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Existing research works have established that Drucker–Prager (DP) plasticity model is capable of model-
ing stress–strain behavior of confined concrete. However, accuracy of the model largely depends on ade-
quate evaluation of its parameters that determine the yield criterion, hardening/softening rule and flow
rule. Through careful analytical studies of test results of FRP confined concrete columns under theoretical
framework of the DP model, it is found that: (1) the hardening/softening rule is governed by plastic
strains and the FRP stiffness ratio; (2) the friction angle decreases slightly with an increase in plastic
deformation; and (3) the plastic dilation angle is a function of both axial plastic strain and the FRP stiff-
ness ratio. Explicit models for these properties are developed from analytical studies. By implementing
the proposed models in ABAQUS, finite element analyses can well predict stress–strain responses of
FRP confined concrete columns.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Due to complexity of concrete, a general and mature constitu-
tive model for the material has not been developed till date. This
often becomes the bottleneck in the study of concrete structures.
Since empirical/semi-empirical models are limited by availability
of experimental data, computational constitutive models have
been attempted more extensively in recent years as they can pro-
vide a more general framework for nonlinear behavior of concrete.
Despite its high complexity, it is generally believed that the princi-
pal behavior of concrete can be adequately captured by constitu-
tive models based on the plasticity theory (Pekau et al., 1992).

A plasticity model suitable for confined concrete should include
pressure dependence, path dependence, non-associative flow rule,
work or strain hardening and limited tensile strength features. It
has been demonstrated by Karabinis and Rousakis (2002) that
the behavior of concrete structural members can be well estimated
using a Drucker–Prager (DP) type plasticity model in which param-
eters related to friction angle and cohesion govern the yielding and
hardening criteria, while the parameter related to plastic dilation
determines the flow rule.

Extensive research has been conducted on plastic dilation rate
in steel confined concrete by Karabinis and Kiousis (1996) and
Oh (2002). For FRP confined concrete, relatively few research
works have been undertaken. Karabinis et al. (2008), Mirmiran
et al. (2000) and Rousakis et al. (2008) adopted a constant plastic
ll rights reserved.
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dilation rate. However, Yu et al. (2010) showed that plastic dilata-
tion rate varies with plastic strains, as well as lateral stiffness,
though without presenting a systematic and explicit model.

In previous studies, the friction angle is assumed to be a mate-
rial constant irrelevant to hydrostatic stress (Karabinis and Kiousis,
1996; Karabinis and Rousakis, 2002; Karabinis et al., 2008; Mirmi-
ran et al., 2000; Oh, 2002; Richart et al., 1928; Ritchie, 1962;
Rousakis et al., 2008; Yu et al., 2010). Therefore the stress path is
only governed by the hardening/softening rule that determines
the variation of cohesion. However, Vermeer and de Borst (1984)
pointed out that concrete’s behavior under constant confinement
cannot be well modeled by cohesion hardening under a constant
friction angle. Therefore, further study of the problem is much
needed.

Plastic dilation, friction angle and cohesion for FRP confined
concrete (normal-weight) are extensively investigated by analyz-
ing test results, and models for each of them are developed in this
paper, leading to a modified DP model for finite element analyses
of FRP confined concrete columns.

2. Drucker–prager plasticity model

The DP model was proposed by Drucker and Prager (1952). It
can well describe pressure-sensitive materials such as rock, soil
and concrete. Similar to other plasticity models, there are three cri-
teria controlling the framework of a DP type model, and hence
accuracy of predictions by the model. Numerical studies in this pa-
per are based on the linear extended DP model built in commercial
software ABAQUS. Details of the model in the case of uniaxial com-
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Fig. 1. Yielding surface of Drucker–Prager Model.
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pression with uniform confinement are briefly described in the fol-
lowing sections.

2.1. Yielding criterion and hardening/softening rule

The yielding function for the linearly extended DP model is in
the form of

t � tan up� k ¼ 0; ð1Þ

where

t ¼ f ðKÞ
ffiffiffiffi
J2

p
¼ f ðKÞ
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where ri(i = 1, 2, or 3) is the stress in i direction; k is the hardening/
softening parameter, which is the interception of a yielding surface
to the t axis (Fig. 1). Its variation governs the development of sub-
sequent yielding surfaces; u is the friction angle, which reflects
the slope of the yield surface in the stress space (Fig. 1). Function
f(K) is an indirect expression of Lode’s angle combining the second
and third invariants of deviatoric stress, J2 and J3, respectively. K is a
material parameter that accounts for stress-path with the variation
of shear strength under a given hydrostatic pressure and deter-
mines the shape of the yielding function in the deviatotic plane,
ranging from 0.778 to 1. For the case of uniform confinement, f(K)
equals to

ffiffiffi
3
p

, irrelevant to K. Here a compression is considered as
a negative value and tension positive.

