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A B S T R A C T

Purpose: Joint moments have been acknowledged as key factors in understanding gait abnormalities. Gait

velocity is further known to affect joint moments and foot pressures. Keeping gait velocity constant is

thus a strategy to cancel out the influence of different preferred gait speed between groups. But even if

gait velocity is controlled, individuals can choose different stride length–stride frequency combinations

to cope with an imposed gait velocity.

Scope: To understand the influence of stride frequency–stride length on joint moments and plantar

pressures.

Methods: Twenty healthy young adults had to cross an 8 m walkway with a walking speed of 1.3 m s�1.

The wooden walkway was equipped with a force and a pressure platform. While walking speed was kept

constant each participant walked with five different imposed stride lengths (SL): preferred (SL0); with a

decrease of 10% (SL � 10); with a decrease of 20% (SL � 20); with an increase of 10% (SL + 10) and with an

increase of 20% (SF + 20).

Results: Ankle and knee joint moments significantly decreased with a decrease in SL. A significant

(p < .05) lower peak pressure was achieved with a decreased SL under the heel, toes and midfoot.

Discussion/conclusion: The results showed that a change in stride lengths alters both, joint moments and

foot pressures with clinically interesting indications. Redistribution of joint moments in the elderly for

example might rather result from decreased SL than from age.

� 2011 Elsevier B.V.  

Contents lists available at ScienceDirect

Gait & Posture

jo u rn al h om ep age: ww w.els evier .c o m/lo c ate /g ai tp os t

Open access under the Elsevier OA license. 
1. Introduction

Adapted and redistributed joint moments are key factors in
understanding gait and limited mobility in elderly and chronically
diseased people [1–5]. For diabetes, adaptations in joint moment
patterns have been associated to adverse plantar pressures, i.e.
higher forefoot-to-rear-foot plantar pressure ratio [2]. Gait velocity
reputedly affects these parameters [6,7]. Thus, in many studies gait
velocity has been kept constant to cancel out the influence of
individual, preferred gait speed. Despite this adjustment, individ-
uals can choose different stride length–stride frequency combina-
tions to cope with an imposed gait velocity. Menz et al. [8] reported
for the elderly lower gait velocity, characterized by increased
cadence and smaller step length (SL), than for younger subjects.
DeVita and Hortobagyi[3] reported similar preferred gait velocities
for elderly and young subjects, but older subjects presented
significantly increased stride frequencies (SF). Monaco et al. [9]
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controlled leg-length normalized gait velocity in groups with older
and younger subjects and reported significantly higher SF for the
group of elderly. Individuals with diabetic neuropathy (DN)
demonstrated reduced SL [10]. When compared to age-matched
controls, they preferred a 20% slower gait velocity, with a reduction
of 7% for cadence and 13% for SL [10].

The influence of SL–SF combination on kinetics and kinematics
has been poorly documented. Russell et al. [11] investigated the
effects of decreased SL, with speed maintained constant (increased
SF), on knee joint moments (peak impact shock, peak adduction
moment and adduction moment angular impulse) and on metabolic
costs. However, no saggital plane kinetics or plantar pressure values
have been studied. A 15% decrease in SL significantly decreased the
adduction angular impulse, but did not significantly affect two other
biomechanical variables which may predispose obese women to
knee osteoarthritis (the adduction moment or impact shock).
However, an increase in metabolic cost was observed when walking
with short, quick steps which may be beneficial for weight reduction
or maintenance. Martin and Marsh [27] had ten young adults walk at
1.43 m s�1 across a force platform under five SL conditions
(preferred SL and SL’s that were longer and shorter than those
preferred). Contact time, anterior–posterior braking and propulsive
force as well as the impulse descriptors and the vertical impulse per

https://core.ac.uk/display/81149567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.gaitpost.2011.05.013
mailto:lara.allet@hcuge.ch
http://www.sciencedirect.com/science/journal/09666362
http://dx.doi.org/10.1016/j.gaitpost.2011.05.013
http://www.elsevier.com/open-access/userlicense/1.0/
http://www.elsevier.com/open-access/userlicense/1.0/


L. Allet et al. / Gait & Posture 34 (2011) 300–306 301
step augmented systematically as SL increased. Another aspect of
SL–SF influence has been studied by Umberger et al. [12] who
concluded that the preferred stride rate minimizes the cost of doing
mechanical work. However, no kinetic variables have been recorded
during these experiments.

