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Abstract

Let A be a commutative k-algebra over a 2eld of k and � a linear operator de2ned on A.
We de2ne a family of A-valued invariants � for 2nite rooted forests by a recurrent algorithm
using the operator � and show that the invariant � distinguishes rooted forests if (and only
if) it distinguishes rooted trees T , and if (and only if) it is $ner than the quantity �(T ) =
|Aut(T )| of rooted trees T . We also consider the generating function U (q) =

∑∞
n=1 Unq

n with
Un =

∑
T∈Tn (1=�(T ))�(T ), where Tn is the set of rooted trees with n vertices. We show that

the generating function U (q) satis2es the equation � expU (q)=q−1U (q). Consequently, we get
a recurrent formula for Un (n¿ 1), namely, U1=�(1) and Un=�Sn−1(U1; U2; : : : ; Un−1) for any
n¿ 2, where Sn(x1; x2; : : :) (n∈N) are the elementary Schur polynomials. We also show that
the (strict) order polynomials and two well-known quasi-symmetric function invariants of rooted
forests are in the family of invariants � and derive some consequences about these well-known
invariants from our general results on �. Finally, we generalize the invariant � to labeled planar
forests and discuss its certain relations with the Hopf algebra HD

P;R in Foissy (Bull. Sci. Math.
126 (2002) 193) spanned by labeled planar forests.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 05C05; 05A15

1. Introduction

By a rooted tree we mean a 2nite 1-connected graph with one vertex designated as
its root. Rooted trees not only form a family of important objects in combinatorics, they
are also closely related with many other mathematical areas. For the connection with the
inversion problem and the Jacobian problem, see [1,13]. For the connection with D-log
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and formal Eow of analytic maps, see [14]. For the connection with renormalization
of quantum 2eld theory, see [6,2].

In this paper, motivated by certain properties of the (strict) order polynomials en-
countered in [14], we de2ne a family of A-valued invariants � for rooted forests
by a recurrent algorithm (see Algorithm 3.1) starting with an arbitrary commutative
k-algebra A over a 2eld of k and a 2xed linear operator � de2ned on A. We show
in Proposition 4.2 and Theorem 4.3 that the invariant � distinguishes rooted forests if
(and only if) it distinguishes rooted trees T , and if (and only if) it is $ner than the
quantity �(T ) = |Aut(T )| of rooted trees T . In Section 5, we consider the generating
function U (q) =

∑∞
n=1 Unq

n, where Un =
∑

T∈Tn (1=�(T ))�(T ) with Tn the set of
rooted trees with n vertices and �(T )= |Aut(T )|. We show that the generating function
U (q) satis2es the equation � expU (q) = q−1U (q). Consequently, we get the recurrent
formula U1=�(1) and Un=�Sn−1(U1; U2; : : : ; Un−1) for any n¿ 2, where Sn(x1; x2; : : :)
are the elementary Schur polynomials. In Sections 6 and 7, we show that, with properly
chosen A and the linear operator �, the (strict) order polynomials of rooted trees and
two families of quasi-symmetric functions for rooted forests (see (7.1) and (7.2) for
the de2nitions) are in the family of invariants � de2ned by Algorithm 3.1. We also
derive some consequences on these well-known invariants from our general results on
the invariant �. Finally, in Section 8, We generalize our invariants to labeled planar
forests and discuss certain relations of our invariants with the Hopf algebra HD

P;R in
[3] spanned by labeled planar forests.

2. Notation and an operation for rooted forests

Notation. In a rooted tree there are natural ancestral relations between vertices. We
say a vertex w is a child of vertex v if the two are connected by an edge and w lies
further from the root than v. We de2ne the degree of a vertex v of T to be the number
of its children. A vertex is called a leaf if it has no children. By a rooted forest we
mean a disjoint union of 2nitely many rooted trees. When we speak of isomorphisms
between rooted forests, we will always mean root-preserving isomorphisms, i.e. the
image of a root of a connected component which is always a rooted tree must be a
root.

Once for all, we 2x the following notation for the rest of this paper.

(1) We let T be the set of isomorphism classes of all rooted trees and F the set
of isomorphism classes of all rooted forests. For m¿ 1 an integer, we let Tm
(resp Fm) the set of isomorphism classes of all rooted trees (resp. forests) with
m vertices.

