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In the typical analysis of a data set, a single method is selected for statistical reporting even

when equally applicable methods yield very different results. Examples of equally applica-

ble methods can correspond to those of different ancillary statistics in frequentist inference

and of different prior distributions in Bayesian inference. More broadly, choices are made

between parametric and nonparametric methods and between frequentist and Bayesian

methods. Rather than choosing a singlemethod, it can be safer, in a game-theoretic sense, to

combine those that are equally appropriate in light of the available information. Sincemeth-

ods of combining subjectively assessed probability distributions are not objective enough

for that purpose, this paper introduces a method of distribution combination that does not

require any assignment of distribution weights. It does so by formalizing a hedging strategy

in terms of a game between three players: nature, a statistician combining distributions,

and a statistician refusing to combine distributions. The optimal move of the first statisti-

cian reduces to the solution of a simpler problem of selecting an estimating distribution

that minimizes the Kullback–Leibler loss maximized over the plausible distributions to be

combined. The resulting combined distribution is a linear combination of the most extreme

of the distributions to be combined that are scientifically plausible. The optimal weights

are close enough to each other that no extreme distribution dominates the others. The new

methodology is illustrated by combining conflicting empirical Bayesmethods in the context

of gene expression data analysis.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of biological data often requires choices between methods that seem equally applicable and yet that can

yield very different results. This occurs not only with the notorious problems in frequentist statistics of conditioning on

one of multiple ancillary statistics and in Bayesian statistics of selecting one of many appropriate priors, but also in choices

between frequentist and Bayesian methods, in whether to use a potentially powerful parametric test to analyze a small

sample of unknown distribution, in whether and how to adjust for multiple testing, and in whether to use a frequentist

model averaging procedure. Today, statisticians simultaneously testing thousands of hypotheses must often decide whether

to apply a multiple comparisons procedure using the assumption that the p-value is uniform under the null hypothesis

(theoretical null distribution) or a null distribution estimated from the data (empirical null distribution).While the empirical

null reduces estimation bias in many situations [21], it also increases variance [22] and can substantially increase bias when

the data distributions have heavy tails [8].Without any strong indication ofwhichmethod can be expected to perform better

for a particular data set, combining their estimated false discovery rates or adjusted p-values may be the safest approach.
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Emphasizing the reference classproblem,Barndorff-Nielsen [3] pointedout theneed forways to assess theevidence in the

diversity of statistical inferences that can be drawn from the same data. Previous applications of p-value combination have

included combining inferences from different ancillary statistics [29], combining inferences from more robust procedures

with those from procedures with stronger assumptions, and combining inferences from different alternative distributions

[30]. However, those combination procedures are only justified by a heuristic Bayesian argument and have not been widely

adopted. To offer a viable alternative, the problem of combining conflictingmethods is framed herein in terms of probability

combination.

Most existing methods of automatically combining probability distributions have been designed for the integration of

expert opinions. For example, [1,36,53] proposed combining distributions to minimize a weighted sum of Kullback–Leibler

divergences from the distributions being combined, with the weights determined subjectively, e.g., by the elicitation of the

opinions of the experts who provided the distributions or by the extent to which each expert is considered credible. Under

broad conditions, that approach leads to the linear combination of the distributions that is defined by thoseweights [53,36].

“Linear opinion pools” also result from this marginalization property: any linearly combined marginal distribution is the

samewhethermarginalization or combination is carried out first [39]. Themarginalization property forbids certain counter-

intuitive combinations of distributions, including any combination of distributions that differs in a probability assignment

from the unanimous assignment of all distributions combined [16, p. 173]. Combinations violating themarginalization prop-

erty can be expected to perform poorly as estimators regardless of their appeal as distributions of belief. On the other hand,

invariance to reversing the order of Bayesian updating and distribution combination instead requires a “logarithmic opinion

pool,” which uses a geometric mean in place the arithmetic mean of the linear opinion pool; see, e.g., [5, Section 4.11.1] or

[15]. While that property is preferable to the marginalization property from the point of view of a Bayesian agent making

decisions on the basis of independent reports of other Bayesian agents, it is less suitable for combining distributions that

are highly dependent or that are distribution estimates rather than actual distributions of belief. Genest and Zidek [27] and

Cooke [16, Ch. 11] review arguments for and against linear and logarithmic combinations of distributions.

Like thosemethods, the strategy introduced in this paper is intended for combining distributions based on the same data

or information as opposed to combining distributions based on independent data sets. However, to relax the requirement

that the distributions be provided by experts, the weights are optimized rather than specified. While the new strategy leads

to a linear combination of distributions, the combination hedges by including only the most extreme distributions rather

than all of the distributions. In addition, the game leading to the hedging takes into account any known constraints on the

true distribution. See Remark 1 on the pivotal role of game theory in laying the foundations of statistics.

The game that generates the hedging strategy is played between three players: the mechanism that generates the true

distribution (“Nature”), a statistician who never combines distributions (“Chooser”), and a statistician who is willing to

combining distributions (“Combiner”). Naturemust select a distribution that complies with constraints known to the statis-

ticians, whowant to choose distributions as close as possible to the distribution chosen by Nature. Other things being equal,

each statistician would also like to select a distribution that is as much better than that of the other statistician as possible.