As adaptations of spatiotemporal gait characteristics (i.e. SF and
SL) are associated with age, diabetes, or obesity, the changes in
joint moments and plantar pressures observable in such condi-
tions, might result from the impairment itself or the associated,
modified spatiotemporal characteristics. Thus, the isolated influ-
ence of SF–SL on joint moments and plantar pressures needs to be
investigated to ascertain whether the adapted joint moment and
plantar pressure patterns induced by ageing and/or diabetes result
from the changed SF, from ageing or from diabetes.

Therefore, this study aimed to investigate the isolated influence
of SF–SL on lower extremities’ joint moments and plantar
pressures at a constant gait velocity.

2. Methods

2.1. Subjects

Twenty healthy subjects were recruited. Participants had to be between 20 and

30 years old; have a body mass index (BMI) between 18 and 25; a leg-length

between 80 and 100 cm. The study has been approved by the local ethic committee

and all subjects gave written informed consent.

2.2. Material

For gait analysis, five retro reflective markers, located at the trochantor major,

lateral epicondyle of the knee, lateral maleolus, calcaneus and the head of the fifth

metatarsal detected accelerations of the foot, lower and upper leg. A 2D, 50 Hz video

system registered the marker positions in the sagittal plane. The spatial resolution

of the video was 3.85 mm pixel�1; spatial accuracy of marker position being

approximately 25% of this is 1 mm.

A force platform (Kistler1 type 9281A, Winterthur, Switzerland), embedded

halfway an 8 m-long wooden walkway, recorded ground reaction forces. A pressure

platform (EMED-at, Novel GmbH, Munich, Germany), placed on top of the force

platform, computed pressure parameters. The pressure platform is as solid as the

metal alloy of the force platform, so it does not influence the vector calculation of

the force platform itself. The force platform was sampled at 1000 Hz, the pressure

platform at 50 Hz.

2.3. Experimental procedure

Subjects’ gait was analyzed while crossing the walkway with a pre-defined speed

of 1.3 m s�1. Each participant walked at preferred SL (SL0); with a decrease of 10% in

SL (SL � 10); with a decrease of 20% in SL (SL � 20); with an increase of 10% in SL

(SF + 10) and with an increase of 20% in SL (SF + 20). SF was accordingly adapted to

keep speed constant over the five conditions.

Subjects first walked at the predefined speed of 1.3 m s�1 at a freely chosen SL

across the wooden walkway. A three axial accelerometer (MiniMod, McRoberts, The

Haque, NL) on subjects’ sacrum determined SF. Two optical gates parallel to the

pathway and separated by two meters (at shoulder height) measured the time a

subject took to go from one gate to the other. Subjects performed as many trials as

necessary to reach the requested gait speed. Once the subject presented the

requested speed, the accelerometer-data was used to calculate individuals’

preferred SF at the given speed and to derive their preferred step-length. Based

on this preferred stride-frequency and stride-length (SL0), SL + 10, SL + 20, SL � 10

and SL � 20, the corresponding SF’s were calculated.

The calculated step length was made visible on the course by means of strips of

scotch-tape. Rhythm and speed were regulated by a metronome. Participants could

thus complete every trial using the accurate SF and SL, ensuring correct landing on

the force and pressure platform. The measurements were continued until five trials

with a correct foot placement and gait velocity were recorded.

2.4. Data analysis

2.4.1. Preferred SF and stance phase

Gait parameters were derived from a filtered acceleration signal using peak

detection algorithms [13]. The average interval between subsequent peaks determined

step duration. SF was calculated as the inverse of two times the step duration.

2.4.2. Pressure

Using standard Novel software (Database Medical Professional), both peak

plantar pressures and plantar pressure time integrals (PTI) were calculated for the
ten commonly used anatomical areas of the foot (Hallux, 2nd toe and 3rd–5th toe,

1st, 2nd, 3rd, 4th and 5th metatarsal head, midfoot, heel) [14].

