
Physics Letters B 734 (2014) 249–254
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Higgs inflation at the critical point

Fedor Bezrukov a,b,c,∗, Mikhail Shaposhnikov a,d

a CERN, CH-1211 Genève 23, Switzerland
b Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA
c RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
d Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 March 2014
Received in revised form 21 May 2014
Accepted 26 May 2014
Available online 2 June 2014
Editor: A. Ringwald

Higgs inflation can occur if the Standard Model (SM) is a self-consistent effective field theory up to 
inflationary scale. This leads to an upper bound on the top Yukawa coupling, yphys

t < ycrit
t and thus on 

the mass of the top quark mt . If mt is more than a few hundred of MeV below the critical value, the Higgs 
inflation predicts the universal values of inflationary indexes, r � 0.003 and ns � 0.97, independently on 
the SM parameters. We show that in the vicinity of the critical point ycrit

t the inflationary indexes acquire 
an essential dependence on mt and on the mass of the Higgs boson Mh . In particular, the amplitude of 
the gravitational waves can exceed considerably the universal value.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The most economic inflationary scenario is based on the iden-
tification of the inflaton with the SM Higgs boson [1] and the use 
of the idea of chaotic initial conditions [2]. The theory is nothing 
but the SM with the non-minimal coupling of the Higgs field to 
gravity with the gravitational part of the action

SG =
∫

d4x
√−g

{
− M2

P

2
R − ξh2

2
R

}
. (1)

Here R is the scalar curvature, the first term is the standard 
Hilbert–Einstein action, h is the Higgs field, and ξ is a new cou-
pling constant, fixing the strength of the “non-minimal” interac-
tion. The presence of non-minimal coupling is required for consis-
tency of the SM in curved space–time (see, e.g. [3]). The value of 
ξ cannot be fixed theoretically within the SM.

The presence of the non-minimal coupling insures the flatness 
of the scalar potential in the Einstein frame at large values of 
the Higgs field. If radiative corrections are ignored, the success-
ful inflation occurs for any values of the SM parameters provided 
ξ � 47000

√
λ, where λ is the Higgs boson self-coupling. This con-

dition comes from the requirement to have the amplitude of the 
scalar perturbations measured by the COBE satellite. After fixing 
the unknown constant ξ the theory is completely determined. It 
predicts the tilt of the scalar perturbations given by ns � 0.97 and 
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the tensor-to-scalar ratio r � 0.003. After inflationary period, the 
Higgs field oscillates, creates particles of the SM, and produces the 
Hot Big-Bang with initial temperature in the region of 1013–14 GeV
[4,5].

The quantum radiative corrections can change the form of the 
effective potential and thus modify the predictions of the Higgs 
inflation. The most significant conclusion coming from the analy-
sis of the quantum effects is that the Higgs inflation can only take 
place if the top quark Yukawa coupling is smaller than some criti-
cal number ycrit

t [6–10],

yphys
t < ycrit

t . (2)

To make it exactly defined, yphys
t is the top quark Yukawa cou-

pling in MS renormalisation scheme taken at μt = 173.2 GeV, 
yphys

t ≡ yphys
t (μt). Roughly speaking, the Higgs self-coupling con-

stant λ must be positive at the energies up to the inflationary 
scale, leading to this constraint. In numbers [11–13],

ycrit
t = 0.9268 + 0.0057 ×

[
Mh − 125.9

0.4
× 0.2

+ αs(M Z ) − 0.1184

0.0007
× 0.28

]
,

where αs is the QCD coupling at the Z -boson mass. Thanks to 
complete two-loop computations of [13] and three-loop beta func-
tions for the SM couplings found in [14–19] this formula may have 
a very small theoretical error, 2 × 10−4, with the latter number 
coming from an “educated guess” estimates of even higher order 
terms (see the discussion in [11] and more recently in [20]).
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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The main systematic uncertainties in required precise determi-
nation of yphys

t from FNAL and LHC top-quark experiments lie in a 
poor knowledge of higher order perturbative and non-perturbative 
QCD effects (see e.g. [21]). Accounting for those, the value of ycrit

t
is about 2 standard deviations [11,20] from the top Yukawa cou-
pling extracted from Tevatron and LHC [22].