(2) For any rooted tree T , we set the following notation:
• rtT denotes the root vertex of T ,
• V (T ) (resp. L(T )) denotes the set of vertices (resp. leaves) of T ,
• v(T ) (resp. l(T )) denotes the number of the elements of V (T ) (resp. L(T )),
• for v∈V (T ) we de2ne the height of v to be the number of edges in the

(unique) geodesic connecting v to rtT ,
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• h(T ) denotes the height of T ,
• �(T ) denotes the number of the elements of the automorphism group Aut(T ),
• for v1; : : : ; vr ∈V (T ), we write T \{v1; : : : ; vr} for the graph obtained by delet-

ing each of these vertices and all edges adjacent to these vertices.
(3) A rooted subtree of a rooted tree T is de2ned as a connected subgraph of T

containing rtT , with rtT ′ = rtT .
(4) We call the rooted tree with one vertex the singleton, denoted by ◦.

We de2ne the operation B+ for rooted forests as follows. Let S be a rooted
forest which is disjoint union of rooted trees Ti (i = 1; 2; : : : ; d). We de2ne B+(S) =
B+(T1; : : : ; Td) to be the rooted tree obtained by connecting all roots of Ti (i=1; 2; : : : ; d)
to a single new vertex, which is set to the root of the new rooted tree B+(T1; : : : ; Td).
If a forest S is the disjoint union of k1 copies of rooted tree T1, k2 copies of T2; : : :,
kd copies of Td, we also use the notation B+(T

k1
1 ; : : : T

kd
r ) for the new rooted tree

B+(S).

Lemma 2.1. For any ki ∈N, Ti ∈T (i = 1; 2; : : : ; d) with Ti �∼= Tj (i �= j), we have

�(B+(T
k1
1 ; : : : T

kd
r )) = (k1)! : : : (kd)!�(T1)k1 : : : �(Td)kd : (2.1)

Proof. Set T = B+(T
k1
1 ; : : : T

kd
r ) and R the rooted subtree of T consisting of the root

rtT of T and all its children in T . Let � : Aut(T ) → Aut(R) be the restriction map
which clearly is a homomorphism of groups. Let H6Aut(R) be the image of �. Since
Ti �∼= Tj for any i �= j, It is easy to see that |H |= k1!k2! : : : kd!. Let K be the kernal of
�. Note that an element �∈Aut(T ) is in K if and only if it 2xes all the vertices of
R. Hence the order |K | is equals to

∏d
i=1 �(Ti)

ki . Therefore, we have

�(T ) = |K‖H |= (k1)! : : : (kd)!�(T1)k1 : : : �(Td)kd :

3. A family of invariants � for rooted forests

Let A be a commutative k-algebra over a 2eld k and � a k-linear map from A to
A. Set a = �(1). We 2rst de2ne an A-valued invariant � for rooted forests by the
following algorithm:

Algorithm 3.1.

(1) For any rooted tree T ∈T, we de2ne �(T ) as follows.
(i) For each leaf v of T , set Nv = �(1) = a.
(ii) For any other vertex v of T , de2ne Nv inductively starting from the highest

level by setting Nv = � (Nv1Nv2 : : : Nvk ), where vj (j = 1; 2; : : : ; k), are the
distinct children of v.

(iii) Set �(T ) = NrtT .
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(2) For any rooted forest S ∈ F, we set

�(S) =
m∏
i=1

�(Ti); (3.1)

where Ti (i = 1; 2; : : : ; m) are connected components of S.

From Algorithm 3.1, the following two lemmas are obvious.

Lemma 3.2. (a) B = {�(S) | S ∈ F} is a multiplicative subset of A, i.e. it is closed
under the multiplication of the algebra A.

(b) �(B) ⊂ B.

Lemma 3.3. Let # be an A-valued invariant for rooted forests. # can be re-de$ned
and calculated by Algorithm 3.1 for some k-linear map � if and only if

(1) It satis$es Eq. (3.1) for any rooted forest S ∈ F.
(2) For any rooted tree T ∈T,

#(T ) = �
d∏
i=1

#(Ti); (3.2)

where Ti (i = 1; 2; : : : ; d) are the connected components of T \ rtT .

In Sections 6 and 7, we will show that the strict order polynomials, order polynomials
as well as two well-known quasi-symmetric functions of rooted forests (see (7.1) and
(7.2) for the de2nitions) are in this family of invariants �.

4. When the invariants � distinguish rooted forests

De!nition 4.1. We say an invariant � distinguishes rooted forests (resp. trees) if, for
any S1; S2 ∈ F (resp. S1; S2 ∈T), �(S1) = �(S2) if and only if S1 
 S2. We say an
invariant � is 2ner than the quantity �(T ) if, for any T1; T2 ∈T, �(T1) �= �(T2) implies
�(T1) �= �(T2).

In combinatorics, it is very desirable to 2nd an invariant which can distinguish
rooted trees or rooted forests. For the invariant � de2ned by Algorithm 3.1, we have
the following results.