2.4.3. Joint moments

Based on ground reaction forces, the accelerations of foot, lower and upper

leg and the estimated inertial parameters of these segments (based on body

mass and segmental length [15]) were calculated. An inverse dynamics

approach served to calculate net internal moments of the hip, knee and ankle

joints [16]. Maximal plantar flexion moment (AM1), ankle moment at 40%

(AM40) of stance phase [2], maximal knee extension moment (KM1) and the

maximal knee flexion moment (KM2) were computed from the joint moment

patterns during the second half of the stance phase. Maximal hip extension

moment (HM1) at initial stance and maximal hip flexion moment (HM2) during

the second half of the stance phase [17] were also calculated. The instance

during stance phase at which these maximal values occurred was similarly

reported. Furthermore, the area under the absolute moment–time curves of

‘‘negative’’ and ‘‘positive’’ joint moments was calculated as it gives an indication

of redistribution of work over adjacent joints.

2.5. Statistics

Statistics were performed using SPSS (Version 16.0 for Windows: Chicago, USA).

Data were checked for normality. A general linear model for repeated measures

ANOVA with stride-frequency as a within-subject factor was performed for each

parameter of interest. For maximal ankle plantar flexion moment, maximal knee

flexion moment, maximal hip flexion moment, maximal hip extension moment, the

absolute time curves of all positive and negative joint moments, the instants of

occurrence of peak moments, as well as for all peak pressure and PTI (except peak

pressure of front foot), sphericity (Mauchly sphericity test) was violated. Thus, the

Huynh–Feldt corrected value was used for data interpretation [18]. Bonferroni post

hoc test was performed for pair-wise comparison. A p-value of 0.05 was considered

significant.

3. Results

Eighteen participants (11 men and 7 women) with a mean age
of 22.4 (2.2) years, mean height of 1.77 (0.09) m and mean BMI of
22.2 (2.0) kg m�2 completed the test series. The tests of two
persons could not be analyzed due to technical failure.

3.1. Stance phase

Results showed that a decreasing SL (from +20% to �20%)
progressively decreased the relative duration of the stance phase
(p < 0.001). This relative stance duration decreased from just over
70% of the gait cycle in the long stride length condition to 50% of the
stride duration in the short SL condition (Table 1).

3.2. Peak pressure

A shorter SL leads in general to lower peak pressure values
(Table 2). Peak pressure was significantly influenced under the
heel, midfoot and toes (p < 0.001). With a decrease of 20% of SL,
peak pressure under the heel decreased by about 13%.
Peak pressure under the heel increased (36%) while increasing
the SL by 20%. The decrease of peak pressure, while decreasing
the SL by 20% was approximately �15% under the toes and
midfoot.

3.3. PTI

The PTI increased significantly with a longer SL (p < 0.001). The
increase ranged between 14% (under the metatarsals) to about 27%
(under the big toe) of the reference value. A shorter SL decreased
the PTI under metatarsals 2–4 by about 20%, under the heel and big
toe by more than 60% and under the front foot and toes by around
20%. However, other PTI increased considerably compared to the
reference value: under metatarsals 1 and 5 (by 44% and 12%,
respectively), under the midfoot (by 225%) and under the 3rd–5th
toe (by 128%).



Table 1
The influence of stride length-stride frequency combination on joint moments.

Joint moments mean (SD) +20% +10% SL0 �10% �20% p Post hoc analysis revealed a

significant difference between

Min and max joint moments (Nm)

Amax 117.7 (24.7) 117.5 (23.4) 114.9 (24.2) 113.4(23.6) 109.1 (24.5) 0.000 SL�20 vs SL0, SL + 10, SL + 20, SL�10

A40 52.8 (15.1) 53.3 (15.0) 53.90 (16.0) 48.6 (18.4) 48.9 (14.7) 0.022 –

KEmax 73.0 (20.2) 65.3 (14.9) 61.96 (13.3) 56.8 (12.9) 55.2 (13.9) 0.000 SL0 vs SL + 20, SL�10, SL�
20 and SL + 10 vs SL�10, SL

�20 and SL + 20 vs SL�20

KFmax �5.2 (11.1) �9.4 (12.9) �11.65 (11.2) �9.7 (9.3) �10.0 (9.7) 0.000 SL0 vs SL + 20

HEmax 35.7 (28.3) 33.5 (25.3) 32.45 (21.6) 30.8 (19.4) 33.1 (19.2) 0.418 –

HFmax �28.6 (12.9) �28.5 (12.5) �31.60 (11.5) �39.2 (12.2) �40.5 (12.2) 0.000 SL�10 vs SF0, SL + 10, SL