2.2. Flow rule

In the current DP model, plastic potential function G that gov-
erns the flow rule is given by,

G ¼ t � tan bpþ constant: ð5Þ

Increments of the plastic strain can be found by,

dep
ij ¼ k

@G
@rij

: ð6Þ

In the case of uniformly confined cylinder, r1 = rc and r2 = r3 = rl,
therefore,

dep
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Plastic strains under monotonic loading can be estimated by
deducting elastic strains using isotropic elasticity,

ep
c ¼ ec �

1
E
ðrc � 2vrlÞ; ep

l ¼ el �
1
E
½ð1� vÞrl � vrc�: ð9Þ

The following equation can be obtained from Eqs. (7) and (8)

tan b ¼ �
3 dep

c þ 2dep
l

� �
2 dep

c � dep
l

� � ¼ �3dep
v

2dep
s
¼

ffiffiffi
3
p

2
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where k is a non-negative scalar parameter; superscript p repre-
sents plastic deformation; and E and v are Young’s modulus and
Poisson’s ratio, respectively. Eq. (10) shows that plastic dilation an-
gle b determines the tangent ratio of plastic volumetric strain ep

v , to
plastic shear strain ep
s , which is of great significance in mathemati-

cal modeling of pressure dependent material (Rousakis et al., 2008).
Dilation rate a has been adopted in previous studies (Karabinis and
Rousakis, 2002; Oh, 2002; Rousakis et al., 2008). Under the current
sign regulation, a negative b value indicates a volumetric compac-
tion tendency while a positive value indicates a volumetric expan-
sion tendency. A transition point arises when b is zero in volumetric
deformation (Fig. 2).
3. Plastic dilation

3.1. Previous studies

In an FRP confined column, lateral dilation of concrete induces
passive confinement from the FRP jacket. Fig. 2 illustrates typical
volumetric deformations. As the elastic volumetric deformation is
always in compaction and can be calculated accurately, evaluation
of the plastic volumetric strain is critical to determination of total
volumetric deformation that controls the confinement pressure.

Previous studies on plastic dilation of FRP confined columns
were initially based on steel confined cases. Mirmiran et al.
(2000) found that a zero plastic dilation rate could give a reason-
ably close prediction for C29.6 concrete with 6 plies of FRP through
a trial-and-error procedure but pointed out that the constant rate
could not represent the true dilation tendencies. In an earlier mod-
el by Karabinis and Rousakis (2002), an asymptotic function was
proposed. Plastic dilation angle b is assumed to decrease from
�27.4� (a = �0.6) to �56:3�ða ¼ �

ffiffiffi
3
p
Þ (Fig. 3). The negative b value
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indicates a plastic volumetric compaction which approaches
�56.3� when lateral stiffness of FRP jacket approaches infinity.
Oh (2002) proposed another asymptotic function regressed from
data generated from empirical models for columns with active
confinement. However, its value increases from �40.9�
(a = �0.866) to 56.3� ða ¼

ffiffiffi
3
p
Þ (Fig. 3). Rousakis et al. (2008) later

considered a constant dilation rate that depends on unconfined
concrete strength and the modulus of confinement. However, it
is inconsistent with the observation that the slope of plastic poten-
tial function should vary with the increasing lateral stress (Grassl
et al., 2002; Han and Chen, 1985; Imran and Pantazopoulou,
2001; Papanikolaou and Kappos, 2007; Smith et al., 1989). Yu
et al. (2010) demonstrated that the flow rule can properly reflect
the effect of plastic deformation and the rate of confinement incre-
ment can lead to a reasonably close prediction of behavior of FRP
confined concrete. They presented a procedure for obtaining varia-
tions of the potential function parameter; however, no explicit
model has been provided.

3.2. Test observation and analytical modeling

The test data collected for this analytical study include 6 FRP
confined column specimens (diameter D = 152 mm and height
H = 305 mm) tested by Teng et al. (2007b) and 23 FRP confined
specimens (diameter D = 152 mm and height H = 305 mm) tested
by Jiang and Teng (2007). Unconfined concrete strength varies
from 33.1 MPa to 47.6 MPa (Table 1). From the test data, b is calcu-
lated using Eq. (10), where elastic modulus E is calculated in accor-
dance with ACI 318 (Eq. (11)) and v is set as 0.2,
Table 1
Specimens properties.