The determination of the inflationary indexes accounting for ra-
diative corrections is somewhat more subtle and depends on the 
way the quantum computations are done (the SM with gravity 
is non-renormalizable, what introduces the uncertainty). In [6,9]
we formulated the natural subtraction procedure (called “prescrip-
tion I”) which uses the field independent subtraction point in the 
Einstein frame (leading to scale-invariant quantum theory in the 
Jordan frame for large Higgs backgrounds) and computed ns and r
for the Higgs masses that exceeded Mcrit by just a small amount of 
few hundreds of MeV.1 We have shown that the values of ns and 
r are remarkably stable in this domain and coincide with the tree 
estimates. However, we did not analyse what happens in the close 
vicinity of the critical point. Partially, this has been studied in [23], 
but the peculiar inflationary behaviour found in the present work 
was not discussed in [23].

The aim of the present paper is to study the behaviour of the 
inflationary indexes close to the critical point. In what follows we 
will use the prescription I. We expect to have qualitatively the 
same results in the prescription II, though the numerical values 
will be somewhat different. We will see that ns and r acquire a 
strong dependence on the mass of the Higgs boson and the mass 
of the top quark. Thus, if the cosmological observations will show 
that one or both indexes do not coincide with those given by the 
tree analysis, they will indicate that in instead of inequality (2) we 
should have an equality between the top Yukawa coupling and its 
critical value, yphys

t = ycrit
t .

2. The critical point

The behaviour of the scalar self-coupling constant λ as a func-
tion of the MS parameter μ (energy) in the SM is very peculiar. 
If the mass of the top quark and of the Higgs boson are varied 
within their experimentally allowed intervals, it can be approxi-
mated in the region of Planck energies (M P = 2.44 × 1018 GeV) 
with a good accuracy as follows:

λ(z) = λ0 + b(log z)2, (3)

where

z = μ

qM P
, (4)

λ0, q and b are some functions of the top quark (pole) mass, 
Higgs mass, and the strong coupling constant αs , see Section 4. 
It happens that λ0 is small, λ0 � 1 and q is of the order of one.2

To put it in words, both the value of λ and of its beta-function, 
βλ = μ∂λ/∂μ, are close to zero near the Planck scale. It is this 
fact that changes the behaviour of the inflationary indexes, as is 
demonstrated below.

The renormalisation group improved effective potential in the 
Einstein frame with an accuracy sufficient for the present discus-
sion can be written as follows [9]:

1 We also performed the computation with the use of another subtraction pro-
cedure (called “prescription II”), which has a field-independent subtraction point in 
the Jordan frame [8,7,10].

2 A possible explanation of these facts may lie in the asymptotic safety of the SM 
[24]. This is also close to the “multiple point principle” of [25].
Fig. 1. The schematic change of the form of the effective potential depending on λ0. 
For better visibility the values of ξ are different for different lines. The horisontal 
axis corresponds to the canonically normalised field χ , the vertical axis to the ef-
fective potential, all in Planck units. (For interpretation of the references to colour 
in this figure, the reader is referred to the web version of this article.)

U (χ) � λ(z)

4ξ2
μ̄4. (5)

Here

z = μ̄

κM P
(6)

and

μ̄2 = M2
P

(
1 − e

− 2χ√
6M P

)
, (7)

where χ is the canonically normalised scalar field related to the 
original Higgs field by a known transformation [1] (see Eq. (11)). 
The MS parameter μ in (4) that optimises the convergence of the 
perturbation theory is related to μ̄ as

μ2 = α2 yt(μ)2

2

μ̄2

ξ(μ)
(8)

with α � 0.6. This numerical value follows from the minimisa-
tion of the one-loop Coleman–Weinberg effective potential [6,9]
(two-loop contributions do not further change α significantly). The 
expression (5) is valid for ξ > 1, and the scale dependence of ξ
can be neglected. Eqs. (4), (6), and (8) provide the connection be-
tween parameter κ , convenient for the inflationary analysis, and 
parameter q following from the RG evolution of the MS coupling 
constants.

