= 8.4 Hz, 1H, H-60 0), 6.72 (s, 1H, H-8), 6.58 (d,
J= 2.4 Hz, 1H, H-300), 6.52 (dd, J = 2.4 Hz, J = 8.4 Hz,

1H, H-500), 5.00 (ddd, J = 3.6 Hz, J = 10.4 Hz, J = 11.2 Hz,
H-50), 3.80 (s, 3H, OCH3), 3.75 (s, 3H, OCH3), 3.71 (dd,
J= 10.4 Hz, J = 16.4 Hz, H-40b), 3.30–3.41 (m, 2H, CH2-3),

3.07 (dd, J = 11.2 Hz, J= 16.4 Hz, H-40a), 2.62–2.71 (m,
2H, CH2-1), 2.48 (s, 3H, CH3-7), 2.01–2.09 (m, 2H, CH2-2).
Anal. Calcd. for C24H24N2O5: C, 68.56; H, 5.75; N, 6.66.

Found: C, 68.51; H, 5.79; N, 6.71.

2.5.13. 9-Hydroxy-7-methyl-8-[5-(2,3,4-trimethoxyphenyl)-
4,5-dihydropyrazol-3-yl]-2,3-dihydrocyclopenta[c]chromen-4-

one (45)

Yield 72%, mp 227–228 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.57 (s, 1H, OH-9), 7.62 (d, J = 3.6 Hz, 1H, NH),
7.14 (d, J= 8.4 Hz, 1H, H-600), 6.80 (d, J = 8.4 Hz, 1H, H-

50 0), 6.69 (s, 1H, H-8), 4.98 (ddd, J = 3.6 Hz, J = 10.4 Hz,
J= 11.2 Hz, H-50), 3.83 (s, 3H, OCH3), 3.79 (s, 3H, OCH3),
3.76 (s, 3H, OCH3), 3.72 (dd, J= 10.4 Hz, J = 16.4 Hz, H-

40b), 3.25–3.42 (m, 2H, CH2-3), 3.11 (dd, J = 11.2 Hz,
J= 16.4 Hz, H-40a), 2.62–2.70 (m, 2H, CH2-1), 2.48 (s, 3H,
CH3-7), 1.99–2.11 (m, 2H, CH2-2).

13C NMR (100 MHz,

DMSO-d6, TMS): d 160.94 (C-4), 160.19, 156.79, 156.18 (C-
30), 153.03, 152.46, 151.62, 145.60, 140.97, 127.97, 122.65,
118.19, 114.85, 109.63, 108.19, 104.74, 60.88, 59.22 (C-50),
57.51, 55.97, 46.63 (C-40), 35.04, 31.98, 24.89, 21.38. Anal.
Calcd. for C25H26N2O6: C, 66.66; H, 5.82; N, 6.22. Found:
C, 66.72; H, 5.86; N, 6.29.

2.5.14. 9-Hydroxy-7-methyl-8-[5-(3,4,5-trimethoxyphenyl)-
4,5-dihydropyrazol-3-yl]-2,3-dihydrocyclopenta[c]chromen-4-
one (46)

Yield 84%, mp 231–232 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.49 (s, 1H, OH-9), 7.80 (d, J = 3.6 Hz, 1H, NH),
6.77 (s, 2H, H-20 0, H-60 0), 6.72 (s, 1H, H-8), 4.81 (ddd,
J= 3.6 Hz, J = 10.4 Hz, J = 11.2 Hz, H-50), 3.79 (s, 6H,

OCH3), 3.76 (dd, J = 10.4 Hz, J= 16.4 Hz, H-40b), 3.65 (s,
3H, OCH3), 3.28–3.42 (m, 2H, CH2-3), 3.19 (dd,
J= 11.2 Hz, J= 16.4 Hz, H-40a), 2.61–2.70 (m, 2H, CH2-1),

2.47 (s, 3H, CH3-7), 2.00–2.11 (m, 2H, CH2-2).
13C NMR
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(100 MHz, DMSO-d6, TMS): d 161.08 (C-4), 160.36, 156.60,
156.09 (C-30), 154.28, 153.88, 151.48, 140.83, 137.65, 135.53,
127.69, 114.96, 108.29, 104.68, 104.12, 103.98, 59.69 (C-50),
57.63, 55.85, 55.81, 46.45 (C-40), 35.06, 32.04, 24.92, 21.37.
Anal. Calcd. for C25H26N2O6: C, 66.66; H, 5.82; N, 6.22.
Found: C, 66.63; H, 5.88; N, 6.17.

