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Abstract-In this paper, we apply Chio’s pivotal condensation process for matrix determinant 
evaluation to speed up the decoding algorithm of Davida et al. for binary BCH codes. A comparison 
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1. INTRODUCTION 

The Bose-Chaudhuri-Hocquenghem (BCH) codes are a class of widely studied error-correcting 
codes. Considerable work has been done on the decoding of these codes. They can be described 
briefly as follows. 

Let cr be an element in GF(qm), an extension field of the Galois field GF(q). For any given 
positive integers mo and d, if g(z) is the lowest degree polynomial over GF(q) that has arno, 
amo+l ,‘..I am~+d-2 as roots, then the code generated by g(z) is a (q,mo,d) BCH code. The 
length of the code can be computed from the least common multiple of the orders of the roots. 
As a special case, if a is primitive element over GF(2m) and mo = 1, then g(z) generates the 
primitive binary BCH codes [1,2]. 

In this paper, we consider the primitive t-error-correcting binary code of length n that has 
cy, c?,...,cP as its roots. Suppose that code vector V(X) = ZIO + ~12 + ~2 z2 + . . . + TI,_~ xnml 

is transmitted and T(X) = TO + ~1 z + ~2 x2 + . . . + T,_I xnml is received. Let e(z) be the error 
pattern, i.e., r(5) = e(z) + w(z). If we assume that e (e 5 t) errors occured in T(X), then the 
syndrome, S = (~1, ~2,. . . , s2t) of T(Z) can be defined as 

sj = r(d) = e(d), 1 5 j 5 2t. 

Let 

a(s) = (1+ Pl x) (1+/32x). . . (1 +Pe2) = (To + u1 z + 02X2 + .** + 0, z=, 

where & = &, the coefficient of the term of degree li in the code polynomial for i = 1,2,. . . , e, 
is the element of the error location number. The roots of g(z) are ,D;‘, ,B; ‘, . . . , /?; l, which are 
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Mj = 
[sj_, js s;_d 1 a;1 

is singular if the weight of e(z) is j - 2 or less, and is non-singular if the weight of e(z) is j - 1 

orj. 
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the inverses of the error location numbers. The polynomial a(z) is used conventionally to locate 
the error positions and thus is called the error-locating polynomial [3]. 

In 1975, Davida and Cowles proposed a new error-locating polynomial to decode binary BCH 

codes [4]. Suppose e is the number of errors in the received vector. They defined a new error- 

locating polynomial as 

be(Z) = fi(Z + Pt) fi (Pl +P/J, 
i=l l<k,l<e 

l>k 

which can be determined by the matrix 

THEOREM 1. (51 For any BCH (2,1, d) code and any j such that 2 I j 5 n, the j x j matrix 

THEOREM 2. [4] For an binary BCH code, let M,(q, ~2,. . . , sze_2) be the matrix in (1); then 

&.e_-l(z) = IM,(x + si, x2 + si,. . . , x2e-2 + s& where s: = si + pd. 

Let t be the error-correcting capability of the introduced BCH code; Davida et al. developed 

a decoding scheme based on this error-correcting polynomial as follows. 

1.1. Davida et al’s Decoding Algorithm 

Begin 

Step 1. Set e = t. 

Step 2. Compute IM, I. 

Step 3. If ]Me] = 0, then set e = e - 2 and go to Step 2. Otherwise, go to Step 4. 

Step 4. &-e(x) = IM,+i (x + s:, x2 + s’z,. . . , x2e + &)I. 

Step 5. Find the roots of Be(x) by Chien search. 

End. 