Let us now consider the change of the form of the potential 
if λ0, κ and ξ are varying. For λ0 � b/16 the potential is a ris-
ing function of the field χ , realising the “tree” Higgs inflation (see 
Fig. 1, blue curve). If λ0 = b/16, a new feature appears: the first 
and the second derivatives of the potential are equal to zero at 
some point (see Fig. 1, red curve). For λ0 < b/16 but still close 
to b/16 we get a wiggle on the potential, which is converted into 
a maximum for somewhat smaller λ0 (see Fig. 1, brown line). De-
creasing λ0 even further leads to the unstable electroweak vacuum, 
Fig. 1 (green line). Clearly, the necessary condition for inflation to 
happen in the slow-roll regime is to have dV (χ)/dχ > 0 for all χ , 
i.e. the absence of a wiggle. For λ0 � b/16 all the potentials are 
very much similar, leading to the independence of inflationary in-
dexes on the parameters, while if λ0 is close to b/16, the form of 
the potential changes, and the dependence of r and ns on λ0 and κ
(and, therefore on Mh and mt ) shows up.

The parameter κ controls the value of χ where the wiggle 
would appear for λ0 = b/16, the parameter 0 < λ0 − b/16 � b/16
tells how close we are to the appearance of the feature, while a 
combination of λ0 and ξ determines the asymptotic of the po-
tential at large χ . Let us note that inflation with large r in the 
potentials with near vanishing U ′ at some value of the field along 
the inflationary slow-roll evolution was considered in [26,27].
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Fig. 2. The dependence of the inflationary indexes ns and r on ξ and κ , the pa-
rameter λ0 is fixed by the COBE normalisation. Along the nearly horisontal lines ξ
is fixed and κ is varying within the interval {0.9, 1.1}. We also show 1 and 2 σ
contours coming from the results of Planck [28] (red, fit with zero running of the 
spectral index) and the suggested region from BICEP2 [29] (blue, no foreground con-
tributions subtracted). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 3. The same as in Fig. 2, but with the grid of constant κ lines. The parameter ξ
is varying within the interval {5, 30}.

3. The inflationary indexes

Once the potential is known it is straightforward to determine 
inflationary indexes. For this end it is more convenient to use the 
three parameters κ , λ0 and ξ as independent variables, character-
ising the physics at the inflation scale (the relation to low energy 
observables will be discussed in Section 4). Note that the value of 
b is stable against the change of the SM parameters in the vicinity 
of the critical point and can be fixed as b � 2.3 × 10−5.

In the Higgs inflation far from the critical point the parameter κ
is irrelevant, whereas λ0 and ξ always appear in the combination 
λ0/ξ

2, meaning that the potential depends on one parameter only. 
Fixing it from the COBE normalisation then leads to prediction of 
ns and r. Close to the critical point the situation is changed – all 
the three parameters are now essential. The parameter counting 
leads to the conclusion that any values of ns and r are now possi-
ble. This expectation is confirmed by a detailed analysis, see Figs. 2
and 3.

The parameters ξ and κ define the position and the energy 
scale of the critical point. The small parameter λ0 − b/16 controls 
the amount of e-foldings the inflation spends in the vicinity of the 
critical point, without significantly modifying the potential in other 
regions.

In Fig. 2 (3) we show the lines of constant ξ (κ ) on the plane 
(ns, r), the parameter along the line is associated with the variation 
of κ (ξ ) within the interval {0.9, 1.1} ({5, 30}).

In Fig. 4 we show the running of the scalar index as a func-
tion of κ and ξ . One can see that it is positive. A word of caution 
should be said in this place, warning from the use of the available 
Fig. 4. The same as in Fig. 2, but now on the plane (ns, dns/d ln k), which includes 
the running of the scalar spectral index.