2.5.15. 1-Hydroxy-2-[5-(4-hydroxy-3-methoxyphenyl)-4,5-
dihydropyrazol-3-yl]-3-methyl-7,8,9,10-tetrahydrobenzo[c]

chromen-6-one (47)

Yield 78%, mp 238–239 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.88 (s, 1H, OH-1), 8.93 (s, 1H, OH-40 0), 7.73 (d,
J= 3.6 Hz, 1H, NH), 7.02 (d, J= 2.0 Hz, 1H, H-20 0), 6.81
(dd, J= 2.0 Hz, J = 8.0 Hz, 1H, H-60 0), 6.75 (d, J = 8.0 Hz,
1H, H-50 0), 6.68 (s, 1H, H-4), 4.75 (ddd, J = 3.6 Hz,
J= 10.4 Hz, J = 11.2 Hz, H-50), 3.78 (s, 3H, OCH3-3

0 0), 3.78
(dd, J= 10.4 Hz, J= 16.4 Hz, H-40b), 3.19 (dd,
J= 11.2 Hz, J= 16.4 Hz, H-40a), 3.11–3.17 (m, 2H, CH2-7),
2.48 (s, 3H, CH3-3), 2.38–2.43 (m, 2H, CH2-10), 1.62–1.72
(m, 4H, CH2-8, CH2-9).

13C NMR (100 MHz, DMSO-d6,

TMS): d 161.37 (C-4), 159.84, 156.55, 156.02 (C-30), 149.15,
148.62, 144.57, 140.96, 132.98, 124.42, 122.06, 121.34, 114.95,
109.68, 108.36, 106.48, 59.85 (C-50), 55.89, 46.57 (C-40),
25.76, 24.36, 21.95, 21.69, 21.37. Anal. Calcd. for
C24H24N2O5: C, 68.56; H, 5.75; N, 6.66. Found: C, 68.61; H,
5.73; N, 6.62.

2.5.16. 2-[5-(3,5-Dimethoxyphenyl)-4,5-dihydropyrazol-3-yl]-
1-hydroxy-3-methyl-7,8,9,10-tetrahydrobenzo[c]chromen-6-one

(48)

Yield 81%, mp 231–231 �C. 1H NMR (400 MHz, DMSO-d6,
TMS): d 13.75 (s, 1H, OH-1), 7.80 (d, J = 3.6 Hz, 1H, NH),
6.67 (s, 1H, H-4), 6.60 (d, J= 2.4 Hz, 2H, H-20 0, H-60 0), 6.43
(dd, J = 2.4 Hz, J = 2.4 Hz, 1H, H-400), 4.78 (ddd,
J= 3.6 Hz, J = 10.4 Hz, J = 11.2 Hz, H-50), 3.79 (dd,
J= 10.4 Hz, J= 16.4 Hz, H-40b), 3.75 (s, 6H, OCH3-3

0 0,
OCH3-5

00), 3.20 (dd, J = 11.2 Hz, J= 16.4 Hz, H-40a),
3.11–3.16 (m, 2H, CH2-7), 2.47 (s, 3H, CH3-3), 2.36–2.42 (m,
2H, CH2-10), 1.64–1.74 (m, 4H, CH2-8, CH2-9).

13C NMR
(100 MHz, DMSO-d6, TMS): d 162.57, 162.39, 161.57 (C-4),

160.13, 157.03, 156.18 (C-30), 148.48, 142.65, 141.23, 124.19,
114.88, 108.19, 106.37, 106.11, 105.68, 97.96, 59.23 (C-50),
55.89, 55.41, 46.45 (C-40), 25.77, 24.35, 21.97, 21.69, 21.37.