+ 20 and SL�20 vs SF0, SL + 10, SL + 20

Relative position in time (%)

t-pos of Amax 78.0 (1.7) 78.4 (1.8) 78.0 (1.9) 78.2 (1.6) 77.7 (2.1) 0.495 –

t-pos of KEmax 16.4 (0.6) 17.9 (0.5) 19.3 (0.5) 20.2 (0.5) 19.8 (0.5) 0.000 SL0 vs SL + 20 and SL + 10 vs SL�20, SL

�20 and SL + 20 vs SL�10, SL�20

t-pos of KFmax 63.0 (1.2) 65.0 (0.9) 65.7 (0.9) 66.5 (1.2) 65.3 (1.1) 0.540 –

t-pos of HEmax 14.2 (0.8) 15.7 (0.7) 16.1 (0.9) 17.1 (1.1) 17.7 (1.2) 0.005 SL + 10 vs SL + 20 and SL + 20 vs SL�
20 and SL�10 vs SL�20

t-pos of HFmax 86.6 (0.8) 83.4 (0.8) 81.7 (0.6) 81.3 (0.5) 80.1 (0.5) 0.000 SL0 vs SL + 20, SL�20 and SL + 10 vs

SL120, SL�20 and SL + 20 vs SL�10, SL�20

Area under the curves (Nm s)

Plantar flex. MI 39.9 (10.3) 36.6 (9.5) 33.40 (9.0) 29.7 (8.7) 27.2 (7.7) 0.000 SL0 vs SL + 10, SL + 20, SL�10, SL

�20 and SL + 10 vs SL + 20, SL�10,SL�
20 and SL + 20 vs SL�10, SL�20 and SL�10 vs SL�20

Dorsal flex. MI 0.2 (0.2) 0.1 (0.1) 0.1 (5.1) 0.0 (0.0) 0.0 (0.0) 0.001 SL0 vs SL + 20 and SL + 10 vs SL + 20 and SL + 20 vs

SL�10, SL�20

Flex. knee joint MI 1.9 (1.7) 2.3 (1.9) 2.26 (1.7) 1.7 (1.1) 1.6 (1.2) 0.000 SL0 vs SL�20 and SL + 10 vs SL�20

Ext. knee joint MI 15.2 (5.3) 11.7 (3.9) 10.1 (3.0) 9.2 (2.8) 8.2 (2.7) 0.000 SL0 vs SL + 10, SL + 20, SL�20 and SL + 10 vs SL + 20,

SL�10,SL�20 and SL + 20 vs SL�10,SL�20 and SL�10 vs SL�20

Flex. hip joint MI 7.1 (5.4) 6.0 (4.9) 5.5 (4.2) 5.0 (3.5) 5.2 (3.7) 0.000 SL0 vs SL + 20 and SL + 10 vs SL + 20 and SL + 20 vs SL�10,SL�20

Ext. hip joint MI 5.8 (2.5) 5.5 (2.5) 5.6 (2.5) 6.1 (2.1) 5.9 (2.0) 0.553 –

Stance duration (%) 70.8 (4.9) 64.6 (4.8) 59.51 (3.9) 55.26 (3.5) 51.1(3.5) 0.000 All comparison are significant

SL0 = preferred SL; SL + 10 = SL0 + 10%; SL + 20 = SL0 + 20%; SL�10 = SL0�10%; SL�20 = SL0�20%; Amax = maximum internal plantar flexion moment; A40 = internal plantar flexion moment at 40% of stance phase; KEmax = maximum

internal knee extension moment; KFmax = maximum internal knee flexion moment; HEmax = maximum internal hip extension moment; HFmax = maximum internal hip flexion moment; flex = flexor; ext. = extensor; MI = moment

impulse.
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Table 2
The influence of stride-length-stride frequency combination on plantar pressures.