Source ID Number D (mm) H (mm) f 0c (M

Teng et al. (2007b) C39.6GF1 2 152 305 39.6
C39.6GF2 2 152 305 39.6
C39.6GF3 2 152 305 39.6

Jiang and Teng, 2007 C33.1GF1 2 152 305 33.1
C45.9GF1 2 152 305 45.9
C45.9GF2 2 152 305 45.9
C45.9GF3 2 152 305 45.9
C38CF4 2 152 305 38
C38CF6 2 152 305 38
C38CF8 2 152 305 38
C37.7CF1 2 152 305 37.7
C44.2CF1 2 152 305 44.2
C44.2CF2 2 152 305 44.2
C47.6CF3 3 152 305 47.6
Ec ¼ 4734
ffiffiffiffi
f 0c

q
: ð11Þ

Fig. 4 shows a series of such curves and the corresponding plastic
volumetric deformation curves with different lateral stiffnesses of
FRP and unconfined concrete strength. Plastic dilation angle b in
Fig. 4a is clearly very different from Fig. 3. A similar trend is ob-
served in all curves that relate b with axial plastic strain, as illus-
trated by the typical curve in Fig. 5, where b begins from a
negative value b0, and increases to the maximum point ep

cr ;bmð Þ.
Afterwards, it decreases to an asymptotic value bu. The comparison
in Fig. 4a shows that the curve moves downward with increase in
lateral stiffness ratio q, defined by Eq. (12),
Pa) Fiber type tf(mm) Ef(GPa) q R2 (b curve)

Glass 0.17 80.1 4.52 0.9647
Glass 0.34 80.1 9.05 0.7963
Glass 0.51 80.1 13.57 0.7825

Glass 0.17 80.1 5.41 0.9822
Glass 0.17 80.1 3.90 0.9087
Glass 0.34 80.1 7.81 0.8745
Glass 0.51 80.1 11.71 0.8038
Carbon 0.68 240.7 56.67 0.8043
Carbon 1.02 240.7 85.01 0.7951
Carbon 1.36 240.7 113.35 0.9165
Carbon 0.11 260 9.98 0.8924
Carbon 0.11 260 8.51 0.9593
Carbon 0.22 260 17.03 0.9123
Carbon 0.33 250.5 22.85 0.9134
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q ¼ 2Ef tf

Df 0c
; ð12Þ

where Ef and tf are elastic modulus and thickness of FRP, respec-
tively; D is the diameter of the column; and f 0c is the unconfined
concrete strength. For curves with different FRP stiffnesses and
unconfined concrete strengths but with a similar value of q, the b
curve and the ep

v curve are similar, as shown by specimens
C39.6GF2 and C44.2CF1 in Fig. 4. Therefore, it can be concluded that
q is the governing factor (at least the dominant factor) that affects
the curve of b; hence it will be sufficiently accurate for engineering
use to assume that b curve is only affected by q. In fact, this
assumption is consistent with the conclusion by Yu et al. (2010)
that stiffness of the FRP jacket affects the plastic dilation angle.

The typical plastic dilation curve in Fig. 4 can be well repre-
sented by the following equation:

b ¼ Aþ Bep
c þ C ep

cð Þ
2

1þ Dep
c þ E ep

cð Þ
2 ; ð13aÞ

which is illustrated by the general shape in Fig. 5. Using the bound-
ary values, Eq. (13)a can be more conveniently expressed as

b ¼ b0 þ ðM0 þ k1b0Þep
c þ k2bu ep

cð Þ
2

1þ k1ep
c þ k2 ep

cð Þ
2 : ð13Þ

The three coefficients k1, k2 and bu are functions of q. b0 and M0 are
the initial value and the corresponding slope of b curve at ep

c ¼ 0,
which are generally found to be constants from test curves, given by

b0 ¼ �37; M0 ¼
db ep

cð Þ
dep

c

����
ep

c¼0
¼ 157000: ð14Þ

Eq. (14) is conceptually reasonable as stiffness of confinement does
not affect initial plastic dilation properties (Handin, 1969; Rousakis
et al., 2008). By best matching all test curves of b to Eq. (13), the
other three coefficients, k1, k2 and bu, are regressed to be

k1 ¼ 11:61qþ 980; ð15Þ
k2 ¼ 5700qþ 225000; ð16Þ
bu ¼ 101:66 expð�0:06qÞ � 37:5: ð17Þ

Fig. 6 shows comparison between the proposed model and test
curves of b, which shows a reasonable agreement. The correlation
coefficients between them are listed in Table 1.

3.3. Sensitivity study

As constant b value was adopted in previous studies by many
researchers (Karabinis et al., 2008; Mirmiran et al., 2000; Rousakis
et al., 2008), there is a possibility that the stress–strain response is
insensitive to the plastic dilation curve. Therefore, a sensitivity
study was undertaken to find out how sensitive parameters b0,
M0, bm and bu (see Fig. 5) are to the stress–strain curve. The refer-
ence specimen is a C39.6 cylinder with 2 layers of glass FRP (Teng
et al., 2007b). Values of the four parameters are calculated to be
b0 = �50.86�, M0 = 125863�, bm = 52.6�, and bu = 35.4�, obtained
by regressing the test dilation curve to the model curve in Fig. 5.
With a 50% deviation from values of b0 and M0, the maximum dif-
ference in axial strain at FRP rupture is 2.3% and 2.4%, respectively;
see Fig. 7(a). Therefore, average test results for b0 and M0 are used
as constants for these two parameters in Eq. (14). However, a 20%
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deviation for bm induces over 30% difference in the axial strain; and
a 30% deviation for bu causes 12% difference in the axial strain, as
illustrated in Fig. 7(b). Therefore, the stress–strain response is sen-
sitive to bm and bu but insensitive to variations of b0 and M0. The
theoretical stress–strain curves in Fig. 7 are given by the finite ele-
ment model presented in Section 5 with the plastic dilation model
given by Eq. (13) and the friction and cohesion models proposed in
Section 4.