Anal. Calcd. for C25H26N2O5: C, 69.11; H, 6.03; N, 6.45.
Found: C, 69.04; H, 5.95; N, 6.49.

2.5.17. 1-Hydroxy-3-methyl-2-[5-(2,4,5-trimethoxyphenyl)-
4,5-dihydropyrazol-3-yl]-7,8,9,10-tetrahydrobenzo[c]chromen-
6-one (49)

Yield 73%, mp 217–218 �C. 1H NMR (400 MHz, DMSO-d6,

TMS): d 13.87 (s, 1H, OH-1), 7.63 (d, J = 3.6 Hz, 1H, NH),
7.06 (s, 1H, H-60 0), 6.72 (s, 1H, H-30 0), 6.66 (s, 1H, H-4), 5.00
(ddd, J = 3.6 Hz, J = 10.4 Hz, J = 11.2 Hz, H-50), 3.79 (s,

6H, OCH3), 3.74 (dd, J = 10.4 Hz, J = 16.4 Hz, H-40b), 3.70
(s, 6H, OCH3), 3.11–3.16 (m, 2H, CH2-7), 3.07 (dd,
J= 11.2 Hz, J = 16.4 Hz, H-40a), 2.46 (s, 3H, CH3-3), 2.38–
2.44 (m, 2H, CH2-10), 1.62–1.73 (m, 4H, CH2-8, CH2-9).

13C

NMR (100 MHz, DMSO-d6, TMS): d 161.30 (C-4), 159.84,
156.75, 156.69 (C-30), 153.36, 149.90, 148.12, 145.96, 140.89,
124.41, 118.19, 114.89, 113.56, 108.36, 106.40, 103.24, 59.69

(C-50), 56.94, 56.59, 55.87, 46.79 (C-40), 25.76, 24.35, 21.98,
Please cite this article in press as: Garazd, Y. et al., Synthesis and evaluation of antica
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21.69, 21.37. Anal. Calcd. for C26H28N2O6: C, 67.23; H,
6.08; N, 6.03. Found: C, 67.19; H, 6.09; N, 6.07.

3. Results and discussion

3.1. Chemistry

The starting 5-hydroxy-7-methylcoumarins 1–5 were synthe-
sized via a Pechmann reaction of orcinol and the appropriate

ethylacylacetates in the presence of a condensing agent (conc.
H2SO4) (Confalone and Confalone, 1983; Nagorichna et al.,
2009a). Acetylation of hydroxycoumarins 1–5 by acetic

anhydride in pyridine led to 5-acetoxycoumarins 6–10, Fries
rearrangement of which in the presence of anhydrous AlCl3
at 120–130 �C afforded to 6-acetylcoumarins 11–15 in high

yields (Confalone and Confalone, 1983; Nagorichna et al.,
2009a). Claisen–Schmidt condensation of 11–15 and aromatic
aldehydes in EtOH in the presence of catalytic amounts of
pyrrolidine led to annelation of a 2-aryltetrahydropyran-

4-one and formation of 2-aryl-5-methyl-2,3-dihydropyrano-
[2,3-f]chromen-4,8-diones 16–32 (Nikitina et al., 2015; Khan
and Bawa, 2001). Obviously, the angular pyronoflavanones

were formed through the corresponding intermediate chal-
cones, which heterocyclized under the reaction conditions
(see Scheme 1).

1H NMR spectra of 16–32 showed resonances for H-2
(5.56–5.99 ppm, dd, J = 2.4 and 13.6 Hz), equatorial H-3
(2.68–2.86 ppm, dd, J = 2.4 and 16.8 Hz), and axial H-3

(3.16–3.46 ppm, dd, J= 13.6 and 16.8 Hz), which are charac-
teristic for flavanone protons (Batterham and Highet, 1964).
The annelation of 2-aryltetrahydropyran-4-one core also was
confirmed by 13C NMR spectral data, for compounds 16–32,

which are presented by the characteristic signals for flavanone
cycle (189–190, 74–79 and 44–45 ppm) and the signal of
carbonyl group (161 ppm).