Proposition 4.2. An A-valued invariant � de$ned by Algorithm 3.1 distinguishes
rooted forests if (and only if) it distinguishes rooted trees.

Proof. Suppose � distinguishes rooted trees. Let S1; S2 ∈ F with �(S1) =�(S2). We
need show that S1 
 S2. First, by Lemma 3.3, we have �(B+(Si))=��(Si) for i=1; 2.
Hence, �(B+(S1)) = �(B+(S2)). Therefore, by our assumption, we have B+(S1) 

B+(S2), which clearly implies S1 
 S2.
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Theorem 4.3. An A-valued invariant � de$ned by Algorithm 3.1 distinguishes rooted
trees if (and only if) it is $ner than �(T ).

Proof. Suppose � is 2ner than �(T ). Let T1; T2 ∈T such that �(T1) =�(T2). Hence
�(T1) = �(T2). We need show that T1 
 T2.

Suppose T1 and T2 are not isomorphic to each other. Let T = B+(T1; T1) and T ′ =
B+(T1; T2). By Lemma 3.3, we have

�(T ) = �(�(T1)2);

�(T ′) = �(�(T1)�(T2)):

Since �(T1) =�(T2), we have �(T )=�(T ′). On the other hand, by Lemma 2.1, we
have

�(T ) = 2�(T1)2;

�(T ′) = �(T1)�(T2) = �(T1)2:

Therefore, �(T ) �= �(T ′). So � is not 2ner than �(T ), which is a contradiction.

5. A generating function for the invariant � of rooted trees

In this section, we 2x an invariant � de2ned by Algorithm 3.1 and consider the
generating function

U (q) =
∑
T∈T

1
�(T )

�(T )qv(T ): (5.1)

For any n¿ 1, set Un =
∑

T∈Tn (1=�(T ))�(T ). Hence, we have U (q) =
∑∞

n=1 Unq
n.

We will derive an equation satis2ed by the generating function U (q), from which
{Un | n∈N} (n¿ 2) can be calculated recursively by using the elementary Schur poly-
nomials.

Theorem 5.1. The generating function U (q) satis$es the equation

� eU (q) = q−1U (q): (5.2)

Proof. Consider

� eU (q) =�(1) + �
∞∑
k=1

Uk(q)
k!

;

= a+
∞∑
k=1

�
k!

(∑
T∈T

1
�(T )

(�(T )qv(T ))

)k
:
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While, for the general term of the right-hand side of the equation above, we have

�
k!

(∑
T∈T

1
�(T )

�(T )qv(T )
)k

=
k∑
r=1

∑
T1 ;:::;Tr∈T
Ti �=Tj(i �=j)

∑
k1+:::+kr=k
k1 ;:::; kr¿1

1
(k1)! : : : (kr)!

�
(∏r

i=1 �(Ti)ki
)

∏r
i=1 �(Ti)

ki
q
∑r

i=1 kiv(Ti):

By Lemmas 2.1 and 3.3, we have

=
k∑
r=1

∑
T1 ;:::;Tr∈T
Ti �=Tj(i �=j)

∑
k1+···+kr=k
k1 ;:::; kr¿1

�(B+(T
k1
1 ; : : : ; T

kr
r )

�(B+(T
k1
1 ; : : : ; T

kr
r ))

qv(B+(T
k1
1 ;:::;T krr ))−1

= q−1
k∑
r=1

∑
T∈Tr; k+1

�(T )
�(T )

qv(T );

where Tr;k+1 is the set of equivalence classes of rooted trees with k + 1 vertices and
the degree of the root being exactly r. Therefore, we have

� eU (q) =�(1) + q−1
∞∑
k=1

k∑
r=1

∑
T∈Tr; k+1

�(T )
�(T )

qv(T )

=�(1) + q−1
∑
T∈T
T �=◦

�(T )
�(T )

qv(T )

= q−1U (q) (since U1 =�(◦) = �(1)):

Recall that the elementary Schur polynomials Sn(x) (n∈N) in x= (x1; x2; : : : ; xk : : :)
are de2ned by the generating function:

e
∑∞

k=1 xkq
k
=

∞∑
n=0

Sn(x)qn = 1 +
∞∑
n=1

Sn(x)qn: (5.3)

Note that, if we sign the weight of the variable xk to be k for any k ∈N+ and set

wt(xa1i1 x
a2
i2 : : : x

ad
id ) =

d∑
k=1

akik

for any ik ; ak ∈N+ (k = 1; 2; : : : ; d). Then, for any n∈N, Sn(x) is a polynomial which
is homogeneous with respect to weight with wt Sn(x) = n. In particular, Sn(x) depends
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only on the variables xi (i = 1; 2; : : : ; n). For more properties of the elementary Schur
polynomials Sn(x) and their relationship with Schur symmetric functions, see [5,7].