Fig. 5. The form of the effective potential which leads to r = 0.1, ns = 0.96. The field 
values corresponding to the N = 57 and N = 60 e-foldings are marked by vertical 
lines, roughly indicating the observable window for inflation.

inflationary constraints from CMB measurement. With the poten-
tial (5) close to the critical point the behaviour of the spectral 
index in the observable inflationary region is complicated (i.e. ex-
pansion in terms of running and running of the running of the 
spectral index over the observable inflationary window is not a 
good approximation, contrary to the case of power law potentials). 
Thus it is necessary to make the complete fit of the perturbation 
spectrum, generated form the potential (5) to the CMB observa-
tions, like it is suggested in [30–32]. This analysis goes beyond the 
scope of the present letter.

The picture of the Higgs-inflation potential which gives r = 0.1, 
ns = 0.96 is shown in Fig. 5.

A very interesting feature of the inflation near the critical point 
is the drastic decrease of the necessary non-minimal coupling ξ
down to a number of the order of ten. The large value of ξ , nec-
essary for the Higgs inflation far from the critical point, effectively 
introduces a new strong-coupling threshold Λ ∼ M P /ξ well below 
the Planck scale, if the scattering of the SM particles is consid-
ered around the EW vacuum [33,34]. Though this fact does not 
invalidate the self-consistency of the Higgs inflation [35,36] which 
occurs at large Higgs fields, it requires the UV completion of the 
SM or self-healing of high energy scattering [37,38] at energies 
much smaller than the Planck scale. The Higgs inflation at the 
critical point does not require any new cutoff scale, essentially dif-
ferent from the Planck scale.

The evolution of the Universe after the Higgs inflation at the 
critical point is different from that for the case ξ � 1. If ξ � 1, 
the Universe after inflation is “matter dominated” due to oscilla-
tions of the Higgs field. The transition to the radiation dominated 
Universe occurs due to particle production after some time, but 
not later than after O(ξ/2π) oscillations [4,5]. For ξ ∼ 10 we have 
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the radiation-dominated epoch right after inflation is finished. Of 
course, the system will come to thermal equilibrium only after a 
number of oscillations of the Higgs field.

4. Connection between low energy and high energy observables

The aim of this section is elucidating the relation between the 
parameters of the inflationary potential κ and λ0 and top quark 
and Higgs masses measured in low energy experiments. The main 
problem here is that the Standard Model in the Einstein frame 
is essentially non-polynomial and thus non-renormalizable, mean-
ing that the required connection cannot be found without extra 
assumptions about the structure of the underlying fundamental 
theory [35].

The most conservative (and thus most predictive ) hypothesis of 
the absence of new physics between the Planck and Fermi scales 
still has the uncertainties in the relation between low energy and 
high energy parameters [35]. To discuss these uncertainties let us 
consider (the most important numerically) interactions of the top 
quark with the Higgs field, given in the Einstein frame by

Lt = yt√
2

t̄t F (χ). (9)

Here

F (χ) = h

Ω
, (10)

Ω2 = 1 + ξh2/M2
P is the conformal factor, and the canonically nor-

malised field χ is related to the Higgs field h via

dh

dχ
= Ω2√

Ω2 + ξ(6ξ + 1)h2/M2
P

. (11)

To remove the divergencies in the arbitrary background fields, the 
counter-terms must be added to the action. The scalar correction 
to the t̄th vertex requires the modification of yt as

yt → yt + y3
t

16π2

(
9

4ε
+ Ct

)
F ′ 2 (12)

and the top quark loop contribution to scalar self-interaction gives

λ → λ − y4
t

16π2

(
3

ε
− Cλ

)
F ′ 4, (13)

where ε is the parameter of dimensional regularisation, Ct and Cλ

are the (arbitrary) constant parts of the counter-terms, and F ′ =
dF/dχ . These constant parts cannot be fixed theoretically with the 
use of the SM Lagrangian and must be found from observations 
or from (unknown yet) UV complete theory hosting the SM at low 
energies.