Hydrazine is known to react with flavanones to give various
compounds, depending on the reaction conditions. In
particular, the principal products can be hydrazones of fla-

vanones, 3-(2-hydroxyphenyl)-5-phenylpyrazolines, or azines
of flavanones (Kálly et al., 1965a, 1965b). We found that the
flavanone core recyclized upon heating EtOH solutions of
16–32 with a fivefold excess of hydrazine hydrate and formed

6-[5-aryl-4,5-dihydropyrazol-3-yl]-5-hydroxy-7-methylcoumar
ins 33–49. In the 1H NMR spectra of the latters the resonances
characteristic of the coumarin and pyrazoline moieties

(Nikitina et al., 2015) are presented. In particular, the methy-
lene diastereotopic protons are resonated at 3.06–3.31 (dd,
J= 11.2 and 16.4 Hz) and 3.69–3.90 ppm (dd, J = 10.4 and

16.4 Hz) whereas pyrazoline H-5 was observed as a multiplet
(ddd, J = 3.6, 10.4 and 11.2 Hz) at 4.75–5.16 ppm. A character-
istic feature of the 1HNMR spectra of 33–49was the separation

of the NH and OH proton signals. The NH proton appeared as
a doublet with J= 3.6 Hz at 7.53–7.88 ppm. The presence of
the hydroxyl proton at weak field (13.29–13.94 ppm) was
indicative of an intramolecular interaction between of the latter

and the pyrazoline N atom. Recyclization of pyronoflavanones
and formation of substituted pyrazolines also were confirmed
by 13C NMR spectra data of the compounds 33–49. In 13C

NMR spectra the characteristic signals of pyrazoline core
(156, 59–60 and 46–47 ppm) and the signal of carbon atom of
the carbonyl group of coumarin core (161 ppm) are observed.
ncer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharmaceutical Journal

http://dx.doi.org/10.1016/j.jsps.2016.05.005


O OMe

OH R1
R2

O O

OMe

O

Me

R1
R2 Me

O

O OMe

OH R1
R2

O OMe

O

O

R1
R2

NN
H

O O

OH

Me

R1
R2

R3 R3

1-5

6-10 11-15

16-32 33-49

1,6,11. R1=CH3, R2=H 
2,7,12. R1=CH2CH2CH3, R2=H 
3,8,13. R1=R2=CH3
4,9,14. R1R2=(CH2)3
5,10,15. R1R2=(CH2)4

16,33. R1=CH3, R2=H, R3 =2-OCH3
17,34. R1=CH3, R2=H, R3=4-OCH3
18,35. R1=CH3, R2=H, R3=2,4-diOCH3
19,36. R1=CH2CH2CH3, R2=H, R3=4-N(CH3)2
20,37. R1=R2=CH3, R3=3-F
21,38. R1=R2=CH3, R3=4-OH
22,39. R1=R2=CH3, R3=3-OCH3-4-OH 
23,40. R1=R2=CH3, R3=2,4-diOCH3
24,41. R1=R2=CH3, R3=2,4,5-triOCH3
25,42. R1R2=(CH2)3, R3=2-Cl 
26,43. R1R2=(CH2)3, R3=2-OCH3
27,44. R1R2=(CH2)3, R3=2,4-diOCH3
28,45. R1R2=(CH2)3, R3=2,3,4-triOCH3
29,46. R1R2=(CH2)3, R3=3,4,5-triOCH3
30,47. R1R2=(CH2)4, R3=3-OCH3-4-OH
31,48. R1R2=(CH2)4, R3=3,5-diOCH3
32,49. R1R2=(CH2)4, R3=2,4,5-triOCH3

a) Ac2O, pyridine, reflux, 1 h; b) 1. AlCl3, reflux, 1 h; 2. 1N HCl; 
c) ArCHO, EtOH, pyrrolidine (cat), reflux, 5-6 h, 67-84%;
d) N2H4*H2O, EtOH, reflux, 2-3 h, 69-86%     

a

b

c

d

Scheme 1 Synthesis of new 6-pyrazolinylcoumarin derivatives.

Table 1 Anticancer screening data at the concentration of 10 lM.