Proposition 5.2. For any n¿ 1, we have

U1 = � (1) = a; (5.4)

Un = � Sn−1(U1; U2; : : : ; Un−1): (5.5)

Proof. Set U = (U1; U2; : : : ; Uk ; : : :). From (5.2) and (5.3), we have
∞∑
n=1

�Sn(U )qn = q−1
∞∑
n=2

Un(t)qn−1:

By comparing the coeKcient of qn−1 (n¿ 2), we have

Un(t) = � Sn−1(U1; U2; : : : ; Un−1):

Hence, we get (5.5).

Remark 5.3. One interesting aspect of the invariant � and its generating function
U (q) is as follows. From Proposition 5.2, we see that U (q) is the unique solution of
Eq. (5.2) in the power series algebra A[[q]]. Therefore, any equation of the form (5.2)
can be solved by looking at the invariant � de2ned by Algorithm 3.1 for rooted trees
and its generating function U (q) de2ned by (5.1).

6. (Strict) order polynomials

Let T ∈T be a rooted tree. Note that T with the natural partial order induced from
rooted tree structure forms a 2nite poset (partially ordered set), in which the root of
T serves the unique minimum element. Similarly, any rooted forest also forms a 2nite
poset. In the rest of this paper, we will always view rooted forests as 2nite posets
in this way. Recall the strict order polynomial L&(P) for a 2nite poset P is de2ned
to be the unique polynomial L&(P) such that L&(P)(n) equals to the number of strict
order preserving maps � from P to the totally ordered set [n] = {1; 2; : : : ; n} for any
n¿ 1. Here a map � : P → [n] is said to be strict order preserving if, for any
elements x; y∈P with x¿y in P, then �(x)¿�(y) in [n]. Also recall that the order
polynomial &(P) for a 2nite poset P is de2ned to be the unique polynomial &(P)
such that &(P)(n) equals to the number of order preserving maps � :P → [n] for any
n¿ 1. Here a map � :P → [n] is said to be order preserving if, for any elements
x; y∈P with x¿y in P, then �(x)¿�(y) in [n]. For general studies of these two
invariants, see [10].

In this section, we show that the strict order polynomials L&(T ) and order polynomials
&(T ) are both in the family of the invariants � de2ned by Algorithm 3.1. We also
derive some consequences from our general results on the invariants �.
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Consider the polynomial ring C[t] in one variable t over C and the diMerence operator
), which is de2ned by

) :C[t] → C[t]; (6.1)

f(t) → f(t + 1)− f(t): (6.2)

We de2ne the operator )−1 :C[t] → tC[t] by setting )−1(g) to be the unique
polynomial f∈ tC[t] such that )(f)=g for any g∈C[t]. Note that )−1 :C[t] → tC[t]
is well de2ned because that, for any polynomial f∈C[t], )(f) = 0 if and only if f
is a constant.

We also de2ne the operator ∇ by

∇ : C[t] → C[t];

f(t) → f(t)− f(t − 1)

and ∇−1 by setting ∇−1(g) to be the unique polynomial f∈ tC[t] such that ∇(f)=g
for any g∈C[t].

Proposition 6.1. Let A=C[t], then the strict order polynomials L& (resp. order poly-
nomials &) of rooted forests can be re-de$ned and calculated by Algorithm 3.1 with
� = )−1 (resp. � =∇−1).

The proof of the proposition above immediately follows from Lemma 3.3, the fact
that L& and & also satisfy Eq. (3.1) and the following lemma due to John Shareshian.

Lemma 6.2 (J. Shareshian). For any rooted trees Ti (i = 1; 2; : : : ; r), we have

N L&(B+(T1; T2; : : : ; Tr)) = L&(T1) L&(T2) : : : L&(Tr); (6.3)

∇&(B+(T1; T2; : : : ; Tr)) = &(T1)&(T2) : : : &(Tr): (6.4)

For the proof of Eq. (6.3), see the proof of Theorem 4.5 in [14]. Eq. (6.4) can be
proved similarly. Actually, Proposition 6.1 has been proved in [14] for the strict order
polynomials L&.

