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A graph G is given and two players, a cop and a robber, play the folioking game: the cop 
chooses a vertex, then the robber chooses a vertex, then the players move alternately beginning 
with the cop. A move consists of staying at one’s present vertex or moving to an adjacent 
vertex; each move is seen by both players. The cop wins if he manages to occupy the same 
vertex as the robber, and the robber wins if he avoids this forever. 

We characterize the graphs on which the cop has a winning strategy, and connect the problem 
with the structure theory of graphs based on products and retracts. 

1. Introduction 

The following game was brought to our attention by G. Gabor. A Graph G is 
given and player I, henceforth known as the cop, chooses a vertex-the ‘station’- 
on which to begin. Player II, the robber, then chooses his starting vertex, and the 
players move alternately thereafter beginning with the cop. A move consists of 
staying in one’s place or moving along an edge of G to an adjacent vertex, and 
the cop wins if he ‘catches’ the robber after a finite number of moves. Since there 
is complete information in this game, either the cop or the robber must have a 
winning strategy; in the former case G will be called a cop-win graph, otherwise 
G is robber-win. Our objective is to characterize the cop-win graphs and to 
connect them with the structure theory of graphs developed in [2]. 

Note that this game is quite different from the one considered in [3], where the 
players move continuously and with no information. The motivation in that case 
was looking for a lost spelunker; here we envision a chase from intersection to 
intersection in a city. A knowledge of which graphs are cop-win might in theory 
help law-enforcement officers to decide where to put up roadblocks, although our 
model is certainly a huge oversimplification. 

Since a player may stay at his present vertex it is convenient to regard all graphs 
as reflexiue, i.e. equipped witlh loops at every vertex. An induced subgraph H of G 
is a retract of G is there is an edge-preserving map f from G onto H such that flH 
is the identity map on H. (The loops allow two adjacent vertices to be mapped to 
the same vertex in H.) The following theorem gives a way to construct new 
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cop-win graphs from old: 

Tkamm 1. If G is a retract of a finite product of cop-win graphs, then G is a 
cop- lwin graph. 

Clearly any finite path is cop-win ar;ld any n-cycle, n 3 4, is robber-win.. Thus 
we have 

Ckmkry. If G has a retract which is aI% n-cycle, n 3 4, then G is rdbber-win ; if G 
is a retract of a finite product of paths, I: t is cop- win. 

Note that the finiteness of the product is important; the product of a collection 
of paths of unbounded length is not even connected and thus cannot be cop-win. 

Every finite tree is a retract of a finite product of paths [2]. However, there are 
both robber-win and cop-win graphs which do not satisfy the corresponding 
conditions in the corollary; an example of each is given in Fig. 1 and Fig. 2 
respectively. 
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Fig. 1. 

Fig. 2. 

‘7he variety generated by a collection of graphs is the closure of the collection 
under prtiducts and retracts. A graph G is irreducible if whenever G is a retract of 
a product of graphs, G is already a retract ctf one of the factors. The cop-win 
graphs could thus be characterized using Theorem 1 if ail irreducible cop-win 
graphs could be found, but a simpler characterization is possible, with the help of 
a standard retrograde analysis. 

Consider the position in a game just before the robber’s last move. The robber 
is ‘qornered’, i.e. all vertices adjacent to his position are also adjacent to the cop’s. 
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The neigh&k& B?(u) of a-vertex jn a is the set ~@f’verti&sadjacent to ‘u, which 
in our reflexive graphs Mudes 0 itself. o k iti&cibZe if for some u # u, N(U) 3 
N(U); in that case u is ~cakd’ a couw Of 1); G is clism&&zbk *if there is a 
numbering {v~_, . ., . 3 v,} of the vertices of G such that for each i c h~‘ap~is 

&&rciblein&e ~subgr$h :induced by -(u;;:. 1:. . , 41~). $&e~e; motions &respond -to 
those found Jn [II for' partially:ordered sets.)*:From Theorem 1 we’ then have: 

A finite graph is cop-win if and only if> it is dismantlable. 

Not all! cop-win graphs are unite (viz. an infinite complete graph), but fortu- 
nately an extension of the above analysis yields a complete characterization and 
optimal strategies for the cop as well. 

Let G be an arbitrary- (reflexive) graph; we define for each ordinal du a binary 
relation So on the set V(G) of vertices of G. Let x soy iff x = y, and for each 
cu>O, set 

x say if and only if for all II E N(x), there exists a v E N(y) such that 
86,~ for some p<cu. 

Now let a’ be the least ordinal such that 6,, = ++1 and define <: to be Q 

Tkorem 2. G is a cop-win. graph if and only if the relation s described above is 
trivial, i.e. x s y for every x, y E V(G). 