3.4. Discussions

On being subjected to uniaxial compressive loading, both the
concrete core and the FRP jacket expand laterally at a similar rate
in the beginning due to the similar Poisson’s ratios of the two
materials. The concrete core exhibits larger lateral dilation than
FRP afterwards, when significant microcracking occurs in the con-
crete. The confinement does not take effect until the lateral-to-ax-
ial strain ratio of the concrete exceeds the Poisson’s ratio of the FRP
jacket. Therefore, b takes an initial negative value b0 (volumetric
contraction), irrelevant to the lateral stiffness ratio of FRP. When
the axial load further increases, microcracking develops quickly
in concrete and hence b increases quickly. During this stage the
passive confinement from FRP takes effect, which counteracts con-
crete’s lateral expansion and leads to a reduced rate of increase in
b, as reflected by the ascending part of the curve in Fig. 5. During
the dilation of concrete, the passive confinement from FRP in-
creases continuously, which reduces the dilation rate of concrete
such that b reaches its peak bm and starts to drop. When the inter-
action between the jacket and the concrete is stabilized, b reaches
an asymptotic value, bu.

It is obvious that the higher the lateral stiffness is, the larger is
the constraint FRP can exert. As a result, an increase in the lateral
stiffness ratio decreases values of bm and bu, as correctly reflected
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Fig. 8. Comparison between different dilation models: (a) q = 7.81, (b) q = 56.67.
by Eq. (13). Clearly, a relatively stiffer jacket or a larger q mobilizes
the confinement faster and hence causes an earlier onset of the
peak point or the reduction of the ep

cr value, which is also the case
for Eq. (13). Naturally, ep

cr ; bm and bu approach a lower bound when
q approaches infinity, because at a sufficiently high confinement a
further increase in stiffness of the FRP jacket cannot further re-
strain the lateral expansion to a smaller rate than the Poisson’s ra-
tio of FRP.

Performance of the proposed model (Eq. (13)) is depicted in
Fig. 8 for two typical cases, one with low and other with high jacket
stiffness. It can be seen from the test results in Fig. 8 that the case
with the thin FRP jacket exhibits a monotonic plastic volumetric
expansion until FRP rupture, while the case with the thick jacket
shows significant plastic volumetric contraction after the initial
expansion at low confinement stress. For comparison, the three
existing models are also shown together in the figure. Clearly, only
the proposed model correctly describes dilation characteristics of
FRP confined concrete.

FRP confined concrete exhibits different volumetric plastic
deformation patterns at different lateral stiffness ratios (Fig. 4b).
Such variations can be well captured by the proposed model com-
prehensively but not by any of the existing models. The asymptotic
model of Oh (2002) overestimates the confinement effect in the
beginning and underestimates it near the end for cases with higher
confinement stiffness, and is suitable only for concrete under con-
stant confinement which takes effect earlier than the passive one,
as shown in Fig. 8. The Karabinis and Rousakis (2002) model only
describes plastic volumetric contraction without considering jack-
et stiffness, and hence, is only suitable for highly confined concrete.
Although (Rousakis et al., 2008) considered stiffness of confine-
ment, the constant value of plastic dilation rate determines the lin-
ear relationship between ep

v and ep
c . Therefore, it fails to capture the
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4. Friction and cohesion

4.1. Previous studies on friction angle u

Friction angle u in Eq. (1) can be converted through Eq. (18) to
an internal friction angle / defined in the Mohr–Coulomb theory
when DP yielding cone circumscribes the Mohr–Coulomb hexago-
nal pyramid (Karabinis and Kiousis, 1996; Karabinis and Rousakis,
2002; Karabinis et al., 2008; Mirmiran et al., 2000; Oh, 2002; Ri-
chart et al., 1928; Ritchie, 1962; Rousakis et al., 2008; Yu et al.,
2010):

tan u ¼ 6 sin /
3� sin /

: ð18Þ

The internal friction angle is obtained by drawing a tangent line to a
series of Mohr–Coulomb circles in the state of failure in triaxial
experimental tests of concrete. The failure state is defined as the
point where the concrete reaches a defined failure status such as
the onset of the peak strength or a certain axial strain. The internal
friction angle is usually regarded as a material constant related to
concrete strength but irrelevant to loading history (Richart et al.,
1928; Ritchie, 1962). However, Vermeer and de Borst (1984)
pointed out that the concrete behavior cannot be well fitted by
cohesion hardening/softening under constant friction angle, as it re-
sults in concrete initial yielding point of deviatoric stress (rc � rl),
increasing with the increase in constant lateral confinement, which
is not in line with mechanical behavior of concrete. As the Mohr–
Coulomb theory is for describing the behavior of brittle materials,
and for rocks and concrete, when the brittleness reduces and the
softness increases under increasing deformation, it is possible that
the angle of internal friction reduces with the reduction in brittle-
ness of the material (Handin, 1969).