Now we consider the corresponding generating functions LU (t; q) =
∑

T∈T ( L&(T )=
�(T ))qv(T ) and U (t; q) =

∑
T∈T (&(T )=�(T ))qv(T ). By Theorem 5.1, we have

Proposition 6.3. The generating functions satisfy the equations

e LU (t; q) = q−1) LU (t; q); (6.5)

eU (t; q) = q−1∇U (t; q): (6.6)

For any n¿ 1, we set LUn(t) =
∑

T∈Tn
L&(T )=�(T ) and Un(t) =

∑
T∈Tn &(T )=�(T ).

By Proposition 5.2, we have
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Proposition 6.4. (a) For any n¿ 2, we have

LU 1 = )−1(1) = t; (6.7)

LUn = )−1Sn−1( LU 1; LU 2; : : : ; LUn−1): (6.8)

(b) For any n¿ 2, we have

U1 =∇−1(1) = t; (6.9)

Un =∇−1Sn−1(U1; U2; : : : ; Un−1): (6.10)

Set u(q)=U (t; 1) and write u(q)=
∑∞

n=1 unq
n. Since &(T )(1)= 1 and &(T )(0)= 0

for any rooted tree T , we see that un =
∑

T∈Tn
1

�(T ) and U (0; q) = 0. Therefore,

(∇U (t; q))(1) = U (1; q)− U (0; q) = u(q):

Combining with Eq. (6.6), we see that the generating function u(q) satis2es the
equation

eu(q) = q−1u(q): (6.11)

But, on the other hand, it is well known that there is another generating function related
with rooted trees satisfying Eq. (6.11) which is de2ned as follows. Let r(n) be the num-
ber of rooted trees on the labeled set [n] = {1; 2; : : : ; n}. Let R(q) =∑n¿1 (r(n)=n!)q

n.
Then, by Proposition 5.3.1 in [11], R(q) also satis2es Eq. (6.11) and by Proposi-
tion 5.3.2 in [11], we know that r(n) = nn−1. Therefore, we have

Corollary 6.5. u(q) = R(q). In particular, for any n¿ 1, we have the identities

n!
∑
T∈Tn

1
�(T )

= r(n); (6.12)

∑
T∈Tn

1
�(T )

=
nn−1

n!
: (6.13)

For the corollary above, we see that Eq. (6.6) can be viewed as a natural general-
ization of Eq. (6.11).

7. Two quasi-symmetric function invariants for rooted forests

Let us 2rst recall the following well-known quasi-symmetric functions LK(P) and
K(P) de2ned in [11] for 2nite posets P. For more general studies on quasi-symmetric
functions, see [4,12,8,11]

Let x = (x1; x2; : : : ; ) be a sequence of commutative variables and C[[x]] the formal
power series algebra in xk (k¿ 1) over C. For any 2nite poset P and any map - :P →
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N+ of sets, we set x- :=
∏∞

i=1 x
|-−1(i)|
i and de2ne

LK(P)(x) =
∑
-

x-; (7.1)

where the sum runs over the set of all strict order preserving maps - :P → N+.
Similarly, we de2ne

K(P)(x) =
∑
-

x-; (7.2)

where the sum runs over the set of all order preserving maps - :P → N+. Note that
LK(P)(x) and K(P)(x) are always in C[[x]] and satisfy Eq. (3.1) for rooted forests.

Recall that an element f∈C[[x]] is said to be quasi-symmetric if the degree of f
is bounded, and for any a1; a2; : : : ; ak ∈N+, i1¡i2¡ · · ·¡ik and j1¡j2¡ · · ·¡jk ,
the coeKcient of the monomial xa1i1 x

a2
i2 : : : x

ak
ik is always same as the coeKcient of the

monomial xa1j1 x
a2
j2 : : : x

ak
jk . From de2nitions (7.1) and (7.2), it is easy to check that, for

any 2nite poset P, LK(P) and K(P) are quasi-symmetric.
In this section, we will show that the quasi-symmetric functions LK and K for rooted

forests are also in the family of the invariants � de2ned by Algorithm 3.1.
We de2ne the shift operator S :C[[x]] → C[[x]] by 2rst setting

S(1) = 1

S(xm) = xm+1

and then extending it to C[[x]] to be the unique C-algebra homomorphism from C[[x]]
to C[[x]]. For any m∈N+, we denote by the abusing notation xm the C-linear map
from C[[x]] to C[[x]] induced by the multiplication by xm.

The following lemma follows immediately from the de2nition of the linear operator S.

Lemma 7.1. As the linear maps from C[[x]] to C[[x]], xmSk=Skxm−k for any k; m∈N+

with k ¡m.

We de2ne the linear maps L/ and / from C[[x]] to C[[x]] by setting

L/=
∞∑
k=1

xkSk =

( ∞∑
k=1

Sk
)
x1S; (7.3)

/=
∞∑
k=1

xkSk−1 =

( ∞∑
k=1

Sk
)
x1; (7.4)

where the last equalities of the equations above follow from Lemma 7.1. It is easy to
see that L/ and / are well de2ned.