Thus, each statistician seeks primarily to come close to the truth and secondarily to improve upon the distribution selected

by the other statistician. Combiner has the advantage over Chooser that the former may select any distribution, whereas

the latter must select one from a given set of the distributions that estimate the true distribution or that encode expert

opinion. On the other hand, Combiner is disadvantaged in that the game rules specify that Nature seeks to maximize the

gain of Chooser albeit without concern for the gain of Combiner. Since Nature favors Chooser without opposing Combiner,

the optimal strategy of Combiner is one of hedging but is less cautious than the minimax strategies that are often optimal

for typical two-player zero-sum games against Nature. The distribution chosen according to the strategy of Combiner will

be considered the combination of the distributions available to Chooser. The combination distribution is a function not only

of the combining distributions but also of the constraints on the true distribution.

Section 2 encodes the game and strategy described above in terms of Kullback–Leibler loss and presents its optimal

solution as a general method of combining distributions. The important special case of combining probabilities is then

worked out. A framework for using the proposed combination method to resolve method conflicts in point and interval

estimation, hypothesis testing, and other aspects of statistical data analysis will be presented in Section 3. The framework

is illustrated by applying it to the combination of three false discovery rate methods for the analysis of microarray data in

Section 4. Finally, Section 5 and Appendix A collect miscellaneous remarks and proofs, respectively.

2. Framework for combining distributions

Following the usual notation, tuples (ordered sets) are enclosed with parentheses. The open interval between a and b is

denoted by ]a, b[ to avoid confusion with the ordered pair (2-tuple) (a, b), which represents a 2-dimensional vector if a and

b are numbers.

2.1. Information-theoretic background

Let P denote the set of probability distributions on a Borel space (�, B (�)), where B (�) is the set of all Borel subsets

of �. The information divergence of P ∈ P with respect to Q ∈ P is defined as
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D (P‖Q) =
∫

dP (ξ) log
dP (ξ)

dQ (ξ)
, (1)

where dP and dQ are probability density functions of P and Q in the sense of Radon–Nikodym differentiation with respect

to the same dominating measure [32]. The integrand follows the 0 log (0) = 0 and 0 log (0/0) = 0 conventions. D (P‖Q) is
also known as “information for discrimination”, “Kullback–Leibler information”, “Kullback–Leibler divergence”, and “cross

entropy”. Calling D (P‖Q) “information divergence” emphasizes its interpretation as the amount of information that would

be gained by replacing any distribution Q with the true distribution P. That interpretation accords with calling

D
(
P′‖P′′ � Q

)
= D

(
P′‖P′′) − D

(
P′‖Q

)
(2)

the information gain [42], the amount of information gained by using Q rather than P′′ ∈ P when the true distribution is

P′ ∈ P [cf. 54].

Each member of �, some set of real parameter values, corresponds to a probability distribution in the family P. ={
Pφ : φ ∈ �

}
such that P. ⊆ P . The distribution

cent P. = arg inf
Q∈P

sup
P.∈P.

D
(
P.‖Q

)
(3)

is called the centroid of P. [19, p. 131]. Let W denote the set of all probability measures on the Borel space (�, B (�)).
Reserving the term prior for Section 3, members ofW will be calledweighting distributions. Then PW = ∫

PφdW (φ) defines

the mixture distribution of P. with respect to some W ∈ W , and

WP. = arg sup
W∈W

∫
D

(
Pφ‖PW

)
dW (φ) (4)

defines the weighting distribution induced by P..

Example 1. In the case of a family of ν distributions, the parameter set can be written as � = {φ1, . . . , φν} and the

weighting distribution induced by P. as the probability measure WP. such that

(WP. (φ1) , . . . ,WP. (φν)) = arg sup
(w1,...,wν )∈[0,1]ν :∑ν

i=1 wi=1

∑
i=1,...,ν

wiD

⎛
⎝Pφi

‖ ∑
j=1,...,ν

wjPφj

⎞
⎠ .

Shulman and Feder [51] proved that, for all i = 1, . . . , ν ,

WP. (φi) ≤ 1 − e−1 .= 63%, (5)

where e is the base of the natural logarithm.

The next known result will be used to determine the optimal move in the game of combining distributions that was

mentioned in Section 1.

Lemma 1. The centroid of any nonempty P. ⊆ P is the mixture distribution of P. with respect to the weighting distribution

induced by P. :
cent P. = PWP. .

Proof. Two different proofs appear in Haussler [32] and in Grünwald and Dawid [31]. For some history of this result, see

Remark 2. �

2.2. Distribution–combination game

The game sketched in Section 1 will now be specified in the above notation. Two sets constrain moves in the game:

the plausible set Ṗ is the subset of P consisting of given plausible distributions, and P̈ ⊆ P consists of given combining

distributions. Themove of Nature is a distribution Ṗ ∈ Ṗ; themove of Chooser is a distribution P̈ ∈ P̈; themove of Combiner

is a distribution P+ ∈ P . Chooser and Combiner are called statisticians. If P1 is the move of one statistician and P2 is that of

the other, then the latter seeks primarily to minimize the disagreement between P2 and Ṗ and secondarily to maximize the

improvement of P2 in performance over P1. In terms of the language of the quantities defined in equations (1) and (2), that

player wishes primarily to minimize D
(
Ṗ‖P2

)
(maximize −D

(
Ṗ‖P2

)
) and secondarily to maximize D

(
Ṗ‖P1 � P2

)
.