Comp Mean growth % Range of growth % The most sensitive cell lines GP % of the most

sensitive cell lines

Positive

cytostatic effecta

33 87.06 58.56–132.97 LOX IMVI (Melanoma) 58.56 0/54

34 92.06 57.13–126.03 CCRF-CEM (Leukemia) 57.13 0/55

35 87.12 48.11–118.14 SNB-75 (CNS Cancer) 48.11 1/56

36 85.90 54.55–116.54 HL-60(TB) (Leukemia) 54.55 0/58

37 85.09 45.38–118.29 HL-60(TB) (Leukemia) 49.57 2/56

RXF 393 (Renal Cancer) 45.38

38 77.50 36.66–117.26 NCI-H226 (Non-Small Cell Lung Cancer) 36.66 4/55

ACHN (Renal Cancer) 47.88

MDA-MB-231/ATCC (Breast Cancer) 42.56

T-47D (Breast Cancer) 42.17

39 94.13 49.45–146.45 MDA-MB-231/ATCC (Breast Cancer) 49.45 1/55

40 89.72 52.34–115.97 MDA-MB-231/ATCC (Breast Cancer) 52.34 0/56

41 87.44 51.78–138.22 RXF 393 (Renal Cancer) 51.78 0/54

42 93.24 58.27–112.72 CCRF-CEM (Leukemia) 58.27 0/58

43 89.29 49.08–110.64 CCRF-CEM (Leukemia) 49.08 1/58

44 81.65 7.88–105.92 HL-60(TB) (Leukemia) 7.88 1/56

45 91.40 36.95–148.57 RXF 393 (Renal Cancer) 36.95 1/56

46 99.04 55.89–137.85 SNB-75 (CNS Cancer) 55.89 0/54

47 60.64 �44.56 to 107.74 CCRF-CEM (Leukemia) 16.09 17/58

HL-60(TB) (Leukemia) 35.62

MOLT-4 (Leukemia) �44.56

SR (Leukemia) 28.44

NCI-H460 (Non-Small Cell Lung Cancer) 37.66

HCT-15 (Colon Cancer) 39.85

LOX IMVI (Melanoma) 37.15

IGROV1 (Ovarian Cancer) 36.66

CAKI-1 (Renal Cancer) 39.10

48 100.34 61.93–121.35 SNB-75 (CNS Cancer) 61.93 0/58

49 97.25 51.08–127.04 CCRF-CEM (Leukemia) 51.08 0/56

a Ratio between number of cell lines with percent growth from 0 to 50 and total number of cell lines.
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3.2. In vitro evaluation of the anticancer activity

Synthesized derivatives 33–49 were selected by National
Cancer Institute (NCI, Bethesda USA) Developmental Thera-
peutic Program (DTP) and evaluated for anticancer activity at

the concentration of 10�5 M toward a panel of approximately
sixty cancer cell lines (http://dtp.nci.nih.gov). The human
tumor cell lines were derived from nine different cancer types:
leukemia, melanoma, lung, colon, central nervous system,

ovarian, renal, prostate and breast cancers. Primary anticancer
assays were performed according to the NCI protocol as
described elsewhere (Boyd and Paull, 1995; Boyd, 1997;

Shoemaker, 2006; Monks et al., 1991; Alley et al., 1988). The
compounds were added at a single concentration and the cell
cultures were incubated for 48 h. The end point determinations

were made with a protein binding dye, sulforhodamine B
(SRB). The results for each compound are reported as the per-
cent growth (GP%) of treated cells when compared to

untreated control cells (Table 1). The range of percent growth
shows the lowest and the highest percent growth found among
the different cancer cell lines.
Table 2 Influence of compound 47 on the growth of tumor cell lin

Disease Cell lime GI50, lM D

Leukemia CCRF-CEM

HL-60(TB)