Lemma 7.2. (a) The linear maps L/ and / from C[[x]] to C[[x]] are injective.
(b)

L/(1) = /(1) =
∞∑
k=1

xk : (7.5)
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Proof. (b) follows immediately from Eqs. (7.3) and (7.4).
To prove (a), let f∈C[[x]] such that L/f=0. By Eq. (7.3), we have (1−S) L/=x1S.

Hence, x1Sf=0 and Sf=0. Therefore, we must have f=0. The injectivity of / can
be proved similarly.

Lemma 7.3. For any rooted tree T , we have

LK(T ) = L/
d∏
i=1

LK(Ti); (7.6)

K(T ) = /
d∏
i=1

K(Ti); (7.7)

where Ti (i = 1; 2; : : : ; Td) are the connected components of T \ rtT .

Proof. Here we only prove Eq. (7.6). For Eq. (7.7), the ideas of the proof are
similar.

Let W be the set of all strict order preserving maps - :P → N+ and Wk (k¿ 1) the
set of -∈W such that -(rtT )=k. Clearly, W equals to the disjoint union of Wk (k¿ 1).
By the de2nition of LK , see (7.1), we see that

∑
-∈Wk

x- ∈C[[xk ; xk+1; : : : ; ]]. Since LK
satis2es Eq. (3.1) for rooted forests, we have

∑
-∈Wk

x- = xkSk LK(T \ rtT ) = xkSk
d∏
i=1

LK(Ti): (7.8)

Therefore,

LK(T ) =
∞∑
k=1

∑
-∈Wk

x-;

=
∞∑
k=1

xkSk
d∏
i=1

K(Ti);

=/

(
d∏
i=1

K(Ti)

)
:

From the lemma above and Lemma 3.3 and the fact that LK and K satisfy Eq. (3.1)
for rooted forests, we immediately have

Proposition 7.4. The quasi-symmetric functions LK (resp. K) for rooted forests can
be re-de$ned and calculated by Algorithm 3.1 with A = C[[x]] and � = L/ (resp.
� = /).
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Now we consider the generating functions

LQ(x; q) =
∑
T∈T

LK(P)(x)
�(T )

qv(T ) =
∞∑
n=1

Qn(x)qn;

Q(x; q) =
∑
T∈Tn

K(P)(x)
�(T )

qv(T ) =
∞∑
n=1

Qn(x)qn;

where LQn(x)=
∑

T∈Tn LK(P)(x)=�(T ) and Qn(x)=
∑

T∈Tn K(P)(x)=�(T ) for any n¿ 1.
By Theorem 5.1, Lemma 7.2 and Proposition 7.4, we have

Proposition 7.5. (a) The generating functions Q(x; q) and Q(x; q) satisfy the equations

L/e LQ(x; t) = q−1Q(x; t); (7.9)

/eQ(x; t) = q−1Q(x; t): (7.10)

(b) Consequently, we have the recurrent formula for LQn(x) and Qn(x) (n∈N+)

LQ1(x) =
∞∑
k=1

xk ; (7.11)

LQn(x) = L/(Sn−1( LQ1(x); LQ2(x); : : : ; LQn−1(x))) (7.12)

and

Q1(x) =
∞∑
k=1

xk ; (7.13)

Qn(x; t) = /(Sn−1(Q1(x); Q2(x); : : : ; Qn−1(x))); (7.14)

respectively.

One natural question one may ask is whether or not the invariants L&(T ), &(T ),
LK(T ) and K(T ) distinguish rooted forests. The answers for the strict order polynomials
L& and order polynomial & are well known to be negative. (See, for example, Exercise
3.60 in [10].) For the quasi-symmetric polynomial invariants LK and K , the answers
seem to be positive, but we do not know any proof in literature.

One remark is that the invariant � de2ned by Algorithm 3.1 can also be extended
to the set of 2nite posets by a more general recurrent procedure. This will be done in
the appearing paper [9]. But for the corresponding generating function

V (q) =
∑
P

�(P)
�(P)

qv(P); (7.15)

where the sum runs over the set of all 2nite posets P, it is not clear what the gener-
alization of Eq. (5.2) satis2ed by V (q) should be. This is unknown even for the case
of (strict) order polynomials.
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8. Generalization to labeled planar forests

In this section, we 2rst generalize the construction of the invariant � de2ned by
Algorithm 3.1 for rooted forests to labeled planar forests and then consider its certain
relationships with the Hopf algebra HD