For the small Higgs backgrounds h � M P /ξ the derivative F ′
is close to one, and the parameters Ct and Cλ are absorbed in 
the definition of low-energy top Yukawa coupling and scalar self-
coupling and thus are unobservable at low energies. However, in 
the inflationary region, at h > M P /ξ , the derivative F ′ goes to zero, 
and it is the couplings yt and λ, rather than yphys

t = yt + y3
t

16π2 Ct

and λphys = λ − y4
t

16π2 Cλ , that contribute to cosmological observ-
ables. The transition between two regimes (for ξ > 1) occurs ap-
proximately at h∗ = 1

2
√

6
M P
ξ

, corresponding to the fastest falloff of 
the function F ′ 2. It can be well approximated by a sudden jump 
of the coupling constant from yphys

t to yt at h = h∗ . The obvious 
inflationary requirement is that in the domain h < h∗ the physical, 
low energy λphys must be positive, i.e. the inequality (2) must be 
valid.
To determine the parameters of the inflationary potential (5)
we define the “inflationary” top and Higgs masses m∗

t and M∗
h

that lead to yt and λ at high energies through the renormalisation 
group evolution (SM running up to h∗ and chiral SM running af-
terwords [9]), without any jumps at h = h∗ . The inflationary masses 
are related to the physical masses mt and Mh as follows:

m∗
t = mt

(
1 − y2

t Ct

16π2

)
, M∗

h = Mh

(
1 − y4

t Cλ

16π2

h2
0

M2
h

)
, (14)

where h0 = 250 GeV is the vacuum expectation value of the 
Higgs field, and all the constants are taken at low energy scale. 
The presence of the unknown coefficients Ct and Cλ results ex-
actly from the unremovable uncertainty following from the non-
renormalizable character of the SM coupled to gravity in the non-
minimal way. Numerically (in the units of GeV, and for Mh �
126 GeV),

m∗
t � mt − Ct, M∗

h � Mh − 3Cλ. (15)

Now, we can combine the discussion of inflation with the 
low energy parameters accounting for the uncertainties discussed 
above. The functions λ0, q and b can be expressed through the 
high energy inflationary parameter and can be found from the 
analysis of the renormalisation group running for λ. The fitting for-
mulas are given below3:

λ0 = 0.003297
((

M∗
h − 126.13

) − 2
(
m∗

t − 171.5
))

,

q = 0.3 exp
(
0.5

(
M∗

h − 126.13
) − 0.03

(
m∗

t − 171.5
))

,

b = 0.00002292 − 1.12524 × 10−6((M∗
h − 126.13

)
− 1.75912

(
m∗

t − 171.5
))

, (16)

where M∗
h and m∗

t are to be taken in GeV.
These equations can be used now to determine the dependence 

of the cosmological parameters on m∗
t and M∗

h . Since the value of 
the scalar tilt ns depends very strongly on κ , we fix it in the ex-
perimentally allowed region ns ∈ {0.94, 0.98} and present in Figs. 6
and 7 the dependence of r and required ξ on high energy values 
of the top quark and Higgs masses. Also, Fig. 8 shows the running 
of the spectral index. Note, that change of ns within the observ-
able region corresponds to extremely small change of the relation 
between ξ , M∗

h , and m∗
t , which is completely within the widths of 

the lines on Figs. 6 and 7, and corresponds to some change of the 
prediction of dns/d ln k on Fig. 8.

The combination of particle physics and cosmological measure-
ments allows to fix unknown parameters Ct and Cλ . If we take, 
for instance, r = 0.12, then M∗

h � 122.6 GeV and m∗
t � 169.8 GeV, 

ξ � 8. To get the physics low energy value of the Higgs mass Mh =
125.6 GeV we need Cλ � 1. The value of Ct � 1.5 would bring the 
physical top mass to mt � 171.5 GeV, consistent with the mea-
sured top quark mass within 2 σ uncertainties. The relative change 
of the top Yukawa coupling at h = h∗ is (yphys

t − yt)/yt � 0.024, 
while the change in λ is very sensitive to the physical Higgs and 
top masses and can be made equal to zero by tuning mt and Mh
within few MeV.