More precisely, the amount of utility paid to the statistician making move P2 is

U
(
Ṗ, P1, P2

)
=

(
−D

(
Ṗ‖P2

)
,D

(
Ṗ‖P1 � P2

))
, (6)
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understood in terms of preferring v = (v1, v2) ∈ [0, ∞[ × [0, ∞[ over u = (u1, u2) ∈ [0, ∞[ × [0, ∞[ if and only if

u � v. Here, u � v means that either u1 < v1 or both u1 = v1 and u2 ≤ v2. Such preferences are said to have lexicographic

ordering (Remark 3).

Thus, the utility paid to Combiner will be U
(
Ṗ, P̈, P+)

and that paid to Chooser will be U
(
Ṗ, P+, P̈

)
. The utility paid to

Nature will also be U
(
Ṗ, P+, P̈

)
, with the implication that it is to the advantage of Nature and Chooser to act as a coalition

with move
(
Ṗ, P̈

)
[56, Ch. 5]. Although that reduces the three-player game to a two-player game of the coalition versus

Combiner, the game is not necessarily of zero sum.

The combination of the distributions in P̈ with truth constrained by Ṗ is defined as Combiner’s optimal move in the game.

Combiner’s best move may be written as

P+ = arg
�
sup
Q∈P

U
(
ṖQ , P̈Q ,Q

)
, (7)

where sup� is the least upper bound according to �, and ṖQ and P̈Q would be the best moves of Nature and Chooser if Q

were the move of Combiner. Thus,
(
ṖQ , P̈Q

)
is the optimal pair of distributions that constitutes the optimal move for the

Nature-Chooser coalition given move Q ∈ P by Combiner:(
ṖQ , P̈Q

)
= arg

�
sup

(P′,P′′)∈Ṗ×P̈
U

(
P′,Q , P′′) . (8)

While P+ is not necessarily a plausible distribution, it is typically at the center of the plausible set:

Theorem 1. Let P+ denote the combination of the distributions in P̈ with truth constrained by Ṗ . If Ṗ ∩ P̈ 
= ∅, then
P+ = cent Ṗ ∩ P̈ = PWṖ∩P̈ , (9)

where cent Ṗ ∩ P̈ is the centroid of Ṗ ∩ P̈ , and WṖ∩P̈ is the weighting distribution induced by Ṗ ∩ P̈ , as defined by Eq. (4).

Let A denote an action space. A decision made by taking the action a ∈ A that minimizes the expectation value of a loss

function L : � × A → R with respect to P+ is optimal in the game when the utility function of Eq. (6) is replaced with(
−D

(
Ṗ‖P2

)
,D

(
Ṗ‖P1 � P2

)
, −

∫
L (ξ, a) dP2 (ξ)

)
.

The latter utility function is understood in terms of the lexicographic ordering relation �, which is defined such that

(u1, u2, u3) � (v1, v2, v3) if and only if one of the following is true: (i) u1 < v1; (ii) u1 = v1 and u2 < v2; (iii) u1 = v1,

u2 = v2, and u3 ≤ v3. On related orderings in the literature, see Remark 3.

2.3. Combining discrete distributions

Now let P denote the set of probability distributions on
(
�, 2�

)
, where � is a finite set. It is written as � =

{0, 1, . . . , |�| − 1} without loss of generality. Then the information divergence of P with respect to Q (1) reduces to

D (P‖Q) = ∑
i∈�

P ({i}) log P ({i})
Q ({i}) .

For any P ∈ P and the random variable ξ of distribution P, the |�|-tuple
T (P) = (P (ξ = 0) , P (ξ = 1) , . . . , P (ξ = |�| − 1))

will be called the tuple representing P.

Consider P. = {
Pφ : φ ∈ �

}
, a nonempty subset of P . Every φ ∈ � corresponds to a different random variable

and thus to a different |�|-tuple. Let T
(
P.

)
denote the set of tuples representing the members of P., i.e., T

(
P.

)
={

T
(
P.

)
: P. ∈ P.

}
. Likewise, noting that themapT is invertible (bijective), the extreme subset of P. is definedas ext P. =

T −1
(
ext co T

(
P.

))
, where ext co T

(
P.

)
is the set of extreme points of co T

(
P.

)
, the convex hull of T

(
P.