P;R in [3] spanned by labeled planar forests.
Once for all, we 2x a non-empty 2nite or countable set D. By a labeled planar rooted

tree T , we always mean in this section a rooted tree T such that each vertex of T is
assigned a unique element of D and set of all children of any single vertex of T is an
ordered set. A labeled planar rooted forest F is an ordered set of 2nitely many labeled
planar rooted trees. We let TDP;R denote the set of all labeled planar rooted trees and
FDP;R the set of all labeled planar rooted forests. For any labeled planar rooted forest
F=T1T2 : : : Td, with Ti ∈TDP;R (16 i6d) and �∈D, we de2ne B�+(F)=B

�
+(T1T2 : : : Td)

to be the labeled planar rooted tree obtained by connecting the root of each Ti to a
�-labeled vertex v by an edge and set the new vertex v to be the root of this new
labeled planar rooted tree.

We also 2x an associative (not necessarily commutative) algebra A over a 2eld k and
{�� | �∈D} a sequence of linear operators of A. Now we de2ne an A-valued invariant
�(F) for labeled planar forests F by the following algorithm.

Algorithm 8.1.

(1) For any labeled planar rooted tree T ∈T, we de2ne �(T ) as follows.
(i) For each �-labeled leaf v of T , set Nv = ��(1).
(ii) For any other vertex v of T , de2ne Nv inductively starting from the high-

est level by setting Nv = ��(Nv1Nv2 : : : Nvk ), where � is the label of v and
(v1; v2; : : : ; vk) are the ordered children of v.

(iii) Set �(T ) = NrtT .
(2) For any labeled planar rooted forest F =T1T2 : : : Tm, where Ti (i=1; 2; : : : ; m) are

connected components of F , we set

�(F) =�(T1)�(T2) : : : �(Tm): (8.1)

Note that the order in the product in Eq. (8.1) must be same as the one in the
expression F = T1T2 : : : Tm.

From Algorithm 8.1, the following lemma is obvious.

Lemma 8.2. Let # be an A-valued invariant for labeled planar rooted forests FDP .
Then # can be re-de$ned and calculated by Algorithm 3.1 for some k-linear map �
if and only if

(1) It satis$es Eq. (8.1) for any F ∈ FDP;R.
(2) For any T ∈TDP;R with T = B�+(T1T2 : : : Td), we have

#(T ) = ��(#(T1)#(T2) : : : #(Td)): (8.2)
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Remark 8.3. Let HD
P;R be the vector spaces spanned by labeled planar forests. In [3], a

Hopf algebra structure in HD
P;R is given, which is a labeled planar version of Kreimer’s

Hopf algebra (see [6,2]) spanned by rooted forests. The product of the Hopf algebra
HD

P;R is given by the ordered disjoint union operation. We extend the map # de2ned
by Algorithm 8.1 to HD

P;R linearly and still denote it by #. Then it is easy to see
that condition (1) in the lemma above is equivalent to saying that the map # is a
homomorphism of algebras from HD

P;R to A, while condition (2) is equivalent to the
following equation.

# ◦ B�+ = �� ◦ #: (8.3)

Now let us consider the corresponding generating functions U (q) for the invariants
of � de2ned by Algorithm 8.1.

First, for each �∈D, we set

U�(q) =
∑

T∈TDP;R;�
�(T )qv(T ); (8.4)

where TDP;R;� is the set of all labeled planar rooted trees with �-labeled roots. We also
set

U (q) =
∑
�∈D

U�(q); (8.5)

� =
∑
�∈D

��: (8.6)

Theorem 8.4. The generating functions U�(q) (�∈D) and U (q) satisfy the following
equations:

��
1

1− U (q)
= q−1U�(q); (8.7)

�
1

1− U (q)
= q−1U (q): (8.8)

First, note that the second equation follows from the 2rst one by taking sum over the
set D. The proof of the 2rst equation is parallel to the proof of Eq. (5.2) in Theorem
5.1 but a little easier, since automorphism groups of planar labeled rooted trees are
trivial. So we omit the proof here.

Remark 8.5. (1) Note that, when |D| = 1, FDP;R is same as the set FP;R of unlabeled
planar rooted forests. Hence Algorithm 8.1 gives an invariant for planar rooted forests
in this case. Since the solution of Eq. (8.8) in A[[q]] is unique, any equation of the
form Eq. (8.8) can be solved by looking at the invariant � de2ned by Algorithm 8.1
for planar rooted trees and its generating function U (q) de2ned by Eq. (8.5).