The above discussion shows that a good understanding and
common conclusion on the internal friction angle of confined con-
crete is yet to be reached. The following study tries to look at the
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problem from another angle by investigating variations of friction
parameters under different equivalent plastic strains based on
experimental results, showing that the frictional coefficient
changes when the material deforms.

4.2. Previous studies on hardening–softening function k

In the framework of DP type constitutive relationship, k is the
hardening/softening function which governs the development of
the subsequent yielding surface. Since this is the deviatoric stress
t at zero hydrostatic pressure p, it is the cohesive shear resistance.
Many researchers believe that the variation of cohesion k is highly
related to plastic deformation and confinement level. Based on ac-
tively confined concrete, Karabinis and Kiousis (1996) and Oh
(2002) proposed a hardening–softening model determined by plas-
tic strains and confinement level, with 8 and 13 parameters,
respectively. Yu et al. (2010) proposed a procedure for calculating
k based on plastic strain and confinement value, using Teng et al.,
Table 2
Parameters in each iteration.

Iteration u0 j Ep g a1

1st 56.00 �192.06 2700 6400 0.13
2nd 56.20 �209.24 2700 6472 0.12
3rd 56.32 �219.70 2700 6472 0.12
4th 56.44 �226.00 2700 6587 0.12
2007a empirical stress–strain model. It is assumed in all previous
studies that cohesion k in FRP confined concrete is the same as
in actively confined concrete under the same confinement pres-
sure. This assumption causes inaccuracy in modeling. Meanwhile,
these hardening–softening functions are based on the assumption
that frictional resistance (tanu) is constant throughout the loading
process.

4.3. Test observation and analytical modeling

As cohesion and friction angle are tied up through Eq. (1), an
iteration procedure is used to separate them and derive friction an-
gle u and cohesion k from test data. The iteration procedure is
illustrated in Fig. 9.

4.3.1. Initial value for iteration
There are only three possible factors that may affect internal

shear resistance (including cohesion and frictional coefficient):
concrete type (represented by unconfined concrete strength f 0cÞ,
state of internal damage (characterized by the equivalent principal
plastic strain ~epÞ, and confinement stiffness (described by q). To
isolate factor ~ep from the other two factors f 0c and q, six specimens
(Table 1) of concrete grade C38 and lateral confinement ratios of
56.67, 85.01 and 113.35 are selected. Although values of q are
not equal for these six specimens, these confinement ratios are suf-
ficiently high and, therefore, that does not cause large variations in
dilation properties of these specimens (the variation is addressed
later, through iteration). Therefore, it is assumed that the cohesion
is the same in these specimens when ~ep takes the same value; the
friction angle can be calculated through the following process:

a. for a particular axial loading on a specimen, calculate devia-
toric stress t ¼

ffiffiffiffiffiffiffi
3J2

p
, and mean stress p = � I1/3. The lateral

(confinement) stress is calculated using the measured FRP
lateral strain.

b. calculate the corresponding axial and lateral plastic strains
through Eq. (9). The elastic modulus, E, is calculated with
Eq. (11), and the Poisson’s ratio, v, is set to be 0.2.

c. calculate the equivalent principal plastic strain by
~ep ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dep
i � de

p
i

q
; ð19Þ
d. repeat Steps a to c for all axial loading values recorded for
one test specimen;

e. repeat Steps a to d for all test specimens, and plot the devi-
atoric stress and mean stress of the specimens in p-t coordi-
nates under the same equivalent principal plastic strain in
Fig. 10. The points in one figure (for one value of equivalent
principal plastic strain) are calculated from different speci-
mens, instead of one specimen; and

f. the friction angle is the slope of the lines in Fig. 10. By plot-
ting the friction angle and its corresponding plastic strain
from one figure as one point in Fig. 11, a series of points
are produced and shown in Fig. 11.

Clearly, a straight line relating ~ep and u is obtained in Fig. 11
and given by Eq. (20).
a2 a3 b1 b2 b3

0.0046 �0.025 �2.93 �15.99 0.21
0.0044 �0.022 �2.10 �25.43 1.13
0.0044 �0.022 �1.32 �32.99 1.59
0.0044 �0.023 �0.75 �41.06 2.52
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u ¼ u0 þ j � ~ep: ð20Þ

The suitability of Eq. (20) is further discussed in Section 4.3.3.