)
. The

extreme subset simplifies the problem of locating a centroid:

Lemma 2. Let P. denote a nonempty, finite subset of P . If there are a Q ∈ P and a C > 0 such that D
(
P.‖Q

)
= C for all

P. ∈ ext P., then Q is the centroid of P..

More simplification is possible if at least one of the combining distributions is plausible:
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Fig. 1. Optimal weightw+ versus P̈ ({0}) and P̈ ({0}), the lowest and highest of the plausible probabilities to be combined (10), labeled here as “min. probability”

and “max. probability,” respectively. The combination probability is P+ (0) = w+P̈ (0) + (
1 − w+)

P̈ (0) according to Corollary 1.

Theorem 2. Let P+ denote the combination of the distributions in P̈ with truth constrained by Ṗ . If Ṗ ∩ P̈ is nonempty and finite,

then P+ = P
Wext(Ṗ∩P̈) , where Wext(Ṗ∩P̈) is the weighting distribution induced (4) by ext

(
Ṗ ∩ P̈

)
, the extreme subset of Ṗ ∩ P̈ .

The combination of a set of probabilities of the same hypothesis (Section 3) or event is simply the linear combination or

mixture of the highest and lowest of the plausible probabilities in the set such that the mixing proportion is optimal:

Corollary 1. Let P+ denote the combination of the distributions in P̈ with truth constrained by Ṗ . Suppose c distributions on(
{0, 1} , 2{0,1}) are to be combined

(
P̈ =

{
P̈1, . . . , P̈c

})
, and let Ṗ0 =

{
Ṗ ({0}) : Ṗ ∈ Ṗ

}
and P̈, P̈ ∈ P such that

P̈ ({0}) = min
i=1,...,c:P̈i({0})∈Ṗ0

P̈i ({0}) ; P̈ ({0}) = max
i=1,...,c:P̈i({0})∈Ṗ0

P̈i ({0}) .

If there is at least one i ∈ {1, . . . , c} for which P̈i ({0}) ∈ Ṗ0 holds, then P+ = w+P̈ + (
1 − w+)

P̈, where

w+ = arg sup
w∈[0,1]

(
w�

(
P̈||w

)
+ (1 − w) �

(
P̈‖w

))
; (10)

� (•‖w) = D
(
•‖wP̈ + (1 − w) P̈

)
.

Proof. This follows immediately from Theorem 2 and the definition of an extreme subset. �

By Eq. (5), 37%≤̇w+≤̇63%, implying that P+ ({0}) is close to the arithmetic mean
[
P̈ ({0}) + P̈ ({0})

]/
2, as Shulman

and Feder [51] observed in a coding context. Fig. 1 plots w+ versus P̈ ({0}) and P̈ ({0}), and Fig. 2 compares the resulting

P+ ({0}) to the arithmetic mean, the geometric mean, and the harmonic mean of P̈ ({0}) and P̈ ({0}).
The next result is important for multiple hypothesis testing (Sections 3 and 4) and, more generally, for combining prob-

abilities of independent events rather than entire distributions.

Corollary 2. Let ξ = (ξ1, . . . , ξN), where ξj is a Bernoulli random variable and ξj is independent of ξJ for all j, J = 1, . . .N. (The

Bernoulli distributions need not be identical: in general, each has a different probability P̈ (ξi = 0) of failure. Every P̈ ∈ P̈ has

a one-to-one correspondence to a tuple
(
P̈ (ξ1 = 0) , . . . , P̈ (ξN = 0)

)
.) Assuming Ṗ ∩ P̈ is nonempty and finite, let P̈i denote

the ith of the ν members of ext
(
Ṗ ∩ P̈

)
; thus,

ext
(
Ṗ ∩ P̈

) =
{
P̈1, . . . , P̈ν

}
.

If the constraints are in the form of lower and upper probabilities P0,1, . . . , P0,N and P0,1, . . . , P0,N such that

Ṗ =
{
Ṗ ∈ P : P0j ≤ Ṗ

(
ξj = 0

) ≤ P0j, j ∈ {1, . . . ,N}
}
, (11)
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Fig. 2. Three equal-weight averages of probabilities and the game-theoretic combination of two probabilities based on Corollary 1. The two probabilities that are

combined are 0.05 and each value of the x-axis; the former is the horizontal line at 0.05, and the latter is the line of equality.

then the set of combining distributions that satisfy the constraints is

Ṗ ∩ P̈ =
{
P̈ ∈ P̈ : P0j ≤ P̈

(
ξj = 0

) ≤ P0j, j ∈ {1, . . . ,N}
}
. (12)

Further, P+ = P
wext(Ṗ∩P̈) is the combination of the distributions in P̈ with truth constrained by Ṗ , where

wext(Ṗ∩P̈) = arg sup
(w1,...,wν )∈W

ν∑
i=1

wi

N∑
j=1

1∑
k=0

P̈i
(
ξj = k

)
log

P̈i
(
ξj = k

)
P(w1,...,wν )

(
ξj = k

) (13)

with the supremum over W = {(
w′

1, . . . ,w
′
ν

) ∈ [0, 1]ν : ∑ν
i=1 w

′
i = 1

}
.

Proof. Eq. (12) is obvious from Eq. (11). By the independence condition, the chain rule for information divergence [see, e.g.,

17, Theorem 2.5.3] reduces finding the weighting distribution according to Theorem 2 to finding

wext(Ṗ∩P̈) = arg sup
(w1,...,wν )∈W

ν∑
i=1

wi

N∑
j=1

D
(
P̈i

(
ξj = •) ‖P(w1,...,wν ) (

ξj = •))
,

which, with Eq. (1), yields Eq. (13). �

3. Distribution combination for statistical inference

Whereas much of the literature focuses on combining priors from experts, Section 3.1 instead focuses on combining pos-

teriors. The posterior-inference setting enables the combination not only of Bayesian posterior distributions from improper

priors as well as proper priors but also the combination of confidence intervals (or other regions) and p-values encoded as

frequentist posterior distributions, as will be explained in Section 3.2.

3.1. Combining posterior distributions and probabilities

In the context of posterior statistical inference, ξ represents a random parameter. Further, all distributions in Ṗ , the set

of plausible distributions of ξ , and P̈ , the set of combining distributions of ξ , are posterior with respect to the same data

set x. All distributions in Ṗ and all Bayesian posteriors in P̈ are conditional on X = x, where, for any such posterior, the

distribution of X depends on the random value of the parameter drawn from some prior. P̈ may also contain non-Bayesian

posteriors such as a confidence posterior or a distribution derived from a confidence posterior (Section 3.2).

Accordingly, the information divergence D (P‖Q) becomes the amount of information that would be gained by replacing

any posterior Q with the true posterior P. That interpretation leads to viewing D
(
P′‖P′′ � Q

)
as the amount of information

gained for statistical inference by using some posterior Q ∈ P rather than a given posterior P′′ ∈ P̈ when the plausible

posterior is P′ ∈ Ṗ . Thus, D
(
P′‖P′′ � Q

)
defines the inferential gain of Q relative to P′′ given P′ [7,12].
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The posterior distributions are combined according to Section 2.2, using Theorem 1 whenever possible. If Ṗ represents

the uncertainty around a Bayesian posterior Ṗ ∈ Ṗ , as in Gajdos et al. [25] and Bickel [12], then Ṗ is included in P̈ as one

of the distributions to combine. The resulting combination P+ is then used to minimize expected loss in order to optimize

actions such as point, interval, and function estimators and predictors.

In model selection and hypothesis testing, ξ has 0 or 1 as its realized value, with ξ = 0 if a reduced model or null

hypothesis is true or ξ = 1 if a full model or alternative hypothesis is true. Corollary 1 applies to this problem with Ṗ0 as

the set of feasible null hypothesis posterior probabilities and P̈0 =
{
P̈1 ({0}) , . . . , P̈c ({0})

}
as the set of null hypothesis

posterior probabilities to be combined, where P̈i ({0}) = P̈i (ξ = 0) is the ith posterior probability that the null hypothesis

is true. Thus, the combination posterior probability that the null hypothesis is true is

P+ (ξ = 0) = w+P̈ (ξ = 0) +
(
1 − w+)

P̈ (ξ = 0) . (14)

Here, P̈ (ξ = 0) = P̈ (0)and P̈ (ξ = 0) = P̈ (0)are respectively the lowestandhighestnullhypothesisposteriorprobabilities

that are in Ṗ0∩P̈0, presently assumed to have at least onemember, andw+ is determined by Eq. (10). The same idea applies

to multiple hypothesis testing, as will be seen in Section 4.

3.2. Combining frequentist posteriors

3.2.1. Confidence posteriors

Asmentioned in the beginning of Section 3, the set P̈ of posterior combining distributions can include those representing

confidence intervals, more general confidence sets, and p-values. To emphasize their comparability to Bayesian posterior

distributions, these frequentist distributions are called “confidence posterior distributions” [11], also known as “confidence

distributions” [see, e.g., 48].

Briefly, a confidence posterior distribution that corresponds to a system of nested confidence intervals or other confidence

sets evaluated for the observed data is defined as the probability distribution according to which the posterior probability

that the interest parameter lies within a confidence set is equal to the confidence level of the set. For example, if a 95%

confidence interval for a real parameter is [−2.2, 1.7], then there is a 95% posterior probability that the parameter is

between−2.2and1.7according to the confidenceposterior. The sameconfidenceposterior for thedata also assignsposterior

probability to parameter intervals of interest according to the confidence levels of the matching confidence intervals, e.g.,

Bickel [8] considered a one-sided p-value as the posterior probability that the population mean is in ]−∞, 0[ rather than
[0, ∞[. Efron and Tibshirani [23] and Polansky [43] considered exact confidence posterior probabilities of intervals or other

regions specified before observing the data as ideal cases of “attained confidence levels” and “observed confidence levels,”

respectively.

Bickel [8,11] proposed taking actions that minimize expected loss with respect to a confidence posterior distribution.

Since that distribution is a Kolmogorov probability distribution of the parameter of interest, such actions comply with most

axiomatic systems usually considered Bayesian, e.g., the systems of von Neumann and Morgenstern [56] and Savage [47]. A

human or artificial intelligent agent that bets and makes other decisions in accordance with minimizing expected loss with

respect to a confidence posterior corresponds to equating the confidence level of a confidence interval with the agent’s level

of belief that the parameter value lies in the interval [11,6].

The decision-theoretic framework makes confidence posteriors suitable as members of P̈ , the set of combining distrib-

utions, according to the methodology of Section 2. They can be combined to not only with each other, but also with other

parameter distributions such as Bayesian posteriors based on proper or improper priors. The same applies to a probabil-

ity distribution of a function of a parameter drawn from a confidence posterior. Such posteriors have been used to equate

posterior probabilities of simple null hypotheses with two-sided p-values [55,10,7,12]. For terminological economy, these

posteriors will now be called “confidence posteriors.”

To approximate Bayesian model averaging, Good [30] recommended a weighted harmonic mean of p-values computed

from the same data, provided that they range from 10−3 to 0.2, the limits used in Fig. 2. Since the one-sided or two-sided

p-values are posterior probabilities of the null hypothesis derived fromdifferent confidence posteriors, Eqs. (10) and (14) can

be appliedwith P̈ (ξ = 0) and P̈ (ξ = 0) as the lowest andhighestp-values that areplausible as null hypothesis probabilities,

i.e., that are in Ṗ0. The resulting combination p-value differs from that of Good [30] in two respects: the mean is arithmetic

(14) rather than harmonic and, even more important, the weights are optimal for the game (10) rather than subjective. The

use of optimal weights leads to preparing for theworst case by averaging only the twomost extreme p-values rather than all

of them. It also appliesmuchmore generally since strictly Bayesianmodel averaging tends to fail in the presence of improper

priors [9,13, and references].

Example 2. Given a small sample of data drawn from a distribution that might be approximately normal, let p(1) and p(2)

denote the two-sided p-values according to the t-test and the Wilcoxon signed-rank test, respectively; p(1) < p(2). Under

conditions often applicable to simple (point) hypothesis testing with a diffuse alternative hypothesis [50], the plausible set

of posterior probabilities of the null hypothesis is the closed interval Ṗ0 =
[
Ṗ0, 1

]
with lower bound
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Ṗ0 =
⎛
⎝1 +

⎛
⎝ 1 − Ṗ

prior

0

Ṗ
prior

0 ep(2) (x) ln
[
1/p(2) (x)

]
⎞
⎠

⎞
⎠−1

∧ Ṗ
prior

0 ,

where e = ln−1 (1)
.= 2.72, ∧ is the minimum operator, and Ṗ

prior

0 is the lowest plausible prior probability that the null

hypothesis is true [12]. Then the combined p-value P+ ({0}) is Ṗ0 if p(2) < Ṗ0, p
(2) if p(1) < Ṗ0 ≤ p(2), and, according to

Corollary 1, the weighted arithmetic meanw+p(1) + (
1 − w+)

p(2) if p(1) ≥ Ṗ0 with the weightsw+ and
(
1 − w+)

fixed by

Eq. (10). Of the three cases, the third yields a combined p-value that differs from the blended posterior probability suggested

in Bickel [7].

When P̈ consists of a single confidenceposterior P̈, the resultingP+, degenerate as a “combination”of a singledistribution,

is better viewed as a solution to the problem of blending frequentist inference with constraints encoded as the Bayesian

posteriors that constitute Ṗ . That solution in general differs from the minimax-type solutions considered [7,12]. Under

P̈ ∈ Ṗ and the convexity of Ṗ , they lead to the P that minimizes the information divergence D
(
P‖P̈

)
, which is dual to the

Q that minimizes D
(
P̈‖Q

)
, the information divergence that is minimized (Appendix A, Eq. (15)) when maximizing Eq. (6)

according to the game introduced in Section 2.2.

3.2.2. Multiple comparison procedures

The distribution–combination theory is now applied to adjustments for multiple comparisons by formalizing the ob-

servation that p-values are often adjusted to the extent of prior belief in the null hypothesis. That is, multiple comparison

procedures (MCPs) designed to control error rates are “most likely to be used, if at all, when most of the individual null

hypotheses are essentially correct” [18, p. 88]. A first-order formalization would take the p-value that is adjusted according

to anMCP as the posterior probability of the null hypothesis. To the extent that the knowledge or opinion of the agent is such

that its decisions would be made to minimize the expected loss with respect to that posterior distribution, the use of the

MCP is warranted. In this interpretation, combining p-values across different MCPs is equivalent to combining the posterior

distributions that represent the corresponding opinions.

Example 3. The Bonferroni procedure controls the family-wise error rate, the probability that one or more true null hy-

potheses will be rejected, at any level α ∈ [0, 1]. That is accomplished on the basis of p-values p1, . . . , pN by rejecting the

ith of N null hypotheses if the adjusted p-value Npi ∧ 1 is less than α. Thus, the posterior probabilities generated by the

Bonferroni procedure are appropriate only when the prior probability of each null hypothesis is inversely proportional to

the number of tests. As Westfall et al. [59] pointed out, the “Bonferroni method is based upon the implicit presumption of a

moderate degree of belief in the event” that all null hypotheses under consideration are true and that the prior truth values

of the hypotheses are approximately independent.

Accordingly, the Bonferroni method is widely used to analyze genome-wide association data, largely because only an

extremely small fraction π1 of the hundreds of thousands of markers tested is thought to be associated with the trait of

interest. [58] guessed 10−6 ≤ π1 ≤ 10−4, interpreting π1 as the prior probability of association between a given marker

and the trait. The corresponding range of posterior probabilities and Bayes factors such as those of [58] would define Ṗ for

ruling out MCPs that yield implausible results (Theorem 2). (On the other hand, some evidence that π1 ≥ 10−4 is now

available in preliminary estimates [60] and in indications that thousands of small-effect single-nucleotide polymorphisms

(SNPs) may be associated with any particular disease [28,41].)

By assuming adjusted p-values are equal to independent posterior probabilities of the null hypotheses, the methodology

of Corollary 2 can combine the results of various MCPs.

4. Large-scale case study

Usingmicroarray technology, Alba et al. [2] measured the levels of tomato gene expression for 13,440 genes at three days

after the breaker stage of ripening, but one or more measurements were missing for 7337 genes. The data available across

all n = 6 biological replicates for N = 6103 of the genes illustrate the methodology of Sections 2 and 3.

For j = 1, . . . ,N, the logarithms of the measured ratios of mutant expression to wild-type expression in the jth gene

were modeled as realizations of a normal variate and are denoted by the n-tuple xj . Because the mean and variance are

unknown, the one-sample t-test was used to test the null hypothesis
(
ξj = 0

)
that the population mean is 0 against the

two-sided alternative hypothesis
(
ξj = 1

)
that there is differential expression of the jth gene between the mutant and the

wild type, i.e., that the mutation affects the expression of gene j.

The posterior probability of a null hypothesis conditional on the p-value is called its local false discovery rate (LFDR) [24].

Three very different methods (i = 1, 2, 3) of estimating the LFDR were considered. The first two methods are based on

fitting a histogram of transformed p-values that is described by Efron [21]. They differ in that whereas the first method

assumes the p-value has a uniform distribution under the null hypothesis (i = 1), the secondmethod estimates the p-value
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Fig. 3. Combination of estimates of local false discovery rates, which are empirical Bayes posterior probabilities that the null hypotheses of equivalent gene

expression are true.

null distribution by maximizing a truncated likelihood function (i = 2). Each method has its own advantages (Section 1).

The distributions are called the theoretical null and the empirical null, respectively. The third method for combination is

the q-value [52], here defined according to the algorithm of Benjamini and Hochberg [4] as the lowest false discovery rate

at which a null hypothesis will be rejected (i = 3). While the q-value was not originally intended as an estimator of the

LFDR, it is included here since its negative bias as such an estimator [33] may have a corrective effect on the positive bias

(conservatism) of the first two LFDR estimators.

For this application, P is the set of all probability distributions on
(
{0, 1}N , 2{0,1}N)

. Corresponding to those three

methods, let P̈1, P̈2, and P̈3 denote the members of P such that the ith estimate of the LFDR of the jth gene is P̈i
(
ξj = 0

)
. To

combine the three methods, P̈ =
{
P̈1, P̈2, P̈3

}
is taken as the set of ν = 3 combining distributions.

For the jth gene, f
(
t
(
xj

) ; θj
)
will represent the probability density of the Student t statistic t

(
xj

)
, where θj is the reciprocal

of the coefficient of variation and, for any θ ∈ R, f (•; θ) is the probability density function of |T|when T has the noncentral

t distribution of n − 1 degrees of freedom and noncentrality parameter
√

nθ . The set Ṗ of plausible distributions will be

determined on the basis of
{
Lj (•) = f

(
t
(
xj

) ; •) : j = 1, . . . ,N
}
, the set of likelihood functions. The plausible distributions

are also based on π0 = 80%, an assumed lower bound on the proportion of genes that are not differentially expressed. By

Bayes’s theorem, the posterior odds of the jth null hypothesis is the product of the prior odds,which is the leastπ0/
(
1 − π0

)
,

and the Bayes factor, which must be at least Lj (0) /maxθ 
=0 Lj (θ). Thus, for gene j, a lower bound �j of the posterior odds

is the product of the last two quantities, and a lower bound of the LFDR is P
(
ξj = 0

) = �j/
(
1 + �j

)
. In the notation of

Corollary 2, P0,j = P
(
ξj = 0

)
and, trivially, P0,j = 1 for all j = 1, . . . ,N. Thus, the plausible set specified by Eq. (11) consists

of the posterior distributions satisfying the lower bound derived from the likelihood functions and π0 = 80%.

The horizontal axis and straight line in Fig. 3 represent P, and the intermediate, highest, and lowest dashed curves

represent P̈1, P̈2, and P̈3, respectively. Since someof theq-values are less than the lowerbound
(
∃j : P̈3 (

ξj = 0
)
< P

(
ξj = 0

))
but all of the other LFDR estimates satisfy the bound

(
i = 1, 2; ∀j : P̈i (ξj = 0

) ≥ P
(
ξj = 0

))
, the former are excludedwhen

computing the combined estimates according to Eq. (12), in which Ṗ ∩ P̈ =
{
P̈1, P̈2

}
. Since there are only two distributions,

eachcorresponds toanextremepoint, leading toext
(
Ṗ ∩ P̈

) =
{
P̈1, P̈2

}
inEq. (13). The combineddistribution isnumerically

found to be the linear combination P+ = w1P̈1 + w2P̈2 with w1 = 0.43 and w2 = 0.57. By implication, the game-optimal

LFDR estimate for the jth gene is P+ (
ξj = 0

) = w1P̈1
(
ξj = 0

) + w2P̈2
(
ξj = 0

)
. Those combined estimates are plotted as

the solid curve in Fig. 3.

5. Remarks

Remark 1 (Section 1). Since formulating the distribution combination problem in terms of a game is unconventional, it is

worthnoting that game theory laid the foundations of the twodominant schools of statistical decision theory. Themaximum-

expected-payoff solution of a one-player game [56, Ch. I, Section 3.6–3.7] led to axiomatic systems that support Bayesian
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statistics [e.g., 47]. Likewise, the worst-case (minimax) solutions of certain two-player zero-sum games [56, Ch. III] led to

frequentist decision theory [57].

Remark 2 (Section2.1). Thediscrete-distributionversionof Lemma1, themain result of the “redundancy-capacity theorem,”

was presented by R. G. Gallager in 1974 [46, Editor’s Note] and published by Ryabko [45] and Davisson and Leon-Garcia [20];

cf. Gallager [26]. Cover and Thomas [17, Theorem 13.1.1], Rissanen [44, Section 5.2.1], and Csiszár and Körner [19, Problem

8.1] provide useful introductions.

Remark 3 (Section 2.2). Previous instances of lexicographically maximizing expected utility with respect to an optimal

probability distribution include the use of the least informative prior [49] and the use of the posterior P2 used to maximize

D
(
Ṗ‖P1 � P2

)
in a two-player zero-sum game [12]. On lexicographic decision making in other contexts, see Levi [37,

Sections 5.7 and 6.9], Levi [38], and Keeney and Raiffa [34, Section 3.3.1]. Ciesielski [14, Ch. 4] and Koshy [35, Ch. 7] provide

more formal set-theoretic expositions of lexicographic ordering.
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Appendix A. Additional proofs

Proof of Theorem 1

For any Q ∈ P , Eqs. (2) and (6) yield

�
sup

(P′,P′′)∈Ṗ×P̈
U

(
P′,Q , P′′) = �

sup
(P′,P′′)∈Ṗ×P̈

(
−D

(
P′‖P′′) ,D

(
P′‖Q � P′′))

= �
sup

P′∈Ṗ∩P̈

(
−D

(
P′‖P′) ,D

(
P′‖Q � P′))

= sup
P′∈Ṗ∩P̈

[
D

(
P′‖Q

)
− D

(
P′‖P′)]

= sup
P′∈Ṗ∩P̈

D
(
P′‖Q

)
.

Thus, by Eqs. (2), (6), (7), and (8),

P+ = arg
�
sup
Q∈P

U

(
arg sup

P′∈Ṗ∩P̈
D

(
P′‖Q

)
, arg sup

P′∈Ṗ∩P̈
D

(
P′‖Q

)
,Q

)

= arg sup
Q∈P

(
−D

(
arg sup

P′∈Ṗ∩P̈
D

(
P′‖Q

)
‖Q

))

= arg inf
Q∈P

sup
P′∈Ṗ∩P̈

D
(
P′‖Q

)
. (15)

Hence, according to Eq. (3), P+ is cent Ṗ ∩ P̈ , the centroid of Ṗ ∩ P̈ . Since Ṗ ∩ P̈ 
= ∅ by assumption, the conditions of

Lemma 1 are satisfied.

Proof of Lemma 2

As an immediate consequence of what [40] label “Theorem (Csiszár)” and “Theorem 1,”

min
P′′∈P

max
P′∈P.

D
(
P′‖P′′) = C.

By definition, the centroid is the solution of that minimax problem (3).

Proof of Theorem 2

Lemma 1 implies that cent ext
(
Ṗ ∩ P̈

)
, the centroid of ext

(
Ṗ ∩ P̈

)
, is P

Wext(Ṗ∩P̈) . Since, according to the definition of an

extreme point and the definition of a centroid (3), it is not possible that there exist a P′ ∈ ext
(
Ṗ ∩ P̈

)
and a P′′ ∈ ext

(
Ṗ ∩ P̈

)
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such that D
(
P′‖ cent ext

(
Ṗ ∩ P̈

))
< D

(
P′′‖ cent ext

(
Ṗ ∩ P̈

))
, it follows that

D
(
P.‖PWext(Ṗ∩P̈)

)
= max

P′∈ext(Ṗ∩P̈)
D

(
P′‖PWext(Ṗ∩P̈)

)

for all P. ∈ ext
(
Ṗ ∩ P̈

)
. According to Lemma 2, P

Wext(Ṗ∩P̈) is the centroid of Ṗ ∩ P̈ . That centroid is P+ by Theorem 1.
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