Plantar pressures mean (SD) +20% +10% SL0 �10% �20% p Post hoc analysis revealed a

significant difference between

Peak pressure (kPa)

Heel 551.4 (112.3) 452.4 (92.8) 404.3 (80.8) 359.3 (73.1) 350.7 (50.3) 0.000 All except SL�10 vs SL�20

Midfoot 119.9 (35.3) 108.94 (32.2) 116.8 (34.1) 101.6 (33.1) 100.6 (24.1) 0.000 SL0 vs SL�20

Metatarsalhead 1 282.9 (111.1) 286.56 (145.2) 271.2 (96.9) 270.6 (129.2) 252.9 (104.1) 0.297 –

Metatarsalhead 2 347. 8 (105.7) 352.5 (104.6) 345.6 (90.4) 354.9 (78.0) 343.9 (83.3) 0.703 –

Metatarsalhead 3 343.4 (128.9) 340.8 (118.4) 336.8 (96.8) 358.1 (114.2) 340.8 (101.1) 0.295 –

Metatarsalhead 4 209.8 (67.8) 214.28 (74.5) 213.9 (70.7) 221.3 (63.0) 215.6 (65.4) 0.794 –

Metatarsalhead 5 165.0 (106.7) 157.94 (82.5) 159.3 (97.6) 156.6 (88.1) 162.6 (97.1) 0.913 –

Big toe 496.5 (232.5) 470.6 (220.9) 440.0 (208.2) 398.5 (170.9) 389.1 (177.8) 0.001 SL + 10 vs SL�20 and SL + 20 vs SL�10, SL�20

2nd toe 206. 8 (101.9) 184.9 (80.4) 181.4 (88.9) 148.6 (67.2) 144.6 (81.7) 0.000 SL0 vs SL�10 and SL + 10 vs SL�10, SL�20

and SL + 20 vs SL�10, SL�20

3rd–5th toe 180.8 (60.6) 157.8 (57.9) 161.1 (66.4) 122.3 (47.3) 127.6 (65.1) 0.000 SL0 vs SL�10, SL�20 and SL + 10 vs SL + 20, SL

�10, SL�20 and SL + 20 vs SL�10, SL�20

Pressure time integrals (PTI)

Heel 3.6 (0.9) 3.3 (0.8) 3.0 (0.7) 1.1 (0.4) 0.9 (0.3) 0.000 SL0 vs SL + 10, SL + 20 and SL + 10 vs SL + 20,

SL�20 and SL + 20 vs SL�10, SL�20

Midfoot 1.1 (0.4) 1 (0.3) 1.0 (0.4) 4.0 (1.4) 3.1 (1.2) 0.000 SL + 10 vs SL�20, SL�10 and SL + 20 vs SL

�10, SL�20 and SL�10 vs SL + 10, SL + 20

Metatarsalhead 1 4.0 (1.4) 3.9 (1.5) 3.4 (1.1) 5.9 (1.2) 4.9 (0.7) 0.000 SL0 vs SL�10, SL�20 and SL + 10 vs SL�10,

SL�20 and SL + 20 vs SL�20

Metatarsalhead 2 5.9 (1.2) 5.6 (1.1) 5.2 (0.9) 5.5 (1.1) 4.6 (0.9) 0.000 SL0 vs SL + 10, SL + 20, SL�20 and SL�10 vs

SL�10,SL�20 and SL + 20 vs SL�10, SL�20 and SL�10 vs SL�20

Metatarsalhead 3 5.5 (1.1) 5.2 (1.2) 4.8 (0.9) 4.0 (1.1) 3.3 (0.9) 0.000 SL0 vs SL + 20, SL�20 and SL + 10 vs SL�10, SL�20,

SL + 20 vs SL�10,SL�20 and SL�10 vs SL�20

Metatarsalhead 4 4.0 (1.1) 3.7 (1.1) 3.5 (1.2) 2.8 (1.2) 2.3 (1.0) 0.000 SL0 vs SL�20 and SL + 10 vs SL�10, SL�20 and

SL + 20 vs SL�10, SL�20

Metatarsalhead 5 2.8 (1.2) 2.5 (1.0) 2.4 (1.2) 4.3 (1.7) 2.7 (1.2) 0.000 SL + 10 vs SL�20 and SL + 20 vs SL�10, SL�20

Big toe 4.3 (1.7) 3.8 (1.6) 3.4 (1.5) 2.0 (1.1) 1.3 (0.7) 0.000 SL0 vs SL + 20, SL�10, SL�20 and SL + 10 vs SL�10, SL�20 and