4.3.2. Cohesion model
Assuming the friction angle model of Eq. (20) is applicable to all

specimens in Table 1, values of cohesion are calculated using Eq.
(1) (Fig. 12). The typical relationship between normalized cohesion
k=f 0c and ~ep can be well modeled by the following equation:

kð~ep;qÞ
f 0c

¼ k0 þ EP
~ep

1þ g � ~ep
þ p1ðqÞ~e2

p þ p2ðqÞ � ~ep; ð21Þ
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where k0 equals to 1/8, supposing the initial yielding stress is 1/4 of
unconfined concrete strength ðp ¼ rc � 2rl ¼ 0rl ¼ 0:5rc; k ¼ t ¼
ðrc � rlÞ ¼ 0:5rck=f 0c ¼ 1=8 when rc ¼ f 0c=4Þ, and Ep is the initial
slope of the cohesion curve. g is a constant parameter. Coefficients
p1 and p2 are functions of q and can be determined by the following
equations:

p1 ¼
q

a1 þ a2qþ a3
ffiffiffiffiqp ; ð22Þ

p2 ¼
b1qþ b2

qþ b3
: ð23Þ
4.3.3. Results
After obtaining the initial models of Eqs. (20) and (21), the iter-

ation process shown in Fig. 9 is used to calculate the coefficients in
these two equations. The iteration process and the final results are
listed in Table 2. Convergence is considered reached after the 4th
iteration when maxjki � ki�1j/ki < 1% between the two adjacent
iterations.

The cohesion model (Eq. (21)) involves all the three factors.
However, the friction model (Eq. (20)) only involves the equivalent
plastic strain. By substituting Eq. (21) into Eq. (1), friction angles u
are calculated for all specimens, shown in Fig. 13 by thin lines. The
thick solid line in the figure gives the friction model. If the thin
lines and the solid line completely match, it means both Eqs. (20)
and (21) perfectly match all results and the proposed models have
a zero scatter of results. For heterogeneous materials like concrete,
this is impossible. The maximum scattering between the dotted
lines and the solid line is 5.4%, which is considered well within
the acceptable range of error for experimental test results.
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Fig. 16. Column model.

Table 3
Comparison of simulation and test results.

Source ID No. f 0c (MPa) Fiber type q ecu(Test) (%) ecu (FEA) (%) Error f 0cc (Test) (MPa) f 0cc (FEA) (MPa) Error

Teng et al. (2007b) C39.6GF1 2 39.6 Glass 4.52 0.298 0.334 12.11% 41.2 39.7 3.52%
C39.6GF2 2 39.6 Glass 9.05 1.977 1.717 13.15% 55.5 54.1 2.43%
C39.6GF3 2 39.6 Glass 13.57 2.175 2.129 2.11% 63.3 65.8 3.95%

Jiang and Teng (2007) C33.1GF1 2 33.1 Glass 5.41 1.285 0.907 29.43% 42.0 33.5 20.24%
C45.9GF1 2 45.9 Glass 3.9 0.298 0.334 12.11% 47.2 45.7 3.18%
C45.9GF2 2 45.9 Glass 7.81 1.227 1.229 0.16% 54.0 56.0 3.70%
C45.9GF3 2 45.9 Glass 11.71 1.729 1.842 6.53% 65.3 69.8 6.93%
C38CF4 2 38 Carbon 56.67 2.582 2.639 2.21% 108.8 110.4 1.52%
C38CF6 2 38 Carbon 85.01 2.938 2.972 1.15% 132.4 137.3 3.74%
C38CF8 2 38 Carbon 113.35 3.622 3.204 11.53% 159.9 163.6 2.31%
C37.7CF1 2 37.7 Carbon 9.98 0.905 0.899 0.64% 49.4 46.6 5.67%
C44.2CF1 2 44.2 Carbon 8.51 0.789 0.712 9.80% 49.6 50.6 2.02%
C44.2CF2 2 44.2 Carbon 17.03 1.165 1.384 18.84% 64.3 68.4 6.38%
C47.6CF3 3 47.6 Carbon 22.85 1.687 1.647 2.37% 84.6 84.4 0.20%

Lam and Teng (2004) C35.9CF1 3 35.9 Carbon 15.15 1.224 1.110 9.31% 50.3 51.4 2.25%
C35.9CF2 3 35.9 Carbon 30.3 1.832 1.829 0.16% 70.1 72.4 3.33%
C34.3CF3 3 34.3 Carbon 47.57 2.326 2.111 9.24% 90.1 84.1 6.67%
C38.5GF1 2 38.5 Glass 9.46 1.387 1.410 1.66% 55.1 50.9 7.62%
C38.5GF2 2 38.5 Glass 18.92 2.322 2.582 11.20% 76.5 77.5 1.31%