5. Conclusions

The Higgs inflation for yphys
t < ycrit

t is a predictive theory for 
cosmology, as the values of the inflationary indexes are practically 

3 We used the analysis made in [11] to produce the fitting formulas and fixed 
αs = 0.1184. The account of more precise mapping at the electroweak scale made 
in [13] can change the extraction of the Higgs and top masses from the cosmological 
data by amount of O(100) MeV.
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Fig. 6. The dependence of the tensor-to-scalar ratio r on the high energy inflationary 
Higgs boson and top quark masses M∗

h and m∗
t . The value of ns along the curve is 

vithin the interval ns ∈ {0.94, 0.98}.

Fig. 7. The dependence of the required non-minimal coupling on the high energy 
inflationary Higgs boson and top quark masses M∗

h and m∗
t .

Fig. 8. The same as in Fig. 6, but for the running of the scalar spectral index. The 
shaded area corresponds to change of κ leading to change of ns within the Planck 
allowed values (for Figs. 6 and 7 this area is within the thickness of the lines on 
the plots).

independent of the SM parameters. Near the critical point the sit-
uation completely changes, and we get a strong dependence of 
ns and r on the precise values of the inflationary masses of the 
top quark and the Higgs boson m∗

t and M∗
h . In this regime the 

Higgs inflation becomes a predictive theory for high energy domain 
of particle physics, as any deviation of inflationary indexes from the 
tree values tells that we are at the critical point, fixing thus the 
inflationary values of masses of the top quark and the Higgs bo-
son m∗

t and M∗
h . It is amazing that a possible detection of large 

tensor-to-scalar ratio r in [29] gives the inflationary top quark and 
Higgs boson masses close to their experimental values mt and 
Mh . Though the exact relation between m∗

t , M∗
h and the physical 

masses mt , Mh requires the knowledge of the full UV complete 
theory, we can see that the uncertainties related to the transi-
tion from low and high energies (constants Ct and Cλ) are quite 
small.

Let us also note, that though this uncertainty prevents us from 
exact predicton of the top-quark and Higgs masses from the CMB 
observations at present, the bound on these masses related to 
the metastability of the electroweak vacuum [11–13] remains un-
modified (within ∼ 100 MeV precision), as far as it is connected 
with the Higgs potential becoming negative at scales below M P /ξ , 
where any corrections become important.

Also, though prediction of the inflationary parameters r and ns

is impossible for the Higgs inflation near the critical point, the pre-
dictions for the higher derivatives (shape) of the spectra of the 
inflationary perturbations can be done, and thus provide a non-
trivial way to check the model against the CMB data.

We conclude with a word of caution. All results here are based 
on the assumption of the validity of the SM up to the Planck scale. 
If this hypothesis is removed, the Higgs inflation remains a valid 
cosmological theory, but its predictability is lost even far from the 
critical point. For example, the modification of the kinetic term of 
the Higgs field at large values of H , leads to a considerable modifi-
cation of r [39–41] (see also [42–44] for generalised Higgs inflation 
with Horndenski type terms). The change of the structure of the 
Higgs-gravity interaction to, for instance,

M2
P R

√
1 + ξ |H|2/M2

P , (17)

will make the potential in the Einstein frame quadratic with re-
spect to the field χ and thus would modify r and ns , making 
them the same as in the chaotic inflation with free massive scalar 
field. Another assumption is about the absence of operators sup-
pressed by the Planck scale (or various tree level unitarity violation 
scales [35]), which may be justified by a special scale (or shift in 
the Einstein frame) symmetry of the UV complete theory. Adding 
them would change introduce further uncertainties in inflationary 
physics [45], cf. [46] for importance of such terms for the stability 
of electroweak vacuum.

While this paper was in preparation, the article [47] appeared, 
where the possibility to have large value of r for the Higgs inflation 
close to the critical point was also pointed out.
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