SL + 20 vs SL�10, SL�20 and SL�20 vs SL�10

2nd toe 2.0 (1.1) 1.8 (0.9) 1.7 (1.0) 1.4 (0.7) 0.9 (0.3) 0.000 SL0 vs SL + 10, SL + 20, SL�10 and SL + 10 vs SL + 20, SL�10,

SL�20 and SL + 20 vs SL�10, SL�20

3rd–5th toe 1.4 (0.7) 1.2 (0.6) 1.2 (0.7) 2.9 (0.7) 3.1 (1.2) 0.000 SL0 vs SL�10,SL�20 and SL + 10 vs SL + 20, SL�10,

SL�20 and SL + 20 vs SL�10, SL�20
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Fig. 1. Sagittal plane joint moments for ankle (upper panel), knee (middle panel) and hip joint (lower panel). Joint moments are presented as a function of stance duration.

Positive joint moments represent plantar flexion, knee joint extension and hip joint extension, respectively. The bold lines represent the preferred stride length, the dotted

grey line the +10% stride length condition, the solid grey line the +20% stride length condition, the dotted black line the �10% stride length condition and the solid black line

the �20% stride length condition.
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3.4. Maximum joint moments during walking

All joint moments except the maximal hip extension moment
were significantly influenced (p < 0.05) by SL (Table 1). The ankle
plantar flexion moment at the 40% of stance phase decreased by
about 10% and, the maximal ankle moment by about 5% while
decreasing the SL. The maximum knee flexion moment was
maximal at participants’ preferred SL. A significant change was
observed only between the reference value and the SL + 20
condition (18%). The maximum hip flexion moment increased
by 28% (with �20SL) and decreased by 10% (with SL + 20).

3.5. Timing of joint moments

The instants at which these maximum joint moments occurred
were significantly influenced (p < 0.05) by the SL for maximum
knee extension and hip extension moment as well as for maximum
hip flexion moment.

3.6. Absolute joint moment impulses

Manipulating SL affected significantly (p < 0.05) all internal
joint moment impulses, except for the internal extension hip
moment impulse. The absolute joint moment impulses decreased
with decreasing SL (between 4 and 40% depending on the joint
moment impulse).

4. Discussion

This study aimed to explore the influence of SL on joint
moments and plantar foot pressure in healthy gait. The results
showed altered joint moments and foot pressure patterns with
manipulated SL.

The knee extension and hip flexion moments were especially
susceptible to SL variations (Fig. 1). With decreasing SL, the knee
extension moment decreased whereas the hip flexion moment
increased. The timing of peak joint moments was affected by SL for
knee extension and hip flexion. The peak knee extension moment
occurred earlier if SL was increased, peak hip flexion moment
occurred later with decreased SL. The area under the curve,
representing joint moment impulses, was again affected for knee
extension and hip flexion, as well as ankle plantar flexion. All three
impulses increased with increasing SL.

Less effort per stride with decreasing SL might have been
expected, and thus reduced joint moments with decreasing SL. The
impulse moments of the respective joints confirmed this expecta-
tion. During the first half of the stance phase, the knee extension
impulse decreased as SL decreased; during the second half, hip
flexion impulse and ankle plantar flexion impulse decreased with
shorter SL. The smaller knee extension impulse was realized by
reduced maximal knee moment. The reduced hip flexion impulse
occurred with a higher maximal hip flexion moment and an
obviously later onset of rise of the hip flexion moment (Fig. 1; not
analyzed). The reduced plantar flexion impulse tended to be realized
by a somewhat lower ankle moment during the whole stance phase.

With decreasing SL, the maximal plantar flexion moment
decreased and maximal hip flexion moment increased. This
redistribution from ankle joint moment to hip moment has been
previously noticed by DeVita and Hortobagyi [3] in elderly
compared to younger study participants. Both groups in that
study were allowed to walk at a preferred gait velocity. Although
the two chose similar velocities, the elderly preferred higher
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cadence and shorter SL’s compared to the younger participants.
Monaco et al. [9] studied kinematic and kinetic patterns in nine
young and eight elderly healthy subjects who walked on a
treadmill at five normalized speeds. They found increased stride
frequencies and smaller strides in elderly, compared to young
subjects. The data from the present study suggest that the age-
associated joint moment redistribution, as reported by DeVita and
Hortobagyi [3] and by Monaco et al. [9] originates from a difference
in preferred stride length. In addition, it could be noted that joint
moment values in this article were comparable to those recorded
in previous studies [2,14,19].