Lam et al. (2006) C41.1CF1 3 41.1 Carbon 13.21 1.07 1.071 0.09% 55.0 56.4 2.55%
C38.9CF2 3 38.9 Carbon 27.57 1.747 1.756 0.52% 73.9 73.5 0.54%

Matthys et al. (1999) C34.9CF1 2 34.9 Carbon 11.00 0.785 0.883 12.54% 43.3 41.5 4.01%
C34.9CF2 2 34.9 Carbon 58.68 0.380 0.452 18.90% 41.0 49.8 21.35%

Bullo (2003) C32.54CF1 3 32.54 Carbon 27.17 0.863 0.766 11.33% 56.8 47.6 16.19%
C32.54CF3 3 32.54 Carbon 79.90 1.593 1.493 6.28% 93.7 82.2 12.28%

Cui (2009) C48.1GF1 2 48.1 Carbon 23.25 1.520 1.774 16.69% 83.8 87.9 4.95%
C48.1GF2 2 48.1 Carbon 46.50 2.335 2.773 18.76% 118.1 131.1 11.10%
C48.1GF3 2 48.1 Carbon 69.76 2.945 3.481 18.20% 158.2 171.7 8.58%
C45.6CF1 2 45.6 Carbon 7.65 1.260 1.147 8.94% 56.6 54.4 3.72%
C45.6CF2 2 45.6 Carbon 15.30 2.055 2.197 6.92% 82.4 79.1 3.98%
C45.6CF3 2 45.6 Carbon 22.95 2.865 3.150 9.96% 106.3 106.0 0.25%
C45.7CF1 2 45.7 Carbon 20.09 1.070 1.111 3.84% 65.8 69.3 5.35%
C45.7CF2 2 45.7 Carbon 41.43 1.280 1.345 5.11% 83.7 88.7 6.00%
C45.7CF3 2 45.7 Carbon 61.51 1.495 1.467 1.86% 97.3 103.6 6.49%

Wang and Wu (2008) C31.4CF1 3 31.4 Carbon 15.34 1.476 1.230 16.65% 49.7 46.2 7.11%
C31.4CF2 3 31.4 Carbon 30.69 2.152 2.350 9.22% 67.8 69.9 3.10%
C52.05CF1 3 52.05 Carbon 9.55 1.035 1.332 28.74% 66.0 67.8 2.71%
C52.05CF2 3 52.05 Carbon 19.10 1.912 2.230 16.65% 95.1 96.8 1.83%

Note: f 0cc and ecu are the maximum axial stress and corresponding axial strain, respectively.
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Fig. 14 shows the error of the proposed model in another way.
By substituting Eq. (20) into Eq. (1), test result of cohesion k can
be calculated for all specimens and compared with the theoretical
prediction given by Eq. (21). The errors in Fig. 14 again show that
the theoretical value (Theo (k/fc)0) is within 10% of experimental re-
sult (Expe (k/fc)0) for all specimens at any plastic strain value,
which is considered very good for materials like concrete. There-
fore, the proposed models are acceptable. Fig. 15a and b further
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Fig. 18. Overall performance of the proposed models.
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display the full curve of cohesion for two typical cases, one with
low confinement ratio and the other with high confinement ratio;
both show a very good match to the test results.

4.4. Discussion

A plastic slip constitutes an irrevocable relocation of particles in
a microscopic sense. Parameter tan u can be seen as the kinetic
frictional coefficient contributing to the resistance to plastic slip.
In view of plastic damage, the wear during continuous plastic
slipping induces looser granular, which weakens the frictional
resistance. Therefore, the friction angle decreases when plastic
strain increases. Eq. (20) correctly reflects this trend.

In the case of unconfined concrete, the following lateral-to-axial
strain model is adopted by Teng et al. (2007a):

ec

ecc
¼ 0:85 1þ 0:75 � el

ecc

� �� 	0:7

� exp 7 � el

ecc

� �� 	( )
; ð24Þ

ecc ¼ 0:000937
ffiffiffiffi
f 0c

4
q

: ð25Þ

in which ec and el are axial and lateral strains, respectively, and eccis
unconfined axial strain corresponding to the unconfined concrete
strength f 0c given by Popovics (1973). The friction angle u at peak
strength can be obtained through Eq. (20) based on Eqs. (24),
(25). The corresponding internal frictional angle / can then be ob-
tained from Eq. (18) to give:

/ ¼ 36:65� � 1:1�
f 0c

1000

� �
: ð26Þ

The above derived result from the proposed models is in line with
experimental observations by Dahl (1992) and Mahboubi and
Ajorloo (2005) in that the internal friction angle slightly decreases
with increase in concrete strength, and its value is close to the typ-
ical value of about 37�. (Richart et al., 1928).