The decoding scheme is similar to Massey’s step-by-step decoding algorithm [5]. In order to 

determine the number of errors, both schemes test whether the matrix Mt is singular or not. If 

not, they successively test Mt-2, Mt_4,. . . , until the first nonsingular matrix M, (1 < e 5 t) 

appears. Once the number of errors is obtained, one has to evaluate the determinant of a matrix of 
rank e + 1 at Step 4, and finally use Chien search [l] to locate the errors. Hence, the computation 

of the determinant of a matrix is the most important work in Davida et al’s decoding method. In 
this paper, we shall present a method to speed up this process and also propose a new decoding 

process such that the error correction can be performed in a simpler way. 
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2. IMPROVED DECODING ALGORITHM OF DAVIDA ET AL. 

2.1. Chio’s Pivotal Condensation Process 

Let Aci)cj) denote the (m - 1) x ( m - 1) submatrix of the m x m matrix A obtained by deleting 

the ith row and the jth column of A. First, we study Chio’s Pivotal Condensation Process. 

THEOREM 3. [6] (Ch io’s Pivotal Condensation Process) Let A = [aij] be an m x m matrix and 

suppose all # 0. Let B denote the matrix obtained by replacing each element aij in AcI)(l) by 

. Then IAl = jBl/all”,-2. That is, 

IAl = --& 

al3 

a23 

a13 

a33 

all al, . . . I I a21 a2m 

all ah . . . 1 I a31 a3m 

For convenience, we define A(‘) = A and B(O) = B and denote A(l) as the (m - 1) x (m - 1) 

matrix which is computed by permuting the first row with a nonzero leading element in B(O) 

with the first row in B(O), if the leading element in it is zero. B (l) denotes the matrix obtained 

by replacing each element aij in Al;;(,) by 41 

I I 

4j 

41 alj ’ 
Similarly, we define Acs) and B(‘) for 

l<sIm-2. 

REMARK. If the first column in Bci), for 1 5 i 5 n, is a zero-column, then IA(j)/ = 0, for 

i<j<n. 

COROLLARY 4. Define a?; as the element of the first column and the first row in A(%). The 

determinant of A is 
m-1 

n (ay)i+2-m. 
i=O 

therefore, by induction, the determinant value of IAl is 

x . . . x (aiy-l))’ = n:i’ (ai;))i+2-m. I 

THEOREM 5. Let the matrix Mt+l be 

By Chio’s pivotal condensation process, the matrices M$, and MI::‘) are nonsingular, and 

Miyl, for all e + 1 < I; < t + 1, is singular if the weight of the error pattern is e. 
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PROOF. According to the Theorem 1, if e or e - 1 errors occurred, then lMel # 0. Suppose that 

e errors occurred, we know that IMt+ll = 0, lMtl = 0, \Mt_l( = 0, IMt-21 = 0,. . . , )M,+l\ # 0 

and IMel # 0. By Chio’s pivotal condensation process, we now show that to test whether M, is 

singular or not is the same as to test whether )M$, 1 is singular or not. 

Let 

IMSO,),I = 

1 0 0 . . . 0 

s2 Sl 1 . . . 0 

s4 33 s2 . . . 0 

1 Sat 321-l s2t_2 . . . St !I 

(0) 
ml1 m’1”2’ . . . m(1oe) 

(0) 
m21 m!$’ . . . rng’ 

(0) 
ml(e+l) . 

(0) 
m2(e+l) . 

m!ol) ma . . . 
I : 

rni) I (0) 
me(e+l) . 

i 

mill) (1) 
I 

(1) . . . ml+1) ml, 
(1) m21 (1) . . . m2(e-l) I rnal,) 

1 
= 

( > 
t-1 

m[~!_,), ... mit.)l) (e-1) 
(0) 

ml1 ~ __ I# - rni:) (1) . . . 9 (e- 1) 

1 

= (mjolJ-’ (mw)+2 

X 

rn$) (2) . . . ml+2) 
(2) m21 (2) . . . m2 (e-2) 

mjt!_,)l ... mif)s, (e-2) 

(2) 
ml (e-l) 

(2) 
m2 (e-l) 

(0) 
ml(t+l) 

(0) 
m2(t+l) 

(0) 
me(t+l) 

(1) I 
. . . ml, 

. . . rng) 

