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Abstract--The decomposition method of Adomian is applied to solve the Marchuk 
model of infectious disease and immune system response. 

A mathematical model of  infectious disease based on immunological assumptions has been 
proposed by Marchuk (1975) and Belykh (1981)[1]. The model involves a system of four 
coupled nonlinear differential-delay equations in V ( t ) ,  F ( t ) ,  C ( t )  and re(t), where V is the 
concentrat ion of viruses (pathogenic multiplying antigens), F is the concentrat ion of an- 
tibodies (immune substrates neutralizing the viruses). C is the concentrat ion of plasma 
cells (antibody producers)  and m refers to the characteristics of an organ (mass or area) 
damaged by viruses. The model is given by 

V'  = [3V - y F V ,  

F '  = p C  - n y F V  - p, yF ,  

C '  = ~ ( m ) c c V ( t  - r ) F ( t  - x ) H ( t  - r )  - ~ x , . ( C  - C * ) ,  

rn' = ~ V -  Ixmm. 

(1) 

~(m) is a continuous function describing immune system failure due to damage of  an organ, 
varying from zero for an entirely damaged organ to unity for a healthy organ, and H ( t  - 

• ) is the Heaviside function (unity if t -> "r, and zero otherwise). Initial conditions V(0) -> 
0, F(0) > 0, V(0) >- 0, C(0) >- 0 and m(0) >- 0 are specified. According to this model, the 
disease process as described by Marchuk and Belykh is the following. The initial virus 
population at t = 0 starts to multiply and injure organ cells. Collision of viruses in the 
blood with the receptors of immunocompetent  cells (antibodies) causes immune system 
stimulation, and after a time 7, antibody production begins, and the outcome of  the disease 
depends on whether  the virus damages the organ so that immune system failure takes 
place. The immunological status through the parameters a, [3 . . . .  determines whether  
the disease is acute, chronic or lethal, and the effects of therapy. 

This paper discusses only a new methodology which will yield a realistic solution of 
the system (1), not equally important questions of validation of the model, identification 
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and measurement of the parameters ct. p. . . . and questions of optimal treatment. Ho,:k,- 
ever, we point out that the methodology used here-the decomposition method 
(4domian[2-I I])-is independent of the model and can be applied even if the parameters 
are not constants in each patient but time-varying, stochastic or nonlinear functions of 
the independent variables. This method solves wide classes of equations-algebraic, dif- 
ferential, differential-delay, integro-differential, partial differential equations or systems 
of such equations as shown particularly in [3]. It solves nonlinear equations: it does not 
first linearize the equations thereby solving a diffeerenr problem. It avoids the cumbersome 
integrations of the Picard method and solves problems involving radicals and composite 
nonlinearities which cannot be done by Picard or iterative methods. Finally, if parameters 
are stochastic, neither perturbation nor closure approximations are required. i.e. fluc- 
tuations need not be small, and it is not necessary to assume unrealistic delta-correlated 
processes. Thus when nonlinear and stochastic effects are not “small,” solutions by 
decomposition are necessarily more realistic, while the usual solutions, by virtue of the 
assumption and methods used, deviate from the actual physical solution[l. 31. Basically 
the decomposition method assumes the desired solution is decomposed into components 
to be determined, e.g. y = En’=, y,, and any nonlinear term N[y] = f(y) is written as 
%o A,. where the A,, are Adomian’s polynomials[l-I I] generated for the specific non- 
linearity. The yo term is very easily found in terms of the initial (or boundary) conditions, 
the forcing function and a trivially invertible part of the linear operator. All other com- 
ponents are determined in terms of preceding components in rapidly converging series. 
The most valuable feature perhaps 

Writing L = dldr, (I) becomes 
is the computability of the terms. 

LV = PV - yFV, 

LF = pC - qyFV - CLIF, (2) 
LC = ~(m)aV(t - T) F(t - T) H(r - 7) - p,.(C - C*), 

Lm = gv - F”,trl. 

Operating on both sides of all four equations by L-’ = J& [.I dt. . . the result is [3, 41 

V = V(0) + L-‘PV - L-‘yFV, 

F = F(0) + L-‘PC - L-‘qyFV - L-‘prF, 
(3) 

C = C(0) + L-‘EJm)aV(t - T)F(~ - 7)H(t - T) - L-‘pL,.(C - C”), 

rn = m(0) + L-‘jV - L-‘*,,,m. 

The nonlinear term FV can be expanded in terms of Adomian’s A, polynomials*; 
however, for this simple product nonlinearity, it is not really necessary. The function [(ml 

described as a continuous nonincreasing function varying from 1 to 0 requires an analytical 
or explicit form-it can be approximated by polynomials, Fourier terms or by a simple 
function, for example. Assuming we have such a form, we generate the A, polynomials 
for the t(m) function or series, and we will simply write now t(m) = ~Z=O A,,, where 
the A, are the appropriate polynomials exactly representing t(m). The V(t - T), F(t - T) 

* These polynomials. generated for any specific nonlinearity in an equation. are discussed in numerous 
references (see particularly (2-I I]) and need not be discussed again here. 
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and H(t - T) can be written in terms of the delay operation D defined by Dy(t) = y(t - T). 
We now have 

V = V(0) + L-‘f3V - L-‘yFV. 

F = F(0) f L-‘PC - L-‘qyFV - L-‘kfF 

C = C(0) + L-‘t(m)cl DVDFDH - L-‘p.,-(C - C*). 

171 = m(0) + L_‘SV - L-‘p&n. 