The friction model of Eq. (20) can also be validated from another
perspective. The conventional strength model for confined con-
crete is given by Eq. (27) (Richart et al., 1928; Teng et al., 2007a;
Wu and Wang, 2009; Wu and Zhou, 2010):

f 0cc ¼ f 0c þ kefl; ð27Þ

where ke is the confinement effectiveness coefficient, and f 0cc is the
peak strength at lateral confinement fl. Differentiating Eq. (1) with
respect to p and considering Eq. (27) leads to
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tan u ¼ dt
dp
¼ dðf 0cc � flÞ

d ð2f lþf 0ccÞ
3

¼ 3
ke � 1
2þ ke

: ð28Þ

where r1 ¼ f 0cc and r2 = r3 = fl, and u and k are considered as mate-
rial constants in Eq. (1). The corresponding friction angle u is calcu-
lated to be 53.7� from the model of Teng et al. (2007a), in which ke is
3.5 for FRP confined concrete; it is 56.7� at k = 4.1 when the (Richart
et al., 1928) model is adopted, which is suitable for actively con-
fined concrete. In actively confined concrete, the initial confinement
is much larger than in FRP confined columns for the same maxi-
mum confinement strength fl. Therefore, the actively confined con-
crete experiences larger lateral restraint and hence smaller plastic
dilation up to the onset of peak strength, leading to a smaller equiv-
alent plastic strain than that for passively confined concrete. Based
on Eq. (20), the friction angle for actively confined concrete is ex-
pected to be larger than that for FRP confined concrete, which well
explains the difference between the two values calculated above.

5. Verification of the proposed model

5.1. Implementation in ABAQUS

For application, the proposed plastic dilation model (Eqs. (13)–
(17)), friction angle model (Eq. (20)), and hardening/softening
function (Eqs. (21)–(23)) are imported into ABAQUS through tabu-
lar data using SDFV option (ABAQUS, 2003). The concrete column is
modeled as 1/8 of a cylinder with appropriate boundary conditions
(Fig. 16), considering uniform deformation along the height and in
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Fig. 19. Comparison of axial stress–strain curves: (a) specimens (f 0c ¼ 38:5 MPa,
Ef = 240 GPa, tf = 0.117 mm, 0.234 mm) from Karabinis and Rousakis (2002), (b)
specimens (f 0c ¼ 32 MPa, Ef = 78 GPa, tf = 0.381 mm, 0.762 mm, 1.143 mm) from Eid
et al. (2006).
circumferential direction. The FRP sheet is modeled as elastic lam-
inar with orthotropic elasticity in plane stress without bending
stiffness. Elastic modulus of FRP is only designated in the fiber
direction and its corresponding Poisson’s ratio is set as 0.3. There
is no relative slip between the FRP and the concrete. The loading
is under axial displacement control applied on the top of the col-
umn, without applying directly on the FRP. The concrete material
is considered to be isotropic.

The model is verified by the database with 88 specimens in Ta-
ble 3, including 29 specimens from Table 1 and additional 59 spec-
imens tested by other researches. The overall range of unconfined
concrete strength is from 31.4 MPa to 52.05 MPa. The ultimate
strength and strain at FRP rupture are also calculated by the model,
for all 88 specimens, and compared with test results in Table 3 and
Fig. 17. The correlation coefficients are as high as 0.9832 and
0.9389 for the strength and the strain, respectively (Fig. 17). The
average errors are 5.50% and 9.60% for the ultimate strength and
the corresponding ultimate strain, respectively (Table 3). Consider-
ing the scattering of 5.9% in the strength and 16.6% in the strain of
the test data, between different specimens in the same type of col-
umn, FEM results are considered well matched. Fig. 18 compares
theoretical and experimental stress–strain response curves for
the additional 19 specimens (7 types of column) tested by Lam
and Teng (2004) and Lam et al. (2006) that were not used for deriv-
ing the model. Fig. 19 compares axial stress-axial strain curves (10
specimens) for the test results conducted by Karabinis and Rousa-
kis (2002) and Eid et al. (2006). The good correlations demonstrate
that the proposed model performs well for FRP confined circular
concrete columns.
6. Conclusion

The friction angle, cohesion and plastic dilation are essential for
the Drucker–Prager type material models. Through analytical stud-
ies of test results and FEM simulations using ABAQUS, explicit
models for these properties were derived in this work. The model
can be easily used for implementation in material models for
numerical simulations of concrete materials and structures. The
good agreement between test results and the model’s prediction
in stress–strain response curves demonstrates accuracy and effec-
tiveness of the proposed model.

The database used to derive and verify the models includes 97
FRP confined column specimens, covering concrete grades from
31.4 MPa to 52.05 MPa and lateral stiffness ratios from 3.9 to
113.35. Strictly speaking the proposed model is only applicable
within the above parameter ranges for normal-strength concrete
in FRP confined circular columns under uniaxial loading. Care
should be exercised in extending the model to cases outside the
above parameter space, for example, to high strength concrete
and columns with very high confinement levels.
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