. . . m;f:l) t 

. . . m{,l) , 

(2) . . . ml (t-l) 
(2) . . . m2 (t-l) 

= (mjol))t-l (mj:l)t-2.. . (mjel-2))t-e+l 
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my) ) &-1) (e-1) . . . 9 (t-e+2) 

J 

b-1) 
m21 

(e-1) 
m22 

(e-1) . . . m2 (t-e+2) 

4C~2) 1 . . . mizI:i2) (t-e+2) 
1 

X 

= (mg))t-l (m$;f-2.. . (mje,-‘))f-= 

X 

rn$“l) 

rng) 
(e) 

m31 

rn$) 

(e) m22 

rn$j) 

. . . 

. . . 

. . . 

(e) 
ml (t-e+l) 

(e) 
m2 (t-efl) 

(e) 
m3 (t-e+l) 

mi:)e+l) 1 4L)e+l)2 ... m;z)e+l) (t-e+l) 

1 

= IMe’ (mio,))t-=+l (mj;))t-=. . . (mjel-lJ)‘-2=+2 

X 

. . . 

. . . 

. . . 

(e) 
ml (t-e+l) 

(e) 
m2 (t-e+l) 

(e) 
m3 (Ge+l) 

m[Z)e+l) 1 4Fle+l)2 . . * mjT)e+l) (t-e+l) 1. 
So, at the process of computing the determinant of the matrix Mt+l, we can get the determinant 

of the matrix Me (e < t + 1). Since IMe( # 0, if the element of the first row and the 

first column of the matrix Mix (k < e) is zero, then one can always find a row with a non- 
(k) zero leading element in the matrix M, and exchange the first row with this row. Otherwise, 

IMdk)l = 0, which implies IM$‘)I = 0 if k 2 1 5 e. That is, IMel = 0, which is a contradiction. 

Similarly, we can prove that IMi”,:‘)( # 0, IMI’,:2’( = 0,. . . , IM&y’1 = 0 if (M,+ll # 0 and 

IMe+2l = . . . = IMt+l( = 0. I 

2.2. Improved Davida et al.‘s Decoding Algorithm 

Theorem 5 facilitates us to calculate the number of errors in r(x) by evaluating the determinant 

of only one matrix Mt, instead of computing the determinants of t/2 matrices as being done in 

Davida et al.% decoding algorithm. 

We further define the error-number decision vector D = (dl, d2, . . . , dt+l) 

d, = 
0, if [M,‘?,(O)I = 0 

1, otherwise 
wheres=1,2 ,..., t,t+l. 

Then, we have the following: 

D = (O,O, O,O, . . . , 0,O) if there is no error; 

D= (l,l,O,O ,... , 0,O) if there is one error; 

D=(l,l,l,O ,... , 0,O) if there are two errors; 

D = (l,l, l,l,. . . , 1,0) if there are t - 1 errors; 

D = (l,l, l,l,. . . , 1,1) if there are t errors. 
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Therefore, by computing the determinant (Mt+iJ, the number of errors can be obtained. Note, 

the same method can also be used to improve Massey’s step-by-step decoding scheme [5]. 

Furthermore, at Step 4 of Davida et al.3 decoding algorithm, they computed the determinant of 

the matrix Me+1 first and then found the error positions by Chien’s search. However, if we apply 

Chio’s pivotal condensation process directly to locate the error positions, then the computation 

of the determinant of the matrix M,+i can be omitted. What we have to do is to substitute all 

possible error positions, 5, (1 < i 5 n, n is the code length), to z subsequently, and test whether 

M,+i(zi) is singular or not. If jMe+i(~i)l = 0, th en the position 5, is in error. In this case, 

Davida et al.‘s decoding algorithm can be modified as the following. 

Improved Algorithm 

Begin 

Step 1. Use Chio’s pivotal condensation process to evaluate jMt+i( and also 

generate D. If D = (0, 0, . . . , 0), then end this algorithm; else let the number 

of errors be e. 