(3) 

The quantities in the left are decomposed into components to be determined, v = 
cZ=o V,,, F = C~“=II F,, C = cZco C,, and m = cZ=, m,,, with Vo= V(O). F. = F(O), 
Co = C(0) and m0 = m(O). Then 

x 

v = vo + L-‘0 5 V, - L-‘y 2 F, c v,,, 
,I = 0 n=O ,I = 0 

r x 

F = F. + L-‘p 5 C,, - L-‘qy c F,, 2 V,, - L-‘PLJ. i: Ft,. 
n=O n = 0 ,r=O n=O 

c=co+L-‘& ,,a DVDFDH - L- ‘CL,. 5 C,, - C* 
n = 0 i ,I =o 

(5) 

m = m. + L - ‘5 5 V” - L - ’ p_,,[ 5 rrz,, . 
,I = 0 ,I = 0 

In the decomposition series for V, F, C and m, the Vo, Fo, Co and m. have been identified 
as the initial values. Consider the first equation of (5). On the left side we have ~Z=O V, 
= vo + V’ + ... . On the right we have V. + L-‘/3 c;=. V, - L-‘y ~;=, F, 
zY=o v”. Thus VI is equated to the first term after V. or L-‘p B. - L-‘y FoVo. The 
other equations are dealt with in exactly the same manner. Then, since V,, Co, F. and 
m. are known, the four terms with subscript 1 can be calculated from the terms with 
subscript 0. Higher terms are similarly calculated in terms of preceding terms. (If forcing 
terms are included in the equations, they must be accounted for in the Vo, Fo, Co and m. 
terms as we11[2-41.) The following terms can be identified now as 

V, = L-‘PV, - L-‘yFoVo. 

F, = L-‘pCo - L-‘qyFoVo - L-‘/.L~F~, 

C, = L-‘&a DVoDFoDH - L-‘pc(Co - C*), 

(6) 

m’ = L-‘kV, - L-‘k,nmo. 

Thus V’, F’, Cl and ml are computable, since V O, Fo. Co and m. are known. Now 

vz = L-‘PV’ - L-‘y(FoV, + FIVo), 

F:! = L-‘PC, - L-‘qy(FoV’ + F,V,) - L-‘cL~F,, 

Cz = L-‘Ala[DVoDF’ + DVIDFo]DH - L-‘PL,(CI - C*), 
(7) 

m2 = L-‘SV’ - L-‘k,,ml. 
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Note what happens to the nonlinear term FV. This is equivalent to generating A, poly- 
nomials for FV. We write products of components such the sum of subscripts is always 
less by 1 than the subscript on the left side. This is not a heuristic procedure. The poly- 
nomials can be derived by procedures given in [_- 1 41, and the methodology is fully 
discussed in the referenced papers and it would be redundant to repeat it in each appli- 
cation. Our objective here is only to show the Marchuk model can be solved accurately 
and realistically. We add that if random initial conditions are important to consider as 
they well might be because of patient-to-patient variations or imprecisely determined initial 
concentrations, or some of the constants are randomly fluctuating in time, the expressions 
in (7) are random, and when we have computed enough components, we can simply derive 
the appropriate expectation, variance or covariance without any closure approximations, 
perturbation theory or restrictive assumptions[_, 3 31. It needs to be emphasized that the 
decomposition method is ne’c; it is not a Picard method or a perturbation or iteration[2]. 

Note again that V2, Fz, Cr and rnz are determinable from the already determined com- 
ponents. We proceed in the same way up to Vn. F,, C, and m, for some reasonable n: 

v3 = L-‘pVz - L-‘y(FoVz + F,V, + FzVo), 

f’3 = L-‘PCZ - L-‘q.v(FoVz + F’V’ + F2Vo) - L-‘pfF2, 

c3 = L-‘AdDVoDFz + DV’DF, + DVzDFO)DH - L-‘~(C~ - C*), 

m3 = L-‘{V2 - L-‘k,m2, 

V,_’ = L-‘pv,-, - L-‘y(FOV,_2 + FIVn-3 + ... + F,,_?V,,), 

Fn-I = L-‘PC,,_~ - L-‘qy(FOV,_z + F,Vn_3 + ... + F,-zVo) - L-‘/.L~F,,-~, 

C,-’ = L-IA n-,a[DVoDF,-2 + DV’DF,_3 + *.. + DV,_2DFo]DH 

- L_‘/.L(C,_2 - c*), 

rn,-’ = L-‘[V,_2 - L-‘f.hL,m,-2. 

Adding components with subscripts running from 0 to n - 1 results in n-term approxi- 
mations for V, F, C and m. 

The expressions 

II-I n-l n-l n-l 

2 vi, 2 Fi* 2 ci. 
i=O i=O i=O ;T:, mi 

are n-term approximations to the desired quantities, which are easily obtained once initial 
conditions are specified. Convergence holds[3, 91 and is extremely rapid as well. The 
successive components are readily calculable hence the accuracy can be carried to any 
necessary point. 

With the proposed solutions, one can consider various conditions and parameters and 
reach biological/medical conclusions regarding the course of the disease and its treatment. 
Of course, it is not only possible but likely that the model of Marchuk may need further 
modification to consider stochasticity or delayed effects-both within the scope of the 
theory[2, 31. This should be determinable with research on the values of the parameters 
with many individuals, after which detailed computer calculations can follow. Since this 
method requires no smallness assumptions or linearizations or discretizations, the solu- 
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tions should correspond closely to physically observed results. Solutions which linearize 
also change the problem and can be expected to deviate from a nonlinear solution. Com- 
parison of observed and calculated results in clinical trials can follow. 
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