(2) When |D| = 1 and the algebra A is commutative, for any planar rooted forest
F , the invariant �(F) de2ned by Algorithm 8.1 coincides with the one de2ned by
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Algorithm 3.1 for the underlying rooted forest of F , which is obtained by simply
ignoring the planar structure of F .

Next, we discuss certain relationships of the invariants � de2ned by Algorithm
8.1 with the Hopf algebra HD

P;R de2ned and studied in [3]. Even though, the links
present here have no obvious logical implication one way or the other, they provide
a new point of view to the invariants � de2ned by Algorithm 8.1. Besides the Hopf
algebra HD

P;R and its certain universal property studied in [3], we also need the Hopf
algebra structure de2ned in [3] on the tensor algebra T (V ) for any vector space V .
Since de2nitions of various operations of the Hopf algebras HD

P;R and T (V ) are quite
involved, we will follow the notation in [3] closely and quote necessary results directly
from [3]. We refer readers to [3] and references there for more details.

First, let us assume that our 2xed associate algebra (A;m; 3) also has a co-algebra
structure with which it forms a bi-algebra (A;m; 3; ); 4). We further assume that the
linear operators �� (�∈D) are 1-cocycles, i.e. they satisfy the following equation:

) ◦ �� = �� ⊗ 1 + (id ⊗ ��) ◦ ): (8.9)

By the universal property of the Hopf algebra HD
P;R given in Theorem 24 in [3],

there exists a unique homomorphism of bi-algebras ’ :HD
P;R → A such that

’ ◦ B+
� = L� ◦ ’: (8.10)

Note that the map ’ :HD
P;R → A gives an A-valued invariant for labeled planar

forests.

Proposition 8.6. The A-valued invariant ’(F) de$ned above belongs to the family of
invariants of labeled planar forests de$ned by Algorithm 8.1 with the linear operators
L� (�∈D).

In other words, in this special situation, the invariant � by Algorithm 8.1 coincides
with the unique map ’ guaranteed by the universal property of the Hopf algebra HD

P;R.

Proof. Since the homomorphism ’ preserves the algebra products and satis2es Eq.
(8.3), the proposition follows immediately from Remark 8.3 and Lemma 8.2.

One remark is that Algorithm 8.1 does not depends on whether the algebra A has
a bi-algebra structure. It only depends on the associate algebra structure of A. But, on
the other hand, it is shown in [3] that the tensor algebra T (V ) of any vector space V
has a Hopf algebra structure. In particular, we have a Hopf algebra structure on the
tensor algebra T (A). Next we show that, by using the linear operators �� (�∈D) and
the associate algebra structure of A, we can construct a family of 1-cocycles L� (�∈D)
of the Hopf algebra T (A). Therefore, the corresponding unique map ’ :HD

P;R → T (A)
does give us a family of T (A)-valued invariants for labeled planar forests.
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First, for any �∈D, we de2ne a linear map from �̃� :T (A) → A by setting

�̃� : k → A;

a→ a�(1A)

and, for any n¿ 1,

�̃� :A⊗n → A;

v1 ⊗ v2 · · · ⊗ vn → ��(v1 · v2 · · · vn)
and extend it linearly to T (A). Note that here we use 1A for the identity element of
the algebra A to distinguish the identity element 1k in the ground 2eld k.

Next, we de2ne a sequence linear maps {L� :T (A) → T (A) | �∈D} by setting

L�(a) = a�(1A) for any a∈ k and (8.11)

L�(v1 ⊗ v2 · · · ⊗ vn)

=
n−1∑
j=1

v1 ⊗ v2 · · · ⊗ vj ⊗ �̃�(vj+1 ⊗ · · · ⊗ vn)

+ �̃�(v1 ⊗ · · · ⊗ vn) + v1 ⊗ v2 · · · ⊗ vn ⊗ �̃�(1);

=
n−1∑
j=1

v1 ⊗ v2 · · · ⊗ vj ⊗ ��(vj+1 · vj+2 · · · vn)

+��(v1 · v2 · · · vn) + v1 ⊗ v2 · · · ⊗ vn ⊗ ��(1) (8.12)

and extend it linearly to T (A).
By Proposition 72 in [3], the linear maps L� :T (A) → T (A) are 1-cocycles of the

Hopf algebra T (A). By the universal property of the Hopf algebra HD
P;R given in

Theorem 24 in [3], there exists a unique homomorphism of Hopf algebras ’ :HD
P;R →

T (A) such that

’ ◦ B+
� = L� ◦ ’: (8.13)

Note that the map ’ :HD
P;R → T (A) gives a T (A)-valued invariant for labeled planar

forests, which, by Proposition 8.6, is same as the one de2ned by Algorithm 8.1 with
the linear operators L� (�∈D).
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