MOLT-4

RPMI-8226

SR

1.88

2.10

1.92

5.10

4.52

M

MG_MID 3.10

NSC lung cancer A549/ATCC

EKVX

HOP-62

HOP-92

NCI-H226

NCI-H23

NCI-H322M

NCI-H522

NCI-H460

6.56

9.55

7.75

3.78

33.0

6.01

7.61

3.91

5.41

O

MG_MID 9.29

Colon cancer COLO 205

HCC-2998

HCT-116

HCT-15

HT29

KM12

SW-620

13.4

6.97

5.63

4.82

11.0

5.99

5.93

R

MG_MID 7.68

CNS cancer SF-268

SF-295

SF-539

SNB-19

SNB-75

U251

6.18

4.91

6.60

8.76

3.57

6.37

B

MG_MID 6.07

Prostate Cancer PC-3

DU-145

12.7

19.5

MG_MID 16.1

Please cite this article in press as: Garazd, Y. et al., Synthesis and evaluation of antica
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The most active compound 47 was found to be effective
against 17 cell lines with the average cell growth percents
(GPmean) of 60.64%. Moreover, this derivative demonstrated

cytotoxic effect on Leukemia line MOLT-4 (GP = �44.56%)
and significant cytostatic action toward CCRF-CEM
(Leukemia), SR (Leukemia), NCI-H460 (Non-Small Cell Lung

Cancer), HCT-15 (ColonCancer), LOX IMVI (Melanoma) and
CAKI-1 (Renal Cancer) with range of GP = 16.09–39.85%.
Compound 38 was found to be moderately effective against

NCI-H226 (Non-Small Cell Lung Cancer), ACHN (Renal
Cancer), T-47D (Breast Cancer) and MDA-MB-468 (Breast
Cancer) with GP = 36.66–47.88%. For the compounds 35,
37, 39, 43, 44 and 45 the average percents of cell growth

(GPmean) were 81.65–94.13%. However, it should be noted
the selectivity toward SNB-75 (CNS Cancer) – GP = 48.11%
(35), RXF 393 (Renal Cancer) – GP = 45.38% (37) and

36.08% (45), MDA-MB-231/ATCC (Breast Cancer) – GP =
49.45% (39), CCRF-CEM (Leukemia) – GP = 49.08% (43),
and HL-60(TB) (Leukemia) – GP = 7.88% (44) (Table 1).

Finally, compound 47 was selected for an advanced assay
against a panel of approximately sixty tumor cell lines at
es.

isease Cell lime GI50, lM

elanoma LOX IMVI

MALME-3M

M14

MDA-MB-435

SK-MEL-2

SK-MEL-28

SK-MEL-5

UACC-257

UACC-62

3.79

30.7

8.26

5.83

32.5

12.1

3.47

14.8

4.96

MG_MID 12.93

varian cancer IGROV1

OVCAR-3

OVCAR-4

OVCAR-5

OVCAR-8

NCI/ADR-RES

SK-OV-3

4.57

5.23

7.51

13.4

6.02

4.24

8.24

MG_MID 7.03

enal cancer 786-0

A498

ACHN

CAKI-1

SN12C

TK-10

UO-31

7.24

>100.0

5.14

4.20

8.14

13.4

4.93

MG_MID 20.44

reast cancer MCF7

MDA-MB-231/ATCC

HS 578T

BT-549

T-47D

MDA-MB-468

3.44

4.22

6.87

44.7

3.25

4.19

MG_MID 11.11
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Table 3 COMPARE analysis results for compound 47 at GI50 level.

Rank PCCa Target Target vector NSC Target mechanism of actionb

1 0.711 Fluorodopan S73754 Alkylating agent

2 0.655 Melphalan S8806 Nitrogen mustard alkylating agent

3 0.624 Hepsulfam S329680 Alkylsulfonate alkylating agents, which induced DNA interstrand cross-links

4 0.623 Chlorambucil S3088 Nitrogen mustard alkylating agent

5 0.609 Menogaril S269148 Inhibition of initial rate of tubulin polymerization

6 0.605 Dichloroallyl lawsone S126771 Inhibitor of pyrimidine nucleothides biosynthesis

7 0.605 m-AMSA (amsacrine) S249992 Inhibitor of topoisomerase II

a Only correlations with PCCP 0.60 were selected, as significant.
b Putative mechanisms of action were identified with the use of literature sources.
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10-fold dilutions of five concentrations (100 lM, 10 lM,
1.0 lM, 0.1 lM and 0.01 lM) (Boyd and Paull, 1995; Boyd,