Step 2. Calculate IMe+i(~i)l, for 1 5 i 5 n. 

If JM,+i(si)l = 0, then the position zi is in error. 

End. 

It is obvious that Step 2 of the new decoding algorithm involves a singularity test of n matrices. 

However, the intentional design of the decoding algorithm (see Section 3) to consecutively utilize 

the singularity test of a matrix in each decoding step allows us to perform these decoding steps in 

a pipelined way. This will speed up the decoding speed and also simplify the design of hardware 

circuits. 

3. HARDWARE DESIGN AND CONCLUSIONS 

We use Chio’s pivotal condensation process to evaluate the determinant of a t x t matrix A. 

From Theorem 2, we see that the t x t matrix is first reduced to a (t - 1) x (t - 1) matrix and then 

a (t - 2) x (t - 2) matrix, etc. In each stage, it involves the determinant calculations of several 

2 x 2 matrices, each of which can be implemented by using two multipliers and one subtractor (or 

adder in GF(2)), ( see also Figure 1). Figure 2 shows an interconnection diagram of two stages-a 

4 x 4 register array (denoted by V) which stores A(j) in the upper stage and passes their entries 

to a 3 x 3 register array (denoted as q ) which computes the A(jfl) matrix. What we don’t 

show in the diagram is the transformation from B(j) to A(i+‘), which involves (if the ail in B(j) 

is zero) the permutation of the first row with a non-zero leading element in B(j) with the first 

row in B(j), such that the element of the first row and the first column in A(j+‘) is nonzero. 

Notice that each stage in the matrix determinant calculation takes only one multiplication and 

one subtraction (omit the permutation time here). For the determinant calculation of a t x t 

matrix, it requires, at most, t stages. 

It is obvious that Step 1 of the new algorithm is faster than Steps 1, 2 and 3 of the algorithm 
of Davida et al. in computing the number of errors in the received word. Now, we compare 
Steps 4 and 5 of the algorithm of Davida et al. to Step 2 of the new algorithm. One has to sum 

up e! terms of product of t terms, if the Laplace expansion method [7] is used, to compute the 

determinant of the matrix M,+i at Step 4 of their algorithm. And it takes n multiplications 
to finish the Chien search at Step 5. However, at Step 2 of the new algorithm, n determinants 

have to be evaluated in a pipelined way, in which each step requires one multiplication and one 
addition time. Thus, it requires (n + e) multiplications and additions in total, in the worst case, 
at Step 2 of the new scheme. 

To summarize this discussion, while Step 1 of the new decoding algorithm provides more 
efficient decoding speed than Steps 1, 2 and 3 of Davida et al.‘s algorithm, Step 2 of the new 
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Figure 1. The cell of the pipeline determinant calculator. 

v Register of the upper stage 

0 Register of the lower stage 

r-l cell of tbe pipeline determhant calculator 

Figure 2. The interconnection diagram of two stages. 

method allows us to decode in a pipelined way and, thus, can simplify the hardware design of 

the decoder. 



66 T. HWANG AND S. Y. HWANG 

REFERENCES 

1. S. Lin and D.J. Costello, Error Control Coding: Fundamentals and Applications, Prentice-Hall, Englewood 
Cliffs, NJ, (1983). 

2. W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes, The M.I.T. Press, Cambridge, MA, (1972). 
3. E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, (1968). 
4. G.I. Davida and J.W. Cowlas, A new error-locating polynomial for decoding of BCH codes, IEEE Trans. 

Inform. Theory IT-21 (2), 235-236 (March 1975). 
5. J.L. Massey, Step-by-step decoding of the Bose-Chaudhuri-Hocquenghem codes, IEEE Trans. Inform. The- 

ory IT-11 (4), 580-585 (October 1965). 
6. H. Eves, Elementary Matrix Theoq, Boston, (1966). 
7. S.R. Searle, Mutti Algebra Useful for Statics, Wiley, New York, (1982). 