2. Proofs of Theorems 1 and 2 

The proof of Theorem 1 is in two parts. First we show the product H of a finite 
collection {G,, G2, . . . , G,,} of cop-win graphs is cop-win. There is a projection- 
induced one-to-one correspondence which associates a move in the game on H 
with simultaneous moves in the games on G1, . . . , G,,. The cop plays his winning 
strategy on each Gi ; once he catches the robber on one graph, he can stay with his 
quarry until he has won all n games and is now on the sa.me vertex as the robber 
on the product graph. (H is called in [4] the selection compound of the graphs Gi.) 

To show that a retract H of a cop-win graph G is cop-win, let f be the 
retraction map of G onto H. The cop plays on H the f-image of his winning 
strategy on G, regarding the robber’s moves as moves in the graph G which 
happen to be restricted to H. The final capture will be made in H, where f is the 
identity. LJ 

For the proof of Theorem 2 a few facts about the reMion *:a are noted. 
First, if p < QI, then 6, E sa. This follows by induction from the definition, and 

guarantees the existence of the ordinal it’. In fact cw’s n(n - 1) when G is finite 
and has n vertices; otherwise cy’s 1 V( G)j. 

Secondly, each sa is a quasiorder, i.e. is reflexive and transitive. Reflexivity is 
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immediate since each Gar contains +,; assume transivity holds for, all p < a, and 
suppose that x s,y and y -a e z. Let u E N(x) and find o E N(y) and p< a with 
u sP ti; then find w E N(r) and p’ < a with u s,# w. Then u srnmbp7 w andso n ~~2 as 
desired. 

Now let a' be the least ordinal such that G,( = ++I. Suppose that s is trivial, 
and let the cop choose an arbitrary station x0. Let y1 be the starting vertex for 
the robber; since y 1 +x0, there is some xt E N(x,) and some a(1) < a’ with 

Yl S a(l) x1. In general, after the cop’s ith move he is at xi and the robber is at yi 
with yi 6cr(i,xi. When the robber moves to yi+l E N(yi) there is an xicl E N(Xi) such 
that yi+t ecr(i+l)xi+l with a(i + l)< a(i); the COP moves to xi+l. 

Since the a( i)‘s constitute a strict1 y decreasing sequence of ordinals, the 
sequence must stop after a finite number k of moves; thus a(k) = 0, xk = yk and 
the cop has won. 

Conversely, let us suppose that y& x0 for some x0, y. in V(G). Assume for the 
moment that the cop is obliged to begin at x0; the robber begins at a point 
y, E N(y,,) such that for any x E N(x,), y, $x. (If there were no such y, then by 
definition y, ++, x0, a contradiction.) Proceeding in this manner, the robber 
guarantees that for any i there is a vertex yi+l E N(yi) such that for any 
x E N(Xi), yi + I $ X; here ITi and yi are the respective positions of the cop and 
robber after the cop’s ith move. Since in particular there is always a yi+l# N(xi), 
the robber is never caught. 

It remains only to note that if the cop has a winning strategy entailing an initial 
station at vertex TV, then the graph G is certainly connected. Hence if forced to 
begin at x0 the cop could simply migrate to u and win from there. 0 

3, Some remarks 

It is not difficult to verify that for a finite number k, y Sk x but not y Sk_, x if 
and only if when the cop is at x and the robber at y, with the robber to move, best 
strategy by both players leads to a win by the cop in exactly k moves of each 
player. Let G be a fixed cop-win graph and let p’ be the least ordinal such that the 
quasiorder sp- has a maximum element, i.e. a vertex u such that u Q u for every 
vertex II. If p’ is a finite number k, then the cop can assure himself a win in at 
1~:~. t k moves by beginning at u, and at every turn making sure that his position 
dominaics the robbers in the least-numlwed quasiorder possible. It is 
straightfonwrd to check that this is an optimal strategy for the cop. 

If p’ is infwite, then for any finite number k, the robber has a strategy that 
keeps him alive for at least k moves (by which time the statute of limitations on 
his theft mq have run out). This situation exists, for example, in the graph G 
composed of a collection of finite paths of unbounded length with a common 
endpoint. 

It is easily seen that for a regular graph, Q’ can never be greater than 1; it 
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follows that every incomplete regular graph is robber-win. Similar considerations 
might lead one to conclude that the forces of law would have an advantage in 
cities (such as Boston, MA) which have street-intersections of varied degree; we 
suspect that this might be difficult to verify. 

Note added in proof 

It has come to the attention of the authors that a finite-case characterization of 
cop-win graphs was obtained by Alain Quilliot, in his Thesis 3rd cycle, UniversitC 
de Paris VI, 1978. 
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