1997; Shoemaker, 2006; Monks et al., 1991; Alley et al.,
1988). The percentage of growth was evaluated spectrophoto-
metrically versus controls not treated with test agents after

48-h exposure and using SRB protein assay to estimate cell
viability or growth. Dose–response parameters were calculated
for each cell line: GI50 – molar concentration of the compound

that inhibits 50% net cell growth; TGI – molar concentration
of the compound leading to the total inhibition; and
LC50 – molar concentration of the compound leading to
50% net cell death. Furthermore, a mean graph midpoints

(MG_MID) were calculated for GI50, giving an average activ-
ity parameter over all cell lines for the tested compound. For
the MG_MID calculation, insensitive cell lines were included

with the highest concentration tested.
The most active compound 47 showed inhibition activity

(GI50 < 10 lM) against 45 of 58 human tumor cell lines with

average GI50 values of 10.29. Moreover, the mentioned deriva-
tive demonstrated a certain sensitivity profile toward the
Leukemia cell lines CCRF-CEM, HL-60(TB) and MOLT-4
with the range of GI50 values 1.88–2.10 lM (Table 2). Values

of TGI and LC50 were above the 100 lM except data of TGI
for Leukemia cell lines CCRF-CEM (TGI = 5.06 lM),
HL-60(TB) (TGI = 59.6 lM) and MOLT-4 (TGI =

4.04 lM), as well Breast Cancer cell line MDA-MB-468
(TGI = 81.3 lM).

The SAR study revealed that the level of antitumor activity

of synthesized compounds depends on substituents at
3,4-positions of coumarin core. The presence of the cyclohexyl
fragment (47) improved the antiproliferative activity in com-

parison with cyclopentyl residue or methyl groups. The same
trend was observed for other 6-heteroarylcoumarins described
in our previous paper (Galayev et al., 2015). Moreover, we
noticed that compounds bearing 3-methoxy-4-hydroxyphenyl

(47) and 4-hydroxyphenyl (38) substituents at position 5 of
the pyrazoline fragment were more active than other analogues
(40, 41, 48, 49).

3.3. COMPARE analysis

NCI’s COMPARE algorithm (Boyd and Paull, 1995; Boyd,

1997; Shoemaker, 2006; Monks et al., 1991) allows to assume
biochemical mechanisms of action of the novel compounds on
the basis of their in vitro activity profiles when comparing with

those of standard agents. We performed COMPARE compu-
tations for the compound 47 against the NCI ‘‘Standard
Please cite this article in press as: Garazd, Y. et al., Synthesis and evaluation of antican
(2016), http://dx.doi.org/10.1016/j.jsps.2016.05.005
Agents” database at the GI50 level (Table 3). However, the
obtained Pearson correlation coefficients (PCC) did not allow

to distinguish cytotoxicity mechanism of tested compounds
with high probability. The compound 47 showed the highest
correlation at the GI50 level with menogaril – tubulin

polymerization inhibitor (PCC = 0.609); dichloroallyl lawsone
– pyrimidine biosynthesis inhibitor (PCC = 0.605); amsacrine
– inhibitor of topoisomerase II (PCC = 0.605), as well as some

alkylating agents – flurodopan, melphalan, hepsulfam and
chlorambucil (PCC = 0.623–0.711).

4. Conclusions

In the presented paper new 6-pyrazolinylcoumarin derivatives
are described. Antitumor activity assay of seventeen
synthesized compounds allowed to identify 1-hydroxy-2-[5-(4

-hydroxy-3-methoxyphenyl)-4,5-dihydropyrazol-3-yl]-3-methy
l-7,8,9,10-tetrahydrobenzo[c]chromen-6-one 47 (GI50mean =
10.20 lM in the NCI 60-cell-line assay) with certain

sensitivity profile toward the Leukemia cell lines
CCRF-CEM and MOLT-4 (GI50/TGI values 1.88/5.06 lM
and 1.92/4.04 lM respectively). Further investigations of the

6-heteroarylcoumarins derivatives could lead to more potent
compounds as promising candidates for the development of
new anticancer chemotherapy.
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