Peak plantar pressures decreased with decreasing SL or
remained unaffected (metatarsal regions). The PTI displayed a
mixed pattern: in some foot sole areas PTI decreased with
decreasing SL (heel, 2nd, 3rd and 4th metatarsals, medial toes),
in other areas they remained unaffected or increased (midfoot, 1st
metatarsal and lateral toes). Interestingly, the clinically relevant
[20,21] forefoot-to-rearfoot pressure ratio (MT2/heel, data not
explicitly presented) increased for peak pressures and for PTI with
decreasing SL. Thus, if SF was increased and SL decreased, the load
of the foot sole shifted from the rearfoot to the forefoot. In previous
studies, forward displacement of the loading of the foot sole has
been associated with diabetes [2,20,21]. In diabetic neuropathy
studies, gait velocity has seldom been controlled [22]. Such studies
show that people with DN prefer slower gait, with a slightly more
pronounced decrease of SL compared to SF [10,23–26]. Typically,
individuals with DN chose a 7% lower cadence and a 13% shorter SL,
which suggests that patients do increase SF relatively to SL, and at
the same time have a higher forefoot-to-rearfoot ratio. Hence, in
DN the higher forefoot-to-rearfoot ratio is associated with a
relatively higher SF.

In a previous work [2], we suggested that the relative forward
displacement of the plantar pressure pattern in people with DN
was caused by redistribution of joint moments (higher plantar
flexion moment during midstance and reduced knee extension
moment). The present study also found this association between
ankle and knee joint moment redistribution and increased
forefoot-to-rearfoot ratio for pressure patterns. Although the
plantar flexion moment in midstance (AM40) was not affected by
SL, the knee extension moment was significantly reduced with
decreasing SL. Additionally, forefoot-to-rearfoot pressure ratio
decreased with decreasing SL. This supports the idea that joint
moment redistribution underlies a forward shift of plantar
pressure patterns. For diabetes this study and previous work
suggest that the forwardly displaced pressure pattern is caused by
muscle weakness affecting SL and joint moments. Studies that
control gait velocity and spatiotemporal characteristics in people
with diabetes or DN should be performed to understand causality
between these concepts.

The analysis above suggests that people susceptible for
ulceration should be trained to take larger strides at a lower
cadence. However, the total loading of the foot should be taken into
account; while walking at a higher SF (shorter SL) more strides are
needed to cover a given distance. The loading of a foot sole area is
therefore determined by the number of strides and the loading per
stride. For the most vulnerable parts of the foot sole (under the 2nd
and 3rd metatarsal heads), conclusions with respect to the loading
per distance covered depend on the variable considered. The peak
pressures under the said areas do not differ between conditions;
hence the loading of the foot sole per distance covered is greater in
the high frequency condition. However, if the PTI is considered, the
highest frequency ought to be preferred, as the considerably lower
loading per stride in the high frequency condition, easily
compensate the 20% more strides needed to cover a given distance.
So far, literature is inconclusive as to the variable that predicts
ulceration best, i.e. peak pressures or pressure time integrals.
Nevertheless, it should be further evaluated how balance may be
affected by such a strategy before providing final recommendation
for evidence best practice.

This study only assessed healthy persons. Individuals with
different pathologies should be assessed to ascertain whether they
react similarly. Gait parameters in a three instead of a two
dimensional space could be measured. Speed of 1.3 m s�1 can be
perceived as fast or slow depending on individuals’ height and leg
length, therefore future projects should evaluate the influence of SL
on different populations and with different walking velocities.

This study is one of the first [11,27] to evaluate the isolated
influence of SF–SL on foot pressures and joint moments. The
manipulation of SL was found to affect plantar pressures by up to
70% and joint moments by up to 25%. Moreover, this study provides
evidence that redistribution of joint moments in the elderly results
from decreased SL rather than age. For diabetic gait, the factor SL
should be considered to understand reported associations between
muscle weakness, joint moment redistributions and forwardly
displaced plantar pressure patterns.

5. Conclusions

This study evaluated the influence of SL on joint moments and
plantar foot pressure. A change in SL alters both joint moments and
foot pressures, with clinically interesting consequences. Patients
with different pathologies should now be evaluated before
providing final recommendations for clinical decision making.
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