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Tutte produc>d the first example of a 3-comnected cubic planar nonhamiltorian graph. On
adding the concition that the graph must be bipartite and admitting 2-connected graphs. We
prove that the smallest possible such graph has 26 points and is unique.

One of the many problems which arose out of attempts to prove the Four Color
Theorem is the determination of conditions sufficient to ensure that a planar
graph, especially a cubic pianar graph, is hamiltonian. A result of this type was
given by Tutte [5] who proved that every 4-connected pianar graph is hamilto-
nian. Tutte had previously shown ihat this condition could not be weakened to
include all 3-connected graphs by constructing his now famous 3-connected cubic
planar nonhamiltonian graph [4]. The smallest such graph found to date is duc 10
Joshua Lederberg: [2, p. 168]. Tutte then conjeciured that all bipartite 3-
connected graphs are hamiltonizii. As reported in [2, p. 170], Horton produced a
nonplanar counter:¥zmple. Still open is the conjecture of Barnette [1] that all
bipartite 3-connecied cubic graphs are hamiltonian. All these graphs exclude
multiple edges, as do those we now study.

In this paper we shall be dealing with 2-connected graphs and we will show that
the graph A in Fig. 1, which has order 26, is the smallest nonhamiltonian

Fig. 1.
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2-connected cubic bipartite planar graph. Our notation and terminology will
follow [3]. In particular p and g will denote the number of points and hnes in a
graph; and i1 a plane graph r is the number of faces ana r, the number of faces
bounded by n-cycles. Rather than repeatedly refer to 2-connected cubic bipartite
planar graphs we shall say that such a graph is topical. Note that the ‘2-’ is
superfluous since no connected cubic bipartite graph has a cutpoint.

If G is topical, then we can use Euler’s formula to derive three useful

equations:

z 2"1r2rn :2q :3p9 (1)
re Y r, =p+4) 2
ry=6+ Z (1 S 3

m=1

The first equation is derived by counting the incident point-face pairs in two
ways. The second follows directly from Euler’s formula. The third is obtained by
multiplying (2) by six, subtracting the result from (1), and dividing by two.

Before beginning the proof of our theorem we describe three transformations
which are applied to certain topical graphs. These transformations, f,. f, and f;,
act on such a graph G by removing a certain subgraph and replacing it with a
smaller subgraph. In Fig. 2(a), we show three graphs H,, H, and H; which can
occur as subgraphs of topical graphs. The endpoints of H; are called its points of
attachment. In Fig. 2(b), three smalle graphs H;, H5 and H; are shown. Now
suppose that G contains H; as a subgraph and if i = 3 suppose also that its points

i
2 ® vy '
; v.,ﬁ—-@—‘vz
V2 oo D V4
. [ 3 .
V2 V3
Hl H2 H3
(a)
Vi
V,0—8——=8 V3
V{&———8V,
Vyo——a——8 V,
Vo V3
H3 H, H3
(b)

Fig 2.



Smallest cubic bipartite plar.ar nonhamiltonian graph 3

of attachment are not adjacent. Then £ (G) is the graph obtained by removing H;
and replacing it with H; in such a way that the points of attachment ccrrespond
as in Fig. 2. Of course f;(G) may not be unique, as G might contain several copies
of H;. However, this will cause no problem as any one choice of H; in G will do.
Thus we feel free to abuse notation and presume that f;(G) is well defined.

It is nearly obvious that if G is topical and admits the transformation f;, then
f:{G) is also topical. The on'y fact that needs to be checked is that f;(G) does not
have a bridge. But, as noted above a connected cubic bipartite planar graph is
necessarily 2-connected. Next we show that f, and f, preserve nonhamiltonicity.

Lemma. If G is a nonhamiltonian connected cubic bipartite planar graph admitting
the transformaiion f, or f,, then f,(G) is nonhamiltonian.

Proof. The proof is indicated by Fig. 3 in which we show how to use a

hamiltonian cycle of f;(G) to construct one in G. The heavy lines in this figure are
on the hamiltonian cycles.

Theorem. The graph A of Fig. 1 is the smallest 2-connected cubic bipartite planar
nonhkamiltonian graph.

Proef. Let G be a smallest nonhamiltonian topical graph. Since A has order 26,
G has order p <26. By the minimality of G and Lemma, we know that G does
not admit either of the transformations f, or f>.

Consider G as having a fixed plane drawing. If G has two intersecting 4-faces
F, and F,, then we will now show that F, and F, share one line (and two points).
To prove this, observe that F, and F, cannot share just one point since G is cubic.
If they share two adjacent lines, then G is not 2-connected. Similarly, these two
facss cannct share two nonadjacent points or lines. As these are the only other
possibilities, the assertion is proved.
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Next we claina that if two 4-faces F, and F, intersect, then the graph H, of Fig.
2(a) occurs as a subgraph of G and G admits f;. As F, and F, intersect, they
share exactly one line and two points as just shown. By considering all possibilities
for the remaining lines incident with the points of F, and F,, it is clear that G
contains H,. H, or H, as a subgraph. and so must contain H,. If the pcin:s of
attachment of H; were adjacent in GG. then G could be transformed as in F g. 4
to a smaller nonhamiltonian topical graph. Thus they are not adjacent and G
admits F,.

We shall now determine the possible values for r{®'. From Eq. (3) it follows
that r,=6 for any topical graph. It is clear that the transformation f; reduces
the value of r, by at least two. Therefore when G admits f5, r,(fi(G))= 6, which
implies r(G)=§.

The proof is completed by considering three cases: ry, =6, 7<r,<8, and r,=9.
In both cf the first two cases we shall show p>26, and in the third case we show
that if p=<26, then G = A.

Case 1. ry =6.

Our eariier observations indicated that in this case G decs not admit f; and
therefore the 4-faces of G do not intersect. Since r,= 6, we immediately obtain
p=24. By (3) it follows that r,, = 0 for m =4 and therefore ro=1(p—8).

If p =24, then every point is on exactly one 4-face. In this case G must be the
graph in Fig. 5 which is hamiltonian. Shov ing that G must be this graph is simply
a matter of cxhausting all possibilities in a perfectly straightforward mani:er.
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Mext suppose that G has order 26. Then G has exactly two points, x and y, not
cn 4-faces. Each of these points is on three 6-faces. Let F,, F, and F; be the threc
6-faces having x on their boundary, as in Fig. 6. Since every point of G other than
x and vy is on exactly one 4-face, four of the points on each of the faces F,, F. and
F, are on 4-faces. Therefore y is also on each of these 6-faces, which is easily
shown to be impossib'e. This dispernses with the first case, r, = 6.

Case 2. T<ry,<8.

in this case, if p=<26, then G has two intersecting 4-faces, and hence it contains
H. as a subgraph and admits f;. Therefore r(G)=8 since we must have
r,(f3(G)) =6 by (3). 1t is evident that applying f; to G eliminates four 4-faces and
thus creates two new ones. Let F, and F, be the two new 4-faces in f3(G) and l2t
F--F be the remaining four.

If any two of the faces F;-F, intersect, then fi(G) contains a copy of H,. if
f3.G) also admits f;, then we have r,(G)= 10, arguing as above. So the point: of
attachment of H; ‘n f3(G) are adjacent. But in order for this to be the case. the
two copies of H, in G must have the same points of attachment and clearly this
implies that r,(G)>8 if p=<26. '

Therefore Fi-F, are disjoint in f5(G). This means that f3(G) has at least 16
points and that G has at least 24. If p = 24, then each point of f3(G) lies on the
boundary of exactlv one of the faces Fs;—F,. Therefore G has the structure
indicated in Fig. 7. But now G cannot be completed in such a way as to satisfy all
the necessary conditions.

If p=26 and if u and v are the points of attachment, then there are three
possibilities according to whether both, one or none of the peints of attachment of
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Fig. 7.
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Fig. 8.

H, are in Fy-F,. In each case a contradiction is obtained in a manner similar to
the case p = 24.

Case 3. r,=9.

In this case G has at least two induced subgraphs H; , and Hj;, isomorphic to
H.. Let u; and v; be the points of attachment of Hj.

If {u,, v} F{u,, v}, then f5(f3(G)) is a topical graph and so must have at least 8
points, implying p =24. If p =24, then f3(f3(G)) is the cube, Q;. But Qj; has the
property that every pair of its lines lie on a hamiltonian cycle. Thus G is
hamiltontan by Lemma, and so p =26. If p =26, then f5(f3(G)) is a topical graph
of order 10. However no such graph exists, implying that {u,, v,}={u,, v,}. So
we can draw G as in Fig. 8, from which it is easy to see that G is the graph A of

Fig. 1.
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We are grateful 10 the referee for pointing out that if multiple edges are
permitted, then the well-known example of Fig. 9 gives the smallest nonhamilto-
nian planar bipartite cubic